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The problem: scope and division of labor 
Recognizing words seems easy. We just hear them. Naïve listeners report that word recognition is 
normally effortless, and at least as easy as reading words on a printed page. You might share the intuition 
of a prominent auditory neurophysiologist who said that he was surprised that speech scientists struggled 
so much to explain speech perception, since there are clear breaks between words in fluent speech. A 
quick look at some spectrograms disabused him of this opinion (there are no reliable acoustic cues to 
boundaries between words, let alone phonemes [consonants and vowels]). In fact, acoustic breaks are 
more likely within words than between words (the one clear break in "where were you a year ago" occurs 
as part of the /g/ in ago).  
 
It is easy to underestimate the challenge of explaining human speech recognition, where the buzzes, 
hisses, pops and whistles emanating from a speaker's vocal tract result in a listener typically recovering 
the message the speaker wishes to transmit. It is in fact so challenging that multiple subfields of cognitive 
science and neuroscience are devoted to small pieces of the puzzle. We have largely broken the problem 
into four pieces: speech perception (roughly, mapping from acoustics to phonological categories like 
phonemes), spoken word recognition (mapping from phonemes or something similar to sound forms of 
words), sentence processing (mapping series of word forms to syntactic structures, constrained by 
semantics), and pragmatics and discourse (situating sentence processing within a larger set of utterances, 
such as a narrative or conversation). You may notice some gaps. For example, why should spoken word 
recognition be conceived as ending at form recognition? There is indeed a rich literature on accessing 
semantic representations in spoken word recognition (see Rodd, this volume, Piñango, this volume, and 
Magnuson, 2017). Of course, one should also question what might be lost by not considering the lowest 
levels of language processing in the context of the highest, and vice-versa, and we will return to this at the 
end of the chapter. For now, let's consider why the subfield of SWR typically starts with abstract 
phonological inputs rather than the speech signal and why it typically ends with form and not meaning -- 
a state of affairs we will call the Simplified Mapping Perspective (SMP).  

 
The SMP stems from very practical simplifying assumptions that emerged in the 1980s when theories of 
spoken word recognition came into their own. Although there were some attempts to develop models that 
could operate directly on speech (Elman & McClelland, 1986; Klatt, 1979), a set of longstanding 
unsolved problems in theories of speech perception (mainly unsolved to this day) and lack of computing 
power motivated this simplification. For at least 120 years (Bagley, 1900-1901), psychologists have 
recognized that spoken word recognition offers plenty of mysteries of its own, even if we step away from 
speech perception and constrain the problem to mapping from something like a string of phonemes to 
lexical forms. If we simplify the scope of our problem in this way (i.e., adopt the SMP), and leave the 
acoustic-phonetic challenges to specialists in speech perception, we can posit a fundamental process that 
seems to be necessary for recognizing spoken words: mapping an uninterrupted stream of phonemes onto 
a series of word forms stored in memory (indices to the so-called mental lexicon). This is spoken word 
recognition construed as form recognition. For now, we will not consider meanings of individual words, 
complications of morphological processes1, lexical semantics of sets of words, nor potential constraints of 
syntax or discourse. And again, the SMP starts with something like phonemes as inputs, so for now we 
will not concern ourselves with lower-level questions that we relegate to the domain of speech 
perception.2 
 
                                     

1 Typically, the SMP focus is restricted to lemma forms: ‘citation’, uninflected forms, such as BARK but not 
BARKS or BARKED. 

2 The SMP also harks back to Marslen-Wilson's (1987) proposal that SWR emerges from three distinct 
functions that operate in parallel: access [form activation], selection (discrimination among forms, essentially 
recognition via determining best fit), and integration (with higher levels of processing).  
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Defining the scope like this requires us to adopt at least three simplifying assumptions that we know are 
wrong: that we can isolate a process of spoken word recognition from the rest of language and cognition, 
that the input can be conceived of as something like phonemes, and that word forms are a plausible 
stopping point (i.e., that there are not rich interactions with processing of morphology, meaning and 
syntax). But if we reject these simplifying assumptions, we must adopt others, or face an endless regress 
where at the "low" end we go deeper and deeper, from phonemes to phonetic cues to acoustic energy 
impinging on hair cells to the dynamics of networks of cells to individual cells, ad infinitum. We can do 
the same thing at the "high" end, progressing from word meaning to lexical semantics to sentence level 
constraints to discourse constraints to a listener's personal experience with each word and phrase and any 
memories or emotions they trigger, to social interactions with an interlocutor, to cultural concerns, etc. It 
is not possible to consider all these levels at once. So in any domain, developing theories and 
understanding requires a reductionist approach to break problems into manageable pieces. A degree of 
fundamental understanding of the pieces is a prerequisite for developing integrative theories. As 
understanding of smaller pieces of the puzzle emerges, the scope of the problem can be expanded. Of 
course, developing micro-theories poses risks (cf. the parable of blind men examining an elephant, 
coming to radically different conclusions about its nature depending on whether they inspect the trunk, 
ear, leg, tusk, etc.). Later, we will consider the potential perils of segmenting the system incorrectly, or of 
losing sight of simplifying assumptions. For now, we will adopt the conventional phonemes-to-form 
definition of spoken word recognition, and focus on the great strides psycholinguists have made within 
this scope.  
 
We will divide the rest of this chapter into two major sections: core challenges that current SWR theories 
and models face within the SMP (a mainly historical overview of SWR theories and models and the data 
that motivate them), and future challenges, where we review phenomena that are clearly essential for true 
understanding of human SWR, but are mostly outside the scope of current theories and models. In a 
nutshell, by walling off SWR from the unsolved challenges of speech perception and sentence processing 
(not to mention neural-level findings, which we will touch upon briefly later), the SMP has allowed 
tremendous progress towards understanding crucial components of word-level processing and 
representation that is largely prerequisite to integrative theories spanning these levels. It is possible that 
solutions to currently unresolved challenges and debates may emerge as we develop models that allow 
lower and higher levels of language and cognition to constrain SWR.3 
 

Core challenges for the simplified mapping perspective on SWR 
The primary challenge is mapping the stream of phonemes onto words. One possibility would be to buffer 
some amount of speech into short-term memory and analyze it in chunks. But what would the chunks be? 
This idea runs right into what is known as the segmentation problem: there are few cues to word 
boundaries. Because the input must be processed before word boundaries can be discovered, the chunks 
could not be words. Perhaps the chunks could be longer utterances, such as phrases or sentences. 
However, phrase and even sentence boundaries can also be uncertain -- another segmentation problem.4 
Also, in many contexts, speech proceeds quickly with few pauses (e.g., interlocuters taking immediate or 
even overlapping turns), so this idea might pose impractical computational demands.  
 

                                     
3 One might argue that the SMP is an oversimplification; as we shall see, several SWR studies since the 1980s 

have strayed beyond its boundaries. This is a fair point, and -- spoiler alert -- we will reject the SMP ourselves. 
However, we find it a useful approximation of the modal approach in SWR over the last few decades (most models 
of SWR conform to it, for example), as well as a foil that highlights exceptions to it and potential alternatives.  

4 A third segmentation problem is found in the domain of speech perception, where the information specifying 
adjacent (or sometimes more distant) consonants and vowels overlaps in time, precluding clear phonemic 
segmentation. 
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Another intuitive approach might be to consider the lexicon as a series of branching paths, as in Figure 1. 
There would be one tree for every possible onset phoneme, which could potentially branch to every other 
possible phoneme, and so on (though in fact only a subset of possible branches occurs in English [for 
example], and word length is finite). Recognizing a word would simply be a matter of mapping the 
phoneme stream onto the correct branch. As we can see in Figure 1, a challenge crops up immediately: 
the embedding problem (McQueen, Cutler, Briscoe, & Norris, 1995). Many words are embedded within 
longer words. We need a mapping process that won't prematurely "recognize" BASS or BASK when 
hearing BASKET. If we only consider words spoken in isolation, this is not much of an issue; the system 
can wait for silence to mark the end of the word. But how will the system manage embeddings in fluent 
speech, without clear word boundaries? 
 

 
Figure 1: Examples of lexical trees beginning with /b/ and /k/, showing only a small subset of 
branches (some of which are truncated). Note that in some cases the path to a terminal node 
(which cannot be continued to form a word without considering morphological inflections) 
passes through multiple words that are onset-embedded in one or more longer words (e.g., the 
branch for BASKET passes through BASS and BASK). Source: Magnuson (2020a). 

 
In fact, the foundational modern theory of spoken word recognition -- the Cohort Model (Marslen-
Wilson & Welsh, 1978) -- posited that a process operating over something like this tree structure would 
provide a basis for mapping phonemes to words, as well as an emergent solution to word segmentation. 
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The basic idea is depicted in Figure 2. When the first phoneme in the stream is encountered, it is added to 
a buffer. Each subsequent phoneme is added to the string in the buffer if doing so results in a continuation 
of a word in the lexicon. If adding the phoneme does not yield a match to a word in the lexicon, this likely 
indicates a word boundary (e.g., /kæt/ is a word, but if the next phoneme is /r/ [as in "CAT RUNS"], it 
does not match a word, and so a boundary is posited after /kæt/ and the process begins again with /r/ as 
the first phoneme). However, if the phoneme cannot be added to the prior string and the prior string does 
not correspond to a word, this means an error has occurred, and reanalysis is needed. For example, if the 
input were /kʌlæps/ (COLLAPSE) but the /l/ was not clearly articulated and the listener mapped it to /r/, 
the string /kʌræ-/ could be mapped to CARAFE but at the /p/ at the next position, neither the prior string 
(/kʌræ/) nor the new string (/kʌræp/) would match a lexical item, so reanalysis would be required. 
 

 
Figure 2: Flow chart illustrating the basic algorithmic principles of the Cohort Model 
(Marslen-Wilson & Welsh, 1978). Source: Magnuson (2020b). 

 
The reason this was called the Cohort Model is that at the beginning of a string, all words that match the 
first phoneme are 'activated' and form the potential recognition cohort.5 Thus, a more typical way of 
describing the process in Figure 2, rather than as traversing a tree, is generating a list of all matching 
items at the first position, and then winnowing that list as each new phoneme comes in. On this view, 
word onsets hold a privileged place. Even if two words have great global similarity -- e.g., BATTLE and 
CATTLE overlap in four of five phonemes -- hearing one is not predicted to activate the other if they 
mismatch at onset. The /b/ at BATTLE’s onset constitutes positive evidence for any word beginning with 
/b/ and evidence against any word that does not begin with /b/. On the other hand, hearing one of two 
words with relatively little global overlap but with the same onset (BATTLE and BAG, which match in 
only two of five possible positions) would be predicted to strongly activate both.  
 
Although the primacy of onsets had been long recognized (Bagley, 1900-1901), Marslen-Wilson and his 
colleagues transformed this intuitive idea into a formal model that generated clear, testable predictions. 
Indeed, they conducted comprehensive tests of the model over several years. Their methods included 
gating (playing a listener progressively longer snippets of a word and asking them to guess what word it 
would turn out to be; Grosjean, 1980) and a variety of pairwise approaches (cf. Magnuson, 2017). In 
pairwise approaches, a specific word is presented and the impact of hearing (or seeing) that word on the 
activation of one specific word (i.e., a specific target and potential competitor pair) is assessed. For 
example, one can test whether hearing BATTLE primes cohorts (BAND, BAG, etc.) or rhymes 
(CATTLE). 

                                     
5 Note, however, that cohort is often used in SWR to refer to an onset competitor, e.g., CAB is a cohort of CAT. 

Note also that the competition cohort, that is, the set of items predicted to compete strongly with a give target word, 
is not typically defined based on overlap in only the first phoneme. Here, we adopt a common standard of defining 
the competition cohort as words overlapping in the first two phonemes (other variants include 'overlap in the first 
200 msecs' or 'overlap through the first vowel'). 

Input first/next phoneme

Add to string

Can phoneme be 
added to string to 
continue a word?

Does previous string 
correspond to a word?

YES

NO

NO

Reanalyze…

YES

Prior string = word;
Recognize word;

This position = word boundary;
Empty buffer and replace with

this phoneme
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When Marslen-Wilson and his colleagues used the cross-modal semantic priming paradigm (Swinney, 
1979) to assess spread of activation based on phonological similarity (e.g., Marslen-Wilson & 
Zwitserlood, 1989), an asymmetry emerged. In cross-modal semantic priming, the participant hears a 
series of words but is focused on a visual lexical decision task. The participant decides whether each 
written string they see on a screen is a word or not (and of course, the domains can be flipped such that 
the lexical decision task is focused on spoken words). Although the spoken words are superfluous, they 
impact the visual lexical decision via semantic relations. For example, participants are faster to identify 
LOG (associate of CABIN) as a word after hearing CATTLE than after a phonologically-unrelated word, 
such as BRAIN. This suggests that CABIN was so strongly activated when CATTLE was heard that a 
detectable degree of activation spread to its semantic associates.  
 
Work by Marslen-Wilson and colleagues and others motivated by the Cohort Model led to multiple 
discoveries regarding the incremental process of spoken word recognition. For example, the simple view 
of the Cohort Model depicted in Figures 1 and 2 predicts that recognition should happen at the 
uniqueness point. Given a word like COCONUT, the /n/ represents the uniqueness point; once the /n/ is 
encountered there is only one lexical possibility (or two, taking into account morphological marking for 
number, i.e., COCONUT vs. COCONUTS). The fact that the uniqueness point is at or after word offset 
for many words (e.g., CAT can continue as CATTLE, CATALOG, etc.) also motivates the parsing 
strategy depicted in Figure 2. Given the string, /ðʌkætəlou/ (we can approximate this phonetic 
transcription roughly as tha-kat-a-low, with no pauses or breaks), a word boundary would be discovered 
between the second and third phonemes (THE and then something beginning with /k/). A potential 
boundary exists after the /t/ (THE CAT…), but the schwa and /l/ afterward could be added to /kæt/ to 
form CATTLE. The final vowel still leaves an ambiguity; a possible parse is THE CATTLE LOW (the 
final word being a low-frequency, archaic verb, meaning to moo), and if the utterance ended there, it 
would be the parse. However, if the utterance continued as /ðʌkætəloupt/, the system would have to 
discover the parse THE CAT ELOPED.  
 
The low-frequency example of the verb TO LOW leads us to two other critical considerations in the time 
course SWR that emerged in Cohort-motivated studies: the isolation point and the recognition point 
(Grosjean, 1980). The recognition point is where we can establish definitively that a listener has decided 
upon the identity of a spoken word (not necessarily correctly). This could be the point when the listener 
presses the YES button in a lexical decision (deciding that the stimulus is a word), although there is some 
controversy about whether a correct YES response in lexical decision necessarily requires actual 
recognition (vs., e.g., high but not definitive activation, depending on the nature of nonwords used, 
among other factors; see Balota, 1990, on the slippery notion of a “magical moment” of recognition). 
Grosjean (1980) instead asked participants (in a gating task) to listen to increasingly longer portions of 
words (from word onset), provide their best estimate of the identity of the word, and to rate their 
confidence about that estimate. He defined the isolation point as the time a participant settled upon the 
correct response for the target word (that is, they correctly identified the actual word and did not change 
their response on subsequent gates).  
 
The isolation point necessarily precedes (or coincides with) the recognition point, but both may occur 
prior to or later than the uniqueness point. Grosjean found that for single words presented in without 
context, the isolation point was relatively late. A relatively neutral context (constraining form class and 
possibly concreteness, e.g., my son asked for a...) led to an earlier isolation point for appropriate words 
(e.g., PARROT), and semantically constraining contexts shifted the isolation point earlier (because he 
loves pets, my son asked for a …). This raises an interesting question that we will return to later: does top-
down context directly affect recognition processes and therefore contribute causally to perception (e.g., 
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via feedback), or does context bias word recognition after bottom-up information drives activation (e.g., 
in a decision-stage process)? For now, we will focus on “context-free” SWR (i.e., isolated words), and 
will shortly consider how the lexical context of isolated words may mediate or moderate sublexical 
processing. 
 
However, despite the terrific amount of data that had accumulated supporting the Cohort Model, Luce 
(1986; Luce & Pisoni, 1998) took a contrarian perspective with the Neighborhood Activation Model 
(NAM). They proposed that similarity defined in a more global manner might capture aspects of 
competition that were not apparent in studies using gating or pairwise approaches, which strongly 
supported the Cohort Model's emphasis on temporally 'left-to-right' sequential processing. In contrast, 
they took what we call a lexical dimensions approach to investigating phonological similarity (cf. 
Magnuson, 2017). On a lexical dimensions approach, predictors are selected for factorial and/or 
regression analyses examining performance measures for large numbers of items (rather than specific 
pairs). Luce and Pisoni focused on two lexical dimensions: frequency of occurrence, and neighborhoods.  
 
They adopted a specific and simple neighborhood definition drawing on prior work (e.g., Greenberg & 
Jenkins, 1964; Landauer & Streeter, 1973; and Sankoff & Kruskall, 1983): two words are neighbors if 
they differ by no more than a single phonemic deletion, addition, or substitution (the so-called DAS rule). 
For example, CAT has the deletion neighbor AT, addition neighbors SCAT and CAST, and many 
substitution neighbors (e.g., BAT, COT, CAN). Luce and Pisoni acknowledged that the DAS rule makes 
very strong assumptions, in that any it ignores potentially gradient phonetic similarity (e.g., CAD is more 
phonetically similar to CAT than is CALF) or potentially differential effects of position of similarity (e.g., 
do BAT and CAT compete as strongly as CAB and CAT?). However, they argued that the computational 
simplicity of the DAS rule provides an excellent starting point for considering effects of phonological 
neighborhoods (and they also explored gradient measures of similarity, as we discuss shortly).  
 
They proposed that frequency and neighborhood could be integrated into a simple choice model for 
spoken word recognition, paraphrased in Equation 1. A word's frequency-weighted neighborhood 
probability (FWNP) is calculated as the ratio of a target word t's frequency (f) to the summed frequencies 
of all n of its neighbors (including itself). The simple, elegant idea here is that words differing by a single 
phoneme are similar enough to activate each other if one of the words is heard, that strength of activation 
will be proportional to word frequency (i.e., prior probability), and that activated words will compete for 
recognition. Thus, the larger the proportion of the frequency-weighted neighborhood that the target 
contributes, the more easily it should be recognized. So if two target words had the same frequency-
weighted neighborhood, the target with higher frequency (i.e., the one with the larger numerator) would 
be (predicted to be) recognized more easily. If two target words had the same frequency, the one with the 
'sparser’ neighborhood (i.e., the one with the smaller denominator), should recognized more easily. 
 

𝐹𝑊𝑁𝑃% =
'(

∑ '*+
*,-

                   (1) 

 
Luce and Pisoni (1998) conducted factorial studies using categorical definitions of high and low word 
(log) frequency, neighborhood density (count of neighbors) and neighborhood frequency (summed log 
frequencies of neighbors). In general, higher frequency predicted better lexical decision performance 
(higher accuracy and faster reaction times), while high neighborhood density (count) and high 
neighborhood frequency predicted worse performance. They also used a graded form of the FWNP rule, 
as in Equation 2 (note that we use a simplified notation, but Equation 2 is equivalent to Equation 6 in 
Luce & Pisoni, 1998). 
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𝐹𝑊𝑁𝑃% =
.(%|1)'(

∑ .(3|1)'*4
*,-

            (2) 

 
In Equation 2, p(t|i) is the probability that the word is target t given the input i. Given that the input does 
indeed correspond to word t, you might expect this to be 1.0. However, this may not be 1.0 given the 
possibility of external or internal noise. In the denominator, p(j|i) is the probability that the input word is 
actually word j. To put this slightly differently, the p(t|i) and p(j|i) are the calculated similarity between i 
and target word t or word j. Note that n (all neighbors) in Equation 1 is replaced here with l, because now 
every word in the entire lexicon is considered, not just the neighbors that conform to the DAS rule. As in 
Equation 1, the denominator includes the target, t. Note also the relation between Equations 1 and 2; in 
Equation 1, the similarity calculation is dropped because words are defined categorically as neighbors 
(those conforming to the DAS rule) or not. Luce and Pisoni (1998) reported that for an identification-in-
noise task, the FWNP accounted for approximately four times as much variance as word frequency at 
high and moderate signal-to-noise ratios (SNRs): 16% vs. 4% with a +15 dB SNR, and 22% vs. 5% at +5 
dB SNR. The FWNP and frequency accounted for similar variance at a low SNR (5% vs. 6% at a -5 dB 
SNR).  
 
The graded similarity metric makes some surprising predictions. For example, it correctly predicts that 
VEER should prime BULL (which differ only by a single phonetic feature at each position; Luce, 
Goldinger, Auer, & Vitevitch, 2000).6 However, the DAS variant of the FWNP (Equation 1) has come 
into common usage, with little exploration of the graded version (Equation 2). An obstacle to using the 
graded version is the need for a precise basis for calculating similarity. Luce and his colleagues derived 
confusion probabilities for the specific parameters of the experiments in which they have applied the 
graded metric (e.g., phoneme or diphone confusions for specific SNRs, talkers, etc.). This is a gap that 
could be filled by the use of a generic similarity metric based on acoustic-phonetic features, but to our 
knowledge, this approach has not yet been taken.  
 
Let’s consider how the Neighborhood Activation Model and Cohort Model relate to one another. In 
Figure 3, we present subsets of the neighbors and cohorts of the word CAT (/kæt/). Neighborhoods and 
cohorts overlap in substitution neighbors that overlap at all but the final position, and addition neighbors 
that preserve the first two phoneme positions. But neighbors include non-cohorts with substitutions or 
deletions at the first or second positions, and cohorts include items that mismatch by more than one 
phoneme, so long as they overlap in the first two positions. Which should we prefer? Informally, it would 
appear that the NAM has outstripped Cohort in SWR. Anecdotally, reviewers routinely insist upon 
neighborhood being controlled in word recognition studies, but rarely comment upon cohort size or 
density. The NAM approach has also proved useful in designing clinical assessments and interventions 
for language impairments (e.g., Kirk et al., 1995; Morrisette & Geirut, 2002; Sommers & Danielson, 
1999; Storkel et al., 2010, 2013).  
 

                                     
6 An important extension of the framework is the concept of probabilistic phonotactics (Vitevitch & Luce, 1999), 
which considers positional likelihoods of each phoneme and diphone in a word. While these measures tend to 
increase with frequency-weighted neighborhood, probabilistic phonotactics adds important information, and many 
studies now control probabilistic phonotactics as well as neighborhood.  
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Figure 3: Illustration of the differences and overlap in competitor sets predicted for the 
target word CAT by the Neighborhood Activation and Cohort Models (Magnuson, 
2020c). 
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Figure 4: How the TRACE model is linked to the visual world paradigm task, adapted 
from Allopenna et al. (1998). Participants saw displays like the one in C. As participants 
followed spoken instructions like "pick up the beaker", the proportion of fixations to 
different object types mapped onto phonetic similarity over time with an approximately 
200-ms lag (panel B). When TRACE simulations were conducted with analogous items, 
similar trends were observed (A). When TRACE activations were constrained to the 
same four-alternative choices presented to participants (C), and thus rescaled as predicted 
response probabilities (D), a very close fit was observed.  
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However, it's not clear that the apparent dominance of the NAM approach is fully warranted, nor has 
there been a clear reconciliation of the two approaches. A study by Allopenna, Magnuson, and Tanenhaus 
(1998; see Figure 4) suggested a middle ground that is consistent with one of the best-known 
computational models of human SWR, TRACE (McClelland & Elman, 1986). In an early "visual world 
paradigm" (Tanenhaus, Spivey-Knowlton, Sedivy, & Eberhard, 1995) study, Allopenna et al. presented 
participants with displays containing four shapes and four images of objects. Participants followed spoken 
instructions to interact with one of the images (e.g., "pick up the beaker; now put it below the diamond"). 
On critical trials, the target image (e.g., BEAKER) was accompanied by a potential cohort competitor 
(BEETLE) and/or a rhyme competitor (SPEAKER) along with images of one or two phonologically 
unrelated items (Figure 4C). Allopenna et al. tracked the proportion of fixations to each object from the 
onset of the target name in the "pick up the…" instruction. The time course is shown in Figure 4B. There 
was early, strong competition between cohorts (which makes intuitive sense, since the input initially 
matches the target and its cohort equally well), but also later, weaker competition between rhymes. 
Changes in fixation proportions over time mapped onto phonetic similarity with an approximately 200-ms 
lag, which is a typical latency for saccades in cognitive tasks (Carpenter, 1988; Viviani, 1990), and nearly 
as fast as could be expected, given that saccade latencies to a point of light in a darkened room are 
approximately 150 ms (Fischer, 1992; Matin, Shao, & Boff, 1993; Saslow, 1967). 
 
Notably, the cohort competition they observed is not predicted by NAM, since the cohorts differed by 
more than one phoneme. Similarly, the rhyme competition is not predicted by the Cohort Model.7 Thus, 
the time course suggests a possible reconciliation between Cohort and NAM predictions. While cohort 
competition is indeed strong, there is also weaker competition from at least one non-cohort type of 
neighbor. The fact that competition between rhymes is relatively weak suggests that the failure to observe 
rhyme effects in pairwise approaches was likely due to the use of low-sensitivity paradigms rather than 
the actual dynamics of lexical access and competition in online SWR. For example, consider again cross-
modal semantic priming. To detect effects in this paradigm, activations must be strong enough to cross 
modalities (auditory-visual) and spread form-based activation via semantic relations. If form-based rhyme 
effects are relatively weaker than cohort effects (Figure 4B), it is unsurprising that rhyme effects might be 
too weak to drive cross-modal semantic priming.  
 

 
Figure 5: Schematic of the architecture of the TRACE model. Arrows indicate positive, 
selective connections (features connect to phonemes for which they are relevant, 
phonemes connect to words that contain them, and words connect back to constituent 
phonemes). Knobs indicate lateral inhibition. (Source: Magnuson, 2020d.) 

 
Let us consider how the human-like competition timecourse emerges in the TRACE model. The basic 
architecture of TRACE is presented schematically in Figure 5. In TRACE, "pseudo-spectral feature" 
inputs (elements representing features such as diffuseness or burstiness that ramp on and off over time, 
with adjacent phoneme patterns overlapping as a coarse analog to coarticulation) activate corresponding 
phonemes. Activated phonemes stimulate word nodes that contain them. As word nodes become 
                                     

7 In addition, the rhymes in the example are not neighbors, as BEAKER and SPEAKER differ by two 
phonemes. However, all other rhyme pairs differed by just one phoneme (e.g., SANDAL/CANDLE).  
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activated, they send feedback to constituent phonemes. Crucially, activations are governed by competition 
via lateral inhibition.8  
 
As a word is input incrementally to TRACE, items overlapping at onset (cohorts) naturally become 
activated since they match the beginning of the input. Rhymes can be activated as the input begins to 
activate their constituent phonemes. Importantly, lexical feedback will even drive modest activation of the 
initial phoneme of a rhyme (though not sufficiently for that phoneme to be as strongly activated as the 
phonemes in the bottom-up input). One might expect that because BEAKER and SPEAKER overlap in 
four phonemes but BEAKER and BEETLE only overlap in two, BEAKER should activate SPEAKER 
more strongly than BEETLE. However, this does not happen due to lateral inhibition. By the time the 
input begins to activate the rhyme, the target word and all of its cohorts are moderately activated (e.g., 
around cycle 20 in Figure 4A). The inhibition they jointly send to the rhyme prevents the rhyme from 
becoming as strongly activated as cohort items despite greater global similarity.  
 
Thus, the incremental nature of the input promotes a strong advantage for cohort competition (note that 
McClelland & Elman [1986] cite the Cohort Model as their inspiration.). Since there is no explicit 
tracking of word onsets or removal of items with mismatches (lateral inhibition suppresses rather than 
categorically removes items from the competition set) items that mismatch at one or more positions can 
become activated, with degree of activation depending on many complex factors (position[s] of 
mismatch[es], number of other items similar to the target and/or potential competitor, etc.). One way that 
TRACE could be made more consistent with the Cohort Model would be to use bottom-up inhibition: that 
is, phonemes would send inhibition to words they do not occur in (in a position-specific fashion; see 
Footnote 4; to our knowledge, this has not been attempted with TRACE). Note that lateral inhibition has 
important advantages over categorical removal based on mismatches; in particular, it allows rhyme effects 
to emerge, and it also makes TRACE quite robust against noise (see, e.g., Magnuson, Mirman, Luthra, 
Strauss, & Harris, 2018), and replaces the need for the (unspecified) reanalysis mechanism in the Cohort 
Model with a of more tolerant form of constraint satisfaction. 
 
So, does TRACE reconcile differences between NAM and Cohort? Yes and no. On the one hand, it 
provides a mechanistic explanation for how the timecourse of phonological competition might emerge in 
human listeners, with surprisingly fine-grained, nearly millisecond-scale simulations (Figure 4A and 4D). 
However, while some general principles that govern TRACE's behavior can be articulated (as we have 
just attempted), it does not provide a similarity metric, let alone a categorical (or even graded) definition 
of competitors. Its central tendencies (e.g., the averages presented in Figure 4A and 4D) closely 
correspond to those of human behavior (e.g., Figure 4B). But TRACE does not generate convenient, 
precise numbers corresponding to its word-specific predictions like NAM does. One could attempt to do 
this by operationalizing recognition time in TRACE, for example. However, TRACE has a modest 
phoneme inventory (14 rather than the ~40 required for English) and a fairly small lexicon (212 words 
originally, which has been extended to ~1000 in two reports [Frauenfelder & Peeters, 1998; Magnuson et 
al., 2018]).  
 
Another challenge for models of SWR is the fact that phonemes may not be processed in strict temporal 

                                     
8  The schematic in Figure 5 belies a considerably more complex architecture, where many copies of each 

feature, phoneme, and word node are tiled in the TRACE memory over time (essentially creating a temporotopic 
map, which allows interaction not just vertically, from words to phonemes, but horizontally between units that are 
aligned with different stretches of time in TRACE’s memory). Lateral inhibition is relatively 'local', with 
connections constrained to units with similar temporal alignments. For detailed discussions of the TRACE 
architecture, see McClelland and Elman (1986), Magnuson, Mirman and Myers (2013), and Magnuson, Mirman, 
and Harris (2012).  
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order. Toscano, Anderson, and McMurray (2013) used a visual world paradigm to show that listeners 
look more to phonemic anadromes, or words that share the same phonemes but in a different order (e.g., 
gut for target word tug), than to another word that shares the same vowel and one consonant (i.e., has 
word initial mismatch; gun for target word tug) or to an unrelated word. Notably, TRACE was unable to 
simulate these effects (although it might if one were to extend the spread of coarcticulation further left 
and right in TRACE). Similar effects have also been shown in a short-term priming task (i.e., a phonemic 
anadrome primes a target better than an unrelated prime or a prime that has word initial mismatch but 
shares a vowel and consonant; Dufour & Grainger, 2019). Furthermore, Grainger and Dufour (2020) 
found that these priming effects occur only when the target has a higher frequency than the prime, 
suggesting that lexical representations underlie these effects. While these findings suggest that spoken 
word recognition does not occur in a strictly sequential way, findings from Gregg, Inhoff, and Connine 
(2019) suggest that overlap in vowel position is important for these effects to be observed. In other words, 
while Gregg and colleagues found more looks to an anagram than an unrelated word, for pairs like leaf 
(target) and flea (competitor), where the same consonants are present in a different order, but the position 
of the vowels does not overlap in the two words, they observed no more looks to the competitor than to a 
completely unrelated word. These effects suggest that models of spoken word recognition need to 
reconsider strict temporal ordering of constituent phonemes9, consider frequency as a core concern in 
models, and also that models need to consider different saliency of vowels vs. consonants -- none of these 
are considered by default in TRACE, although jTRACE (Strauss, Harris & Magnuson, 2007) includes 
three different ways to enable frequency. 
  
Despite these limitations, TRACE has proved to account for a broad and deep set of phenomena in human 
SWR and speech perception (see Table 1). There are also a few reported failures (e.g., Chan & Vitevtich 
[2009] reported that simulations with jTRACE [Strauss et al., 2007] failed to simulate differences they 
observed with a factorial manipulation of clustering coefficient [proportion of a word's neighbors that are 
also neighbors of each other] that we review briefly below). The fact that TRACE simulates so many 
results with its default parameter settings is important to note, as some other models require parameter 
changes for simulating different phenomena (see Magnuson et al., 2012, for a review).  
 
However, it is crucial to note that successful simulations do not establish that the mechanism proposed 
within a model is correct. Indeed, much of the SWR literature since the mid-1980s has revolved around 
disagreements regarding the algorithms proposed in competing models. We do not have space in this 
chapter to discuss most models of SWR (e.g., the Distributed Cohort Model [Gaskell & Marslen-Wilson, 
1997, 1999], PARSYN [Luce et al., 2000], TISK [Hannagan et al., 2013] or various models within the 
Adaptive Resonance Theory [ART] framework [Grossberg, Boardman, & Cohen, 1997; Grossberg, 
Govindarajan, Wyse, & Cohen, 2004; Grossberg & Myers, 2000]). Instead, we will focus briefly on the 
Shortlist and Merge ‘A’ and 'B' models proposed by Norris (1994) and Norris and McQueen (2008), 
respectively, as they represent a theoretical position (autonomy) fundamentally opposed to TRACE’s 
interactive activation.  

                                     
9 The Time Invariant String Kernel (TISK) model of spoken word recognition (Hannagan, Magnuson, & 

Grainger, 2013) may account for these results. TISK is an interactive activation model like TRACE, but instead or 
reduplicated, strictly ordered phoneme templates (see Footnote 7), it uses a form of "open diphone" coding, where 
diphone units are activated by every ordered pair of phonemes in a word. For example, when cat is presented, nodes 
for /kæ/ and /æt/ are activated, but so is a node for /kt/ (hence, "open", or not necessarily adjacent). This allows for a 
much more compact model compared to TRACE. It would also seem likely to tolerate phoneme transpositions better 
than TRACE, but to our knowledge, it has not been applied to such results yet. 
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Table 1: Effects accounted for by the TRACE model. As we discuss, there are also a few reported failures with the 
TRACE model, and successful simulations do not establish that algorithms implemented in a model are correct – 
they simply confirm that the model’s algorithm is plausible and not-yet-falsified. This list provides a sense of the 
breadth and depth that has been achieved with TRACE, and a set of candidate benchmarks for other models.  
 

 Effect / phenomenon Reference Notes 
1. Lexical context mediates phoneme perception (“Ganong 

effect” [Ganong, 1980]) 
McClelland & Elman (1986), p. 
24 

Original parameters 

2. Elimination of lexical effects under time pressure ibid, p. 26, Figs. 5 & 6 Original parameters 
3. Phoneme position impacts lexical effects (weaker at word 

onset than offset) 
ibid, pp. 27, 29 and 30, Figs. 8-
11 

Original parameters 

4. Dependence of lexical effects on phonological ambiguity 
(demonstrating bottom-up priority) 

ibid, p. 28 Original parameters 

5. Lexical basis for phonotactic influences ibid, pp. 33-35, Fig. 12 Original parameters 
6. Trading relations among phonetic cues ibid, p. 38 Original parameters 
7. Categorical perception (identification and discrimination, 

including reaction time and timecourse effects) 
ibid, p. 42 Original parameters 

8. Recovery from noisy input, and influences of lexical 
neighborhood 

ibid, p. 55 Original parameters 

9. Time course of word recognition ibid, p. 57 Original parameters 
10. Frequency and context effects ibid, p. 60 Original parameters 
11. Lexical segmentation, including multiword sequences, and 

impact of right context 
ibid, pp. 61-69 Original parameters 

12. Compensation for coarticulation Elman & McClelland (1988), 
Fig. 3A 

Original parameters 

13. Lexically-mediated compensation for coarticulation ibid, Fig. 3B Original parameters 
14. Stochastic noise allows correct simulation of classical 

context effects that the basic TRACE model fails to 
simulate correctly 

McClelland (1991) Modified parameters and noise 

15. Timecourse of cohort and rhyme competition observed in 
human eyetracking study (eye tracking data) 

Allopenna et al. (1998), Expt. 1 
(Fig. 4, this chapter) 

Original parameters + Luce choice 
rule 

16. Elimination of rhyme effects in a gating paradigm (eye 
tracking data) 

ibid, Experiment 2 Original parameters 

17. Time course of word frequency effects (eye tracking data) Dahan, Magnuson, & Tanenhaus 
(2001) 

Original parameters + 3 alternative 
implementations of frequency 

18. Subcategorical mismatch (eye tracking data) Dahan, Magnuson, Tanenhaus, 
& Hogan (2001) 

Original parameters 

19. Subcategorical mismatch (lexical decision data, words 
only -- nonwords not included) 

Magnuson, Dahan, & Tanenhaus 
(2001) 

Original parameters 

20. Lexically-induced delays in phoneme recognition Mirman, McClelland & Holt 
(2005) 

Original parameters 

21. Lexically-guided tuning of speech perception with Hebb-
TRACE 

Mirman, McClelland, & Holt 
(2006) 

Extensions for learning 

22. Attentional modulation of lexical effects Mirman, McClelland, Holt, & 
Magnuson (2008) 

Original parameters + attentional 
scaling parameter 

23. Individual differences relate to lexical decay McMurray et al. (2010) Variety of parameters explored 
24. Changes in timecourse of phonological competition in 

Broca’s and Wernicke’s aphasia (eye tracking data) 
Mirman, Yee, Blumstein, & 
Magnuson (2011) 

Original parameters + modified 
Luce choice rule (other parameters 
explored) 

25. Variation in phoneme inhibition relates to reduced rhyme 
+ enhanced subcategorical mismatch in individuals with 
weaker language abilities 

Magnuson et al. (2011) Variety of parameters explored 

26. Duality of length effects (early short-word advantage, later 
long-word advantage) 

Magnuson et al. (2013) Original parameters; see Pitt & 
Samuel (2006) for human data 

27. Suppression of embedded words Magnuson et al. (2013) Original parameters 
28. Phoneme restoration as a function of word length and 

position 
Magnuson (2015) Original parameters 

29. Flexible modulation of inhibition may explain experience-
based changes in lexical competition 

Kapnoula & McMurray (2016) Original parameters + changes in 
phonetic features tailored to 
materials + inhibition variation 

30. Feedback promotes resistance to noise (model-specific 
results [feedback turned on vs. feedback off]) 

Magnuson et al. (2018) Original parameters + parameters 
for large lexicon (Frauenfelder & 
Peeters, 1998) 
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Currently, the primary alternative to interactive models like TRACE is an autonomous framework without 
feedback. The fundamental premise is that any phenomenon that can be simulated with feedback could be 
simulated by an autonomous model. Consider, for example, one of the most familiar effects that appears 
to support the notion of lexical feedback: the Ganong effect (Ganong, 1980). In the Ganong paradigm, a 
continuum is created from a word to a nonword, e.g., SHAPE-*SAPE, and participants identify the 
phoneme that is changing (‘sh’ vs. ‘s’ in this case). Compared to a nonword-nonword continuum or a 
word-word continuum (e.g., SHIP-SIP), where one would observe a classic categorical perception pattern 
with an apparent boundary in the middle of the continuum (first few steps identified as ‘sh’, last few as 
‘s’, with intermediate response rates for items in the middle of the continuum, reflecting their ambiguity), 
the pattern shifts for a word-nonword continuum; the boundary shifts towards the nonword (such that the 
previously ambiguous items are identified as consistent with the word, and previously unambiguous steps 
nearer to the nonword continuum become ambiguous).  
 
This pattern is naturally explained under a feedback account. Phonemes receive two sources of input in a 
model like TRACE: bottom-up input and lexical feedback. When there is a lexical item consistent with 
one endpoint of a continuum but not the other, the phonemes consistent with the lexical endpoint receive 
more total activation, because lexical knowledge directly mediates sublexical activation. This proposed 
mechanism also readily accounts for other top-down effects; we will discuss two more examples. The first 
is the word superiority effect, where phonemes can be detected more quickly in word than nonword 
contexts (Rubin, Turvey, & van Gelder, 1976) -- on the interaction account, this arises due to the boost of 
top-down feedback for phonemes in words. The second is phoneme restoration (e.g., Warren, 1970). If a 
phoneme in a word is replaced by noise (e.g., the /t/ in RESTORE), participants report hearing noise, but 
also report hearing the missing phoneme, and have difficulty identifying where the noise was positioned 
within the word; however, if the phoneme is replaced by silence, participants precisely identify the 
position of the gap and do not report hearing the missing phoneme (see, e.g., Samuel, 1981, 1996, 1997). 
This phenomenon demonstrates both the potential for top-down feedback to restore an ambiguous or 
noise-masked (or replaced) portion of a stimulus and the need for models to exhibit bottom-up priority 
(under the assumption that noise allows partial activation of all phonemes, which is enough to allow 
lexical feedback to boost the missing phoneme sufficiently).10 
 
Norris et al. (2000) propose that such effects arise post-perceptually -- that is, that lexical knowledge 
moderates a decision process rather than mediating sublexical activation. In their MERGE model, 
phonemes feed to words, and then both levels – phonemes and words – feed to a post-perceptual bank of 
phoneme decision nodes. Norris et al. argue that any result appearing to support lexical feedback could be 
simulated by an autonomous model like MERGE with post-perceptual integration.  
 
Norris et al. presented two simulations with MERGE demonstrating its abilities to simulate apparent 
lexical effects. The first was subcategorical mismatch, where words are cross-spliced to introduce 
misleading coarticulatory cues consistent with a word or nonword. Marslen-Wilson and Warren (1994) 
used a lexical decision paradigm and found that words cross-spliced with a word (e.g., NET with 
coarticulation on the vowel consistent with NECK) or a nonword (NET with misleading coarticulation 
consistent with NEP on the vowel) were both recognized more slowly than a version of NET with 
consistent coarticulation (created by splicing together two instances of NET to ensure that any differences 
were not due to the cross-splicing operation). The found reported that TRACE predicted a different 
pattern, with misleading coarticulation from a cross-spliced word leading to slower target activation than 
from misleading coarticulation from a cross-spliced nonword. Norris et al. found that MERGE predicted 

                                     
10 For a debate as to whether TRACE appropriately accounts for phoneme restoration, see Grossberg and 

Kazerounian (2011, 2016) vs. Magnuson (2015). 
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the pattern observed by Marslen-Wilson and Warren (equivalently slowed responses for word or nonword 
cross splicing). Subsequently, Dahan, Magnuson, Tanenhaus, and Hogan (2001) used the visual world 
paradigm to revisit this finding. They found that activations in TRACE mapped tightly onto participants’ 
fixation proportions. They attributed the difference between eye tracking and lexical decision data to 
participants responding ‘yes’ in response to the activation of the lexical competitor when the misleading 
coarticulation was consistent with a word (Magnuson, Dahan, & Tanenhaus [2001] simulated ‘yes’ 
responses from TRACE activations and the Dahan et al. fixation proportions; both predict the Marslen-
Wilson & Warren data pattern for fairly fast responses). We will return to this result when we discuss 
Shortlist B. 
 
Their second simulation focused on a result reported by Connine et al. (1997), where final phonemes in 
nonwords were detected more quickly when the nonword was more similar to a real word (e.g., 
participants detected the final /t/ in *GABINET more quickly than in *MABINET; the former differs 
from CABINET by only a single phonetic feature). MERGE readily simulated this patter with post-
perceptual lexical integration in its phoneme decision nodes. Based on these results, and detailed critical 
examinations of other purportedly top-down effects, Norris et al. argued that there was no evidence that 
definitively supported an interactive architecture over an autonomous one.  
 
Before turning to Shortlist B, we need to go on a brief tangent about another paradigm that proponents of 
both views agreed had strong potential to provide definitive support for interaction: lexically-mediated 
compensation for coarticulation (LCfC). Elman and McClelland (1988) devised this paradigm by 
combining the Ganong effect (discussed above) with the compensation for coarticulation paradigm 
(Mann & Repp, 1981). In the latter paradigm, participants perform an identification task on a front-back 
place of articulation (POA) continuum (e.g., from TAPES [front] to CAPES [back]) without context, and 
with a context word ending with a sound with a front place of articulation (e.g., MUSS) or a back place of 
articulation (e.g., MUSH). Perception of the continuum shifts away from the place of articulation of the 
context sound. Mann and Repp proposed that listeners learn that in real speech, if a talker has to produce 
two segments with distant places of articulation, they are unlikely to reach the canonical place of 
articulation for the second sound. Thus, we learn to compensate for coarticulation, and accept 
noncanonical place of articulation based on context.  
 
Elman and McClelland proposed that if compensation for coarticulation reflected sublexical interactions, 
one could test for lexical mediation of sublexical processing by replacing clear context sounds with 
ambiguous sounds midway between front and back places of articulation, but then use lexical context to 
restore one or the other. They used items like CHRISTMAS and SPANISH, with the final segment 
replaced with the same ambiguous fricative. Consistent with their prediction, these restored phonemes 
shifted the perception of the target continuum (e.g., TAPES-CAPES) in the same direction as clear tokens 
of ‘s’ or ‘sh’. However, Pitt and McQueen (1998) reported that it seemed that a sublexical explanation 
was possible: they were able to drive compensation for coarticulation with ambiguous phonemes in 
nonword contexts based on the likelihood of the preceding phoneme. Subsequently, Magnuson et al. 
(2003a) reported LCfC with words where transitional probabilities were pitted against lexical context, and 
lexical context won. Magnuson et al. (2003b) also assessed all items that had been used in previous LCfC 
studies and found that the diphone transitional probabilities were at odds with lexical context in several 
items, and that larger n-phones could not explain all extant results (on average, the necessary n-phone was 
approximately the same as word length). Samuel and Pitt (2003) also reported additional positive LCfC 
results (along with analyses of factors that appear to affect the strength of effects). However, McQueen, 
Jesse and Norris (2009), using materials supplied by Magnuson et al., were unable to replicate the earlier 
results. Although more positive than negative results have been reported (possibly reflecting a “file 
drawer” phenomenon due to the difficulty of publishing null results), the apparent fragility of the LCfC 
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paradigm has led to an impasse. 
 
With this context, let us consider Shortlist B. The ‘B’ in Shortlist B stands for Bayesian, as Shortlist B is a 
radical revision of the original Shortlist model. Norris and McQueen (2008) redubbed the original model 
‘Shortlist A’, with ‘A’ standing for activation. Shortlist A was a neural network model, and thus its 
currency was node activation. It differed from the TRACE model by building a competition network on-
the-fly based on the top lexical matches (intended to be generated by simple recurrent networks [Elman, 
1990; 1991], but generated via a simple lexical lookup) and, crucially, eschewing feedback. (For an 
extensive review of the case for rejecting lexical feedback, see Norris, McQueen, & Cutler, 2000.)  
 
Norris and McQueen (2008) reject the notion of linking activation in network models to human behavior 
and cognition as convoluted (additional parameters and assumptions are frequently required to make such 
links). They propose instead that probabilities from a low-parameter Bayesian model can be linked 
directly to human behavior, while also providing a principled and optimal model of human SWR. Like 
Shortlist A, Shortlist B rejects top-down information flow. Shortlist B also uses a different form of input 
(diphone confusion probabilities measured from human participants, sampled in 3 'gates' per phoneme). 
At each input step, up to 50 words aligned with the current phoneme can be added to a ‘lattice’ (a set of 
paths corresponding to possible lexical segmentations of the input) consisting of a maximum 500 paths -- 
the 50-word and 500-path limits are the ‘shortlist’ parameters. Words and paths are ranked according to 
their probabilities (with words evaluated relative to their frequency and fit with the bottom-up input, and 
paths evaluated based on conditional probabilities). Probabilities over all paths within the lattice are 
ranked, and the model works in some ways very much like the Cohort Model logic we presented in 
Figures 1 and 2, such that for many word sequences, only one complete path is possible. When more than 
one path is possible (e.g., perhaps RECOGNIZE SPEECH and WRECK A NICE BEACH), prior 
probabilities of words or conditional probabilities of multiple words identify the most likely parse. One 
way in which Shortlist B compares very favorably with TRACE is that it includes the full Dutch phoneme 
inventory (37 phonemes) and a lexicon of 20,250 Dutch words.  
 
Norris and McQueen reported seven simulations (see Table 2). They also reported a new Merge model, 
Merge B and used it to simulate Marslen-Wilson and Warren’s (1994) subcategorical mismatch paradigm. 
They compared Merge B to data from Marslen-Wilson and Warren as well as a study by McQueen, 
Norris and Cutler (1999). Merge B provided quite good quantitative fits for both word and nonword 
cross-spliced items, with some minor discrepancies. (However, they neither mention the Dahan et al. 
[2001] eye tracking data and TRACE simulations, nor provide simulations of the time course.)  
  
Thus, Shortlist B accounts for 7 phenomena, including a more detailed assessment of neighborhood and 
frequency interactions than has been conducted with TRACE, and simulations of the stress-based 
Possible Word Constraint (Norris, McQueen, Cutler & Butterfield, 1997) that would not be possible in 
TRACE without adding representations for syllabic stress. This is far fewer than the list in Table 1, and 
the lack of overlap (with a few exceptions) impedes direct model comparisons. The full phoneme and 
large lexical inventories in Shortlist B is a considerable advance compared to other models. One potential 
weakness of Shortlist B is that the model is told explicitly where each phoneme begins, whereas in 
TRACE, phonemes overlap and their onsets are not directly encoded. As we already mentioned, there are 
not robust cues for phoneme segmentation, so this is a simplifying assumption that may need to be 
reconsidered in the future in Shortlist B. 
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Table 2: Effects accounted for by the Shortlist B model. All are reported by Norris and McQueen (2008). 
Note that an eighth simulation of subcategorical mismatch is not included because it was conducted with 
a different model (“Merge B”). 

 Effect / phenomenon Reference Notes 
1. Parsing a multiword sequence and overcoming 

embedded words via right context 
Fig. 3 TRACE: #11 in Table 1 

2. Word frequency x neighborhood density x 
neighborhood frequency 

Fig. 4 TRACE has only been applied to word 
frequency (Table 1, #17) and selective 
neighborhood characteristics  (Table 1, #8) 

3. Word frequency x neighborhood 
characteristics x stimulus quality 

Fig. 5 Not directly simulated with TRACE, though 
#27 in Table 1 could be comparable for 
neighborhood and stimulus quality) 

4. Time course of word frequency effects Fig. 7 TRACE: #17 in Table 1 
5. “Word spotting” on the basis of the stress-

based Possible Word Constraint 
Fig. 8 Not possible in TRACE without adding stress 

representation 
6. Identity priming based on Possible Word 

Constraint 
Fig. 9 Not possible in TRACE without adding stress 

representation 
7. Recovery from onset mispronunciation Fig. 10 Conceptually related in TRACE: Table 1 #4, 

#8 
 
What of the feedback debate? It remains unresolved. Norris, McQueen and Cutler (2016) present an 
extended case for their position that feedback is never necessary, but have extended their treatment of this 
issue to accept some forms of potential feedback, while continuing to reject (only) feedback as 
implemented in TRACE. They suggest that feedback in service of Bayesian processing is compatible with 
their view, because it is qualitatively different from what they label “activation feedback.” Magnuson et 
al. (2018) report simulations showing that feedback helps make TRACE robust against noise and makes 
TRACE “Bayes approximant”. They also provide a critique of Norris et al. (2016)’s arguments. In 
addition, McClelland (2013) and McClelland et al. (2014) provide detailed explanations of how 
interactive activation models relate to Bayesian models, and under what conditions they are Bayes-
equivalent. Norris, McQueen, and Cutler (2018) published a commentary laying out their disagreement 
with Magnuson et al. (2018). On our view, this debate remains at an impasse. Until a paradigm is devised 
that can definitively falsify one model or the other -- or until the field of SWR simply moves on to more 
realistic models -- no resolution is in sight.  
 
Indeed, one might take the view that the field is moving on, with great excitement about the concept of 
predictive coding (PC). Rao and Ballard (1999) originally proposed PC as an extension of theoretical 
work in vision. In their work, a visual stimulus (image patch) was encoded by a hierarchy of 'modules' 
with progressively larger spatial scale (e.g., first-level modules take input from small, overlapping grids 
of pixels tiled over part of an image, and second-level modules take input from multiple, overlapping 
first-level modules, and so on). Higher levels send predicted states to their immediately inferior level, and 
those predictions are compared to the states of the inferior-level nodes. Inferior levels, rather than passing 
forward their actual state, pass forward the discrepancy between the top-down prediction and their state. 
This provides a potentially compact and robust code. Rao and Ballard's PC model developed receptive 
fields at the lowest levels that resembled wavelets based on the statistics of natural images. Higher levels 
developed progressively larger and more complex receptive fields for visual features (and note that that is 
where the model stops; it does not perform image or object recognition, for example). A possible 
prediction from such a mechanism is that when an input conforms to top-down expectations, but bottom-
up signal should be weaker since error (which is what is passed forward) is smaller.  
 
Several neuroimaging studies have reported results consistent with this hallmark of PC. In an example 
from SWR, Gagnepain, Henson, and Davis (2012) presented listeners with (lexical) expectation-
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confirming inputs (i.e., words, e.g., formula) or (lexical) expectation-violating inputs (e.g., formubo). 
Gagnepain et al. found relatively weaker activation in superior temporal gyrus at the la of formula 
compared to the bo of formubo (i.e., for items like these; this is just an example). We note that such 
results are consistent with longstanding evidence that unexpected inputs can drive event-related potentials 
like the phonological mismatch negativity or N400 (e.g., Kutas, Van Petten, & Kluender, 2004). But do 
such results demonstrate predictive coding or simply predictive processing? Davis and colleagues have 
done some proof-of-concept modeling with simple Bayesian prediction (Gagnepain et al., 2012) and 
variants of interactive activation models (Blank & Davis, 2016) with multiplicative feedback from words 
to phonemes (somewhat like TRACE) or subtractive feedback (intended to be like predictive coding). A 
full discussion of these studies is beyond the scope of this chapter, but in a nutshell, these models are 
neither faithful implementations of PC, nor have they been validated on basic aspects of SWR. Luthra, Li, 
You, and Magnuson (under review) provide a fuller review of this literature, and also present simulations 
using the Gagenpain et al. simple Baysesian model (which we call "predictive cohort"), TRACE, and a 
simple recurrent network (SRN; Elman, 1990) trained on TRACE-like inputs (it predicts the current word 
from acoustic-phonetic features over time). All three models display predictive processing, but 
surprisingly, the only model that shows the putative hallmark of PC (a model-internal reduction in signal 
for expectation-confirming stimuli akin to formula relative to expectation-violating inputs akin to 
formubo) is TRACE. Luthra et al. argue that true understanding of the nature of neural signal changes in 
response to expectations, and whether they actually reflect PC, will require the development of a recurrent 
PC model that can be applied to SWR. 
 

New developments, unresolved challenges, and the limits of current theories and models 
 
The breadth and depth of models like TRACE and Shortlist B are substantial and remarkable. These 
models have helped guide theories of SWR, and inspired a wide variety of empirical and computational 
investigations that have enhanced our understanding of human SWR. They complement rather than fully 
supplant rule-based (mathematical and verbal) models like the Neighborhood Activation Model and the 
Cohort Model. In particular, the Neighborhood Activation Model’s DAS rule for defining neighbors 
continues to contribute to most studies of SWR, as controlling neighborhood characteristics has become 
the convention.  
 
In recent years, Vitevitch and his colleagues have added new force and scope to the NAM approach by 
applying the tools of network science (e.g., Menczer, Fortunato, & Davis, 2020; Newman, 2010) to 
graphs created by connecting DAS neighbors (pioneered by Vitevitch, 2008). Network science provides a 
toolkit for characterizing interconnected systems at gradient levels of analysis ranging from local 
(“microscale”, i.e., individual nodes, corresponding to words in this case) to subcomponents 
(“mesoscale”) to global (“macroscale”, characterizing the entire network based on statistics aggregated 
over all nodes11).  

                                     
11 Readers may be familiar with the notion of “small world networks” (Watts & Strogatz, 1998), where most 

nodes have fairly few connections, but enough nodes have many connections that the number of “hops” from node-
to-node it takes to get from any node to any other node is small. This was first observed informally in networks of 
human acquaintances (Milgram [1967] famously asked people in the midwest to pass along a letter [without an 
address] to a named individual on the east coast by sending it to someone they knew who might know someone 
[who might know someone else] more likely to know the addressee; on average, letters that arrived had passed 
through 6 individuals – the basis for the possibly familiar concept that there are only ‘6 degrees of separation’ 
between randomly selected individuals). A surprising number of social, biological, and artificial systems have small 
world structure, though the tools of network science can classify many kinds of networks, and network type has 
significant implications (e.g., for a system where information is transmitted, how efficiently information can be 
transmitted and how robust the system may be to noise or damage; see Strogatz [2003] for an accessible overview). 
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Vitevitch and colleagues have shown that a graph-theoretic network of lexical forms based on the DAS 
rule immediately increases NAM's scope. For example, when sets of words are selected to be matched on 
neighborhood but differ in clustering coefficient (the proportion of a word’s neighbors that are also 
neighbors of each other), sets with higher clustering coefficient are processed more slowly (Chan & 
Vitevitch, 2009). Similarly, Siew (2017) examined sets of words matched on DAS neighborhood ("1-hop" 
neighbors in a graph, since they are directly connected) but varying in number of 2-hop neighbors (words 
that are 2 links apart in the DAS network); words with more 2-hop neighbors were processed more 
slowly. It is still early days with respect to applying this unconventional, innovative approach,12 but it has 
the potential to provide novel insights into SWR. For example, one possibility that could be explored is 
comparing similarity metrics by using them as the connecting rules for such networks.  
 
Note that there are many aspects of human speech that are undoubtedly crucial for human SWR that are 
outside the scope of current models and theories (for the most part, in the sense that we do not have 
theories that provide an integrated account of the phenomena reviewed above and those reviewed below, 
even if theoretical accounts have been offered for individual phenomena). Let’s consider a subset of these 
unresolved challenges. 
 
One challenge for theories of spoken word recognition is how to account for the fact that listeners process 
speech under a variety of contexts, often in environments with more variation than we typically allow in a 
laboratory (see Purse, Tamminga, & White, this volume), which also poses significant challenges for 
understanding the development of lexical knowledge (see Creel, this volume). Variation can occur at the 
level of the ambient acoustic environment (which may be noisy or echoey), details of the speech input 
(such as speaking rate, or number of talkers, and differences between them in size, age, sex, or 
dialect/accent). Mullennix, Pisoni, and Martin (1989) reported foundational studies illustrating the impact 
of talker variation. In a series of tasks, Mullennix and colleagues found that both the speed and accuracy 
of SWR are reduced under conditions of talker changes. Across perceptual identification and naming 
tasks, they found that the impact of talker variation was more consistent than the impact of word 
frequency or neighborhood density. Magnuson and Nusbaum (2007) provide a review of talker variation 
effects, and suggest ways theories of speech perception and SWR might accommodate talker variation; a 
key point is that features of various sorts are stipulated (given to models) rather than discovered. For 
example, phoneme boundaries are stipulated in Shortlist B, and phoneme templates are stipulated in 
TRACE. Many additional features would have to be stipulated in such models to account for natural 
variation in the speech signal.  
 
Another challenge is that speaking rate varies dynamically in everyday speech, and this alters the 
mapping from acoustics to perceptual categories. A classic example is that formant transition durations 
that correspond to /w/ at a relatively fast speaking rate map to /b/ at a relatively slower rate (e.g., Miller & 
Baer, 1983), suggesting listeners must have to accommodate this variation somehow. The impact of 
variation can be seen in SWR tasks. Francis and Nusbaum (1994) found an interaction between cognitive 
load and variation in speaking rate, and Nusbaum and Morin (1992) found a similar interaction between 
load and talker variation. McLennan and Luce (2005) reported similar interactions, where talker and rate 
variation interacted with task difficulty. Such results suggest that accommodating variation is an effort- 
and attention-demanding process.  
 
However, recall that one of the core simplifying assumptions of the simplified mapping perspective is that 

                                     
12 For an application of graph theoretic networks to speech perception (phonological categories and talker 

variability), see Crinnion, Malmskog and Toscano (2020). 
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a speech perception module provides something like a stream of phonemes as input to SWR. So perhaps 
we can simply propose that prelexical normalization mechanisms of some sort take care of these sources 
of variation. An impediment to this view is that lexical and sentential information appear to provide 
crucial bases for accommodating variation. For example, a lexical mismatch might be a better indicator of 
a rate change than, e.g., vowel durations (hearing what seems to be a /w/ in a lexical context that calls for 
a /b/, e.g., /wol/ [nonword *WOLE] might suggest the actual production is /bol/ [BOWL]). Similarly, 
context may indicate that a change in talker requires a change in acoustic-phonetic mapping (e.g., hearing 
THE CAP WAS ON HER HID might suggest a change in the /ɛ/-/ɪ/ boundary).13  
 
Indeed, over the last two decades, a growing literature has shown that listeners learn to adjust acoustic-
phonetic mappings for specific talkers based on lexical context – a finding known as lexically mediated 
perceptual learning. Norris, McQueen, and Cutler (2003) presented listeners with an ambiguous 
fricative (midway between /f/ and /s/). Critically, one group of listeners heard the ambiguous token on /f/-
final words and heard unambiguous /s/-final words, while another group of listeners heard the ambiguous 
token on /s/-final words and heard unambiguous /f/-final words. Afterwards, when listeners categorized 
tokens from an /f/-/s/ continuum, the listeners who heard the ambiguous token on /f/-final words 
categorized more tokens along the continuum as /f/ than those who heard the ambiguous token on /s/-final 
words. Importantly, this shift does not occur with ambiguous tokens at the ends of non-words. This 
foundational study has been extended by many groups, and in particular Kraljic and Samuel (2005, 2006, 
2011; Samuel & Kraljic, 2009), who have examined how such perceptual learning varies across different 
classes of phonemes, whether it generalizes between talkers, and contexts that can block such learning 
(e.g., an image of a talker with a pen in her mouth suggests abnormal patterns result from that motor 
difficulty rather than reflecting talker-specific patterns). We do not have space to review this literature in 
detail, but note that it suggests a tight linkage between signal-level details and lexical and sentential 
contexts.  
 
Another challenge is that in casual, fluent speech, there are rampant phonological processes that lead to 
significant deviations from canonical phonemic forms of spoken words. For example, Gow and 
McMurray (2007; see also Gaskell & Marslen-Wilson, 1996) studied coronal place assimilation, in 
which a coronal segment assimilates the place of a following non-coronal segment (i.e., clean bars might 
be pronounced as cleam bars). They used a visual world paradigm study to examine whether context can 
signal lexical form using coronal assimilation. Because coronals assimilate in English, hearing an 
assimilated segment followed by a non-coronal is more likely than an assimilated segment followed by a 
coronal (i.e., when bite guard is pronounced more like bike guard, it is more likely to be understood as 
bite guard in context because of assimilation; when bite damage is pronounced more like bike damage, it 
will be understood as bike damage, since if the true underlying form were bite, there would be no 
assimilation due to the following coronal). Gow and McMurray found that assimilated coronals do indeed 
facilitate activation for non-coronals (where assimilation occurs) and inhibit activation for coronals 
(where assimilation does not occur). They also found regressive effects; when there is lexical ambiguity 
in the assimilated segment (i.e., bike and bite, as compared to clean and cleam), the class of the following 
segment (i.e., whether it is a coronal or not) influences processing of that initial segment (bike or bite). 
Complicating the situation further, assimilations tend to be partial and graded (Gow, 2001, 2002, 2003). 
Clearly then, these phonological processes influence the lexical processing in ways that may be difficult 
to reconcile within current models of SWR. 
 
There are also reductions that lead to more extreme deviations from canonical forms. Consider 
                                     

13 This impediment also applies to episodic or exemplar accounts that try to avoid normalization (e.g., 
Goldinger, 1998), or at least suggests a limitation for them (see Magnuson & Nusbaum, 2007, for a more detailed 
critique of episodic accounts). 
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progressively more casual productions of “I am going to be there” in Table 3, which gives a sense of the 
challenge. Johnson (2004) found that more than 60% of words in a corpus of casual speech deviate from 
canonical forms, and that one or more segments are missing in nearly 30% of casually-produced words. 
This presents an enormous challenge to models and theories of SWR under typical listening conditions 
(clear speech, low noise, low cognitive effort). Janse and Ernestus (2011; see also White, Mattys, & 
Wiget, 2012) report experiments that suggest continuous use of syntactic and semantic context is required 
to overcome the rampant ambiguity that results; indeed, transcription accuracy is very poor for words 
extracted from fluent speech and presented in isolation. This bumps up against another core simplifying 
assumption of the SMP, that form recognition can proceed modularly without constraints from higher-
levels of processing.  
 

Table 3 Progressively more casual productions of “I am going to be there.” 
 

Gloss IPA Number of phonemes 
I am going to be there /ɑiæmgointubiðeiɹ/ 14 
I am going to be there /ɑimgointubiðeiɹ/ 13 
I’m gonna be there /ɑimgʌnʌbiðeiɹ/ 11 
I’munna be there /ɑimʌnʌbiðeiɹ/ 10 

 
Another consideration is the rich prosodic information in the speech signal. This includes the ‘melody’ of 
speech (variation in pitch over time), but also timing and stress, among other factors (see Dahan, 2015, 
for a review). Most aspects of prosody are absent from current models, with one salient exception: the 
metrical segmentation strategy (MSS) proposed by Cutler and Norris (1988), and integrated into the 
Shortlist A model by Norris, McQueen, and Cutler (1995). The MSS proposes that language-specific, 
probabilistic patterns of strong and weak syllable stress can constrain segmentation of fluent speech. 
Human behavior in several studies has been consistent with the MSS (e.g., detection of a word [e.g., 
MINT] embedded within a nonword is better when the word occurs at the onset of a nonword with strong-
weak stress [MINTEF] rather than a strong-strong nonword [e.g., MINTAFE]). The MSS was 
implemented in Shortlist A simply by giving a boost to the match score of items that began with a strong 
syllable, and penalizing other items – in essence, creating features that code for primary stress on the first 
syllable of a word. While this did not make Shortlist A sensitive to stress in general, it substantially 
boosted the model’s ability to simulate human sensitivity to the MSS. Other aspects of prosody have not 
been incorporated into current models, as we will discuss in the next section.  
 
The challenges of variation, prosody, assimilation, and reduction are exacerbated by a variety of adverse 
listening conditions that are common outside the laboratory (see Mattys, Davis, Bradlow, & Scott, 2012, 
for a review). Noise, cognitive load, anxiety (Mattys, Seymour, Atwood, & Munafo, 2013), and chronic 
or age-related reductions in perceptual acuity (along with perceptual learning) are, for the most part, 
outside the scope of current models (noise is easy to apply, though more work is required to link noise in 
models to human speech recognition under noise, and Mirman et al. [2008] address attentional effects and 
Mirman et al. [2006] address perceptual learning with the TRACE model). Models must be extended to 
real-world conditions, learning over the lifespan, and age-related changes.  
 
We have avoided grappling with neural-level responses to SWR in this chapter so far. One might justify 
this on the common interpretation of Marr (1982) that algorithmic theories can be developed 
independently of implementational (neurobiological) details. Marr, however, also argued that complete 
understanding requires eventual linkage of computational, algorithmic, and implementational theories. In 
fact, as we consider how interactions between speech perception and SWR, cognitive neuroscience 
findings may be crucial. For example, using an effective connectivity analysis, Gow and Olson (2016) 
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found influences of brain regions associated with lexical processing areas on regions associated with 
lower-level acoustic information, suggesting that the neural representations of ambiguous speech sounds 
may be influenced by sentential and lexical context (i.e., lexical information may mediate perception, 
even at a neural level). Furthermore, Gwilliams, Linzen, Poeppel, and Marantz (2018) used MEG to 
demonstrate that acoustic-phonetic information can be maintained so that later information in the 
processing stream can influence perception of earlier sounds. Recent findings using EEG to measure the 
time course of speech perception have demonstrated that both semantic information and lexical content 
influence processing at lower levels (i.e., sublexical; Getz & Toscano, 2019; Noe & Fischer-Baum, 2020). 
Noe and Fischer-Baum (2020) showed that for an ambiguous sound between a voiced and unvoiced 
sound (i.e., a sound in between /t/ and /d/), participants’ neural responses (as measured by the N100 ERP 
component, a signal known to indicate the presence of voicing; see Toscano, McMurray, Dennhardt, & 
Luck, 2010) demonstrated lexical mediation: when participants heard a sound ambiguous between /t/ and 
/d/ at the beginning of a continuum where only one sound made up a word (i.e., tape-*dape, vs. *tate-
date), participants’ N100 responses were more like responses to less ambiguous /t/ sounds when hearing a 
tape/*dape continuum and more like /d/ when hearing a *tate/date continuum. These lines of work 
represent an important frontier between speech perception, SWR, and neural mechanisms that operate 
during speech processing.  
 

Moving forward 
 

How might understanding of SWR move forward? It is possible that we are reaching the limits of current 
modeling frameworks. One of the major hurdles is relating inputs in models (ranging from phonemes in 
TISK [Hannagan et al., 2013] to 'pseudo-spectral' features over time in TRACE to human diphone 
confusion probabilities in Shortlist B) to real speech. As we note above, adding additional aspects of the 
speech signal to such inputs mainly involves reducing those details to features of some sort -- stress as 
present or not, for example. One could try building in multiple forms of each word in a lexicon to account 
for reductions. One might build in conditional probabilities to account for phenomena like assimilation or 
compensation for coarticulation. However, such approaches are unlikely to extend current modeling 
approaches much further, as we are unlikely to be able to fully anticipate the continuous, graded nature of 
variation in speech.  
 
Consider a study by Salverda, McQueen, and Dahan (2003; see also Davis, Marslen-Wilson, & Gaskell, 
2002). They reasoned from longstanding findings that there are systematic relationships between prosodic 
features and word length (Lehiste, 1970; e.g., vowel durations in stressed syllables tend to be longer in 
monosyllabic than bisyllabic words), and that listeners might be sufficiently sensitive to these 
probabilistic contingencies to constrain SWR. They recorded multiple talkers saying words like HAM, 
HAMMER, and HAMSTER. The initial vowel, on average, was about 20 msecs longer in HAM than in 
bisyllabic words, although duration distributions overlapped. They used a visual world paradigm and 
found that listeners fixated referents of words significantly faster when vowel duration relative to 
speaking rate was consistent with the number of syllables in the word (that is, durations consistent with 
HAM led to longer latencies to reach HAMSTER than durations consistent with a bisyllabic word).  
 
This illustrates how the simplifying assumptions underlying the SMP may actually complicate aspects of 
SWR, as this finding suggests that words contain probabilistically-constraining information about word 
length that could, for example, mitigate the embedding problem we mentioned earlier. If we assume a 
phonemic grain of input to SWR, we hide from ourselves subphonemic constraints that could actually 
simplify a core challenge of SWR (see Magnuson, 2008, for extended discussion). And, as we discussed 
already, a similar situation holds in downstream direction: recognition of many words in casual, fluent 
speech depends crucially on morphological, semantic and syntactic context for disambiguation. The 
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simplifying assumption in the SMP that the goal of SWR is recognition of lexical sound forms initially 
improves the tractability of SWR (by giving us a more manageable scope) but at the cost of walling off 
constraints that may greatly simplify the problem.  
 
These two problems – the proliferation of features that can approximate but not fully capture details of 
real speech, and the potential for simplifying assumptions to hide constraints – are daunting. Moving 
beyond them may require modeling frameworks that both use real speech as input and connect to higher 
levels of language comprehension. As we noted early in this chapter, the modal SMP view of SWR 
adopts simplifying hypotheses that we expect virtually all researchers in this field would agree are 
incorrect, but were crucial to pioneering work in SWR. Their utility is reductionist; they constrain 
theoretical problems to manageable scope. But as we also discussed, such simplifications have to be 
provisional; once enough smaller component problems are fairly well understood, it is time to develop 
larger-scope, integrative theories. We think we have reached this point in SWR. 
 
One potential way to do this would be to embrace developments in deep learning that have allowed 
complex networks that have evolved from the same origin as models like TRACE (i.e., the parallel 
distributed processing revolution; Rumelhart, McClelland et al., 1986; McClelland, Rumelhart, et al., 
1986) that currently power (fairly) robust automatic speech recognition on literally billions of smart 
phones worldwide every day (e.g., Hinton et al., 2012). A formidable challenge in exploring implications 
of deep learning approaches for cognitive theories is that the best-performing systems have many layers 
of multiple kinds and require complex, (arguably) biologically-implausible training regimes. This means 
understanding how and why the fully trained systems function as they do may present theoretical and 
technical challenges similar to the ones we face in trying to understand human SWR -- that is, 
determining how those systems work may require substantial experimentation (via simulation with the 
systems themselves) or even the development of simpler models to isolate and identify key algorithmic 
details. The prospects for progress may thus appear rather dismal. 
 
 Kietzmann, McClure, and Kriegeskorte (2019) make a compelling case that in fact, deep networks are 
not inscrutable black boxes, but can be understood at various levels of detail by careful analysis and by 
relating them to human behavior and neurobiology. Furthermore, it is not necessary to begin with the 
most complex models available for a domain. Magnuson, You, Luthra et al. (2020) set out to borrow the 
minimum possible from automatic speech recognition approaches in order to develop a neural network 
model of human speech recognition that would operate on real speech. They developed a two-layer 
recurrent network that maps spectral slice inputs from speech files to semantic output vectors via a hidden 
layer of long short-term memory (LSTM) nodes (Hochreiter & Schmidhuber, 1997). LSTMs have 
memory cells and gates that determine the relative weight of new and old information from long 
sequences of input.  
 
This network, dubbed EARSHOT (for Emulation of Auditory Recognition of Speech by Humans Over 
Time), achieves high accuracy on 1000 words for 9 training talkers, as well as moderate generalization to 
subsets of words excluded from training for each talker, and for a tenth talker completely excluded from 
training. It also simulates the time course of lexical activation and phonological competition over time, 
with results that resemble those observed in TRACE (see Figure 4). Intriguingly, although the model is 
not trained on phonetic targets, a structured phonetic code emerges in hidden unit responses that strongly 
resembles phonetically-structured responses in human superior temporal cortex (Mesgarani, Cheung, 
Johnson, & Chang, 2014). Magnuson et al. point out that this similarity does not necessarily indicate 
similar functions or mechanisms in the model and cortex -- simply that EARSHOT and human cortex are 
both sensitive to key information in the speech signal (i.e., phonetic patterns). However, EARSHOT’s 
hidden units also display complex spectrotemporal response patterns that could generate novel predictions 
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for human cortical responses to speech. 
 
EARSHOT represents an initial step toward creating models complex and powerful enough to operate on 
real speech while remaining simple enough to guide theoretical understanding. It currently has significant 
limitations. While EARSHOT is exposed to surface variation of various sorts, whether and how it 
accommodates that variation has not yet been addressed. EARSHOT is also currently restricted to single 
words, but has the potential to take structured, continuous inputs, which could open the way to models 
that integrate levels from speech to sentence processing. As a learning model, it also has the potential to 
provide a new framework for studying the development of spoken language comprehension. It is possible 
that by incrementally increasing the scope, realism, and complexity of such models, the gap between 
current cognitive models of SWR (e.g., TRACE, Shortlist B) and deep learning networks used for robust, 
real-world automatic speech recognition can be bridged -- and along the way, provide bases for deeper 
theoretical understanding of human spoken language comprehension. 
 
However, neural networks like EARSHOT may miss important aspects of human speech processing. 
While the success of deep neural networks for robust automatic speech recognition used by billions of 
smartphone users daily (e.g., Hinton et al., 2012) is reason for optimism, it could be that such networks 
are to human speech recognition as airplanes are to avian flight -- a good solution, but not homologous to 
biology. An alternative may come from neural networks that are able to oscillate in response to the 
temporally-varying speech signal (Giraud & Poeppel, 2012). Peele and Davis (2012) propose that if 
oscillating neural systems encoding speech entrain to dynamically-changing rhythms of speech, this may 
provide natural solutions to some of the challenges discussed above (rate variation may fall away if the 
entire system entrains to amplitude modulations of speech). Future progress will likely require deeper 
understanding of the neurobiological foundations of speech processing guided by innovative, neurally-
realistic models. 
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