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Abstract9

Language scientists often need to generate lists of related words, such as potential
competitors. They may do this for purposes of experimental control (e.g., selecting
items matched on lexical neighborhood but varying in word frequency), or to test
theoretical predictions (e.g., hypothesizing that a novel type of competitor may
impact word recognition). Several online tools are available, but most are constrained
to a fixed lexicon and fixed sets of competitor definitions, and may not give the user
full access to or control of source data. We present LexFindR, an open source R
package that can be easily modified to include additional, novel competitor types.
LexFindR is easy to use. Because it can leverage multiple CPU cores and uses
vectorized code when possible, it is also extremely fast. In this article, we present
an overview of LexFindR usage, illustrated with examples. We also explain the
details of how we implemented several standard lexical competitor types used in
spoken word recognition research (e.g., cohorts, neighbors, embeddings, rhymes), and
show how “lexical dimensions” (e.g., word frequency, word length, uniqueness point)
can be integrated into LexFindR workflows (for example, to calculate “frequency
weighted competitor probabilities”), for both spoken and visual word recognition
research.
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Introduction11

Language scientists often need to generate sets of related words or words with specific properties.12

This might be in service of experimental control (e.g., words matched on length and frequency of13

occurrences, but differing in lexical neighborhood; Luce & Pisoni, 1998). Or the need might arise14

based on a theoretically-motivated or model-driven hypothesis; perhaps your theory proposes – or15

your model simulations predict – that shorter words embedded within a word should make that16

word more difficult to process, so you want to find words with many or few words embedded within17

them. Sets of related items and their characteristics can also be useful for clinical purposes. For18

example, frequency-weighted lexical neighborhoods have proven useful for clinical assessments and19

interventions (e.g., Kirk, Pisoni, & Osberger, 1995; Morrisette & Gierut, 2002; Sommers & Danielson,20

1999; Storkel, Bontempo, Aschenbrenner, Maekawa, & Lee, 2013; Storkel, Maekawa, & Hoover, 2010).21

So how do we generate these lists?22

Various excellent tools already exist. For example, three web-based tools are Michael Vitevtich’s23

phonotactic probability (Vitevitch & Luce, 1998, 1999) and neighborhood density calculators (http://24

www.people.ku.edu/~mvitevit/PhonoProbHome.html), the English Lexicon Project (https://elexicon.25

wustl.edu/; Balota et al., 2007), and the recent Auditory English Lexicon Project (https://inetapps.nus.26

edu.sg/aelp; Goh, Yap, & Chee, 2020). Other tools exist for semantic variables or languages other than27

English, such as Lexique, which includes English and French (http://www.lexique.org/; New, Pallier,28

Brysbaert, & Ferrand, 2004) the multilingual CLEARPOND (https://clearpond.northwestern.edu/;29

Marian, Bartolotti, Chabal, & Shook, 2012), and EsPal (https://www.bcbl.eu/databases/espal/;30

Duchon, Perea, Sebastián-Gallés, Martí, & Carreiras, 2013) for Spanish, but it takes considerable31

independent work for a researcher to combine these resources with things like neighborhood statistics32

from the other tools.33

Furthermore, while these tools are incredibly useful, they have limitations. Many require using34

web interfaces, so a researcher’s workflow must include interacting with the websites and documenting35

the steps taken, and importing lists of items into the researcher’s local workflow (e.g., into R; R36

Core Team, 2019). One might argue that this is not a major inconvenience, but other limitations37

are more severe. For example, so far as we are aware, the computer code used to search lexicons38

on the sites listed above are not readily available, so a researcher can neither easily confirm the39

code’s validity or extend it (for example, to include a new type of potential competitor). Another40

limitation is that some tools have a predefined lexicon, and a researcher cannot substitute another in41

its place. Substituting your own lexicon might be useful if you simply prefer a different lexicon, or if42

you were using an artificial lexicon, either with human subjects or with a computational model, or if43

you wanted to examine an understudied language or dialect. Finally, we assume that many labs and44

researchers have developed and will continue to develop their own code for lexical searches. This45

duplication of effort is unfortunate. An open-source, extensible tool shared via a version-control46

repository would allow researchers to collaborate and share their extensions, reducing duplication of47

effort.48

We have developed a lightweight R package, LexFindR (Li, Crinnion, & Magnuson, 2020),49

that addresses these limitations. LexFindR comes with a suite of lexical relation finders for common50

competitor types used in studies of spoken and/or visual word recognition (e.g., neighbors, cohort51

[onset] competitors, and rhymes), but is also easily extended to incorporate new definitions. LexFindR52

is also fast, as it uses R’s parallelization capabilities to leverage multiple CPU cores (typically found53

even on contemporary laptops) and efficient core capabilities of R (e.g., R’s apply family of functions).54

Appendix 1 provides an example of how to put together aspects of the examples throughout the55

paper in order to efficiently gather information about multiple lexical dimensions in one script. In the56

following sections, we review how to install and use LexFindR. Details about how to share extensions57

with the community via LexFindR’s github repository are provided in Appendix 2.58

http://www.people.ku.edu/~mvitevit/PhonoProbHome.html
http://www.people.ku.edu/~mvitevit/PhonoProbHome.html
http://www.people.ku.edu/~mvitevit/PhonoProbHome.html
https://elexicon.wustl.edu/
https://elexicon.wustl.edu/
https://elexicon.wustl.edu/
https://inetapps.nus.edu.sg/aelp
https://inetapps.nus.edu.sg/aelp
https://inetapps.nus.edu.sg/aelp
http://www.lexique.org/
https://clearpond.northwestern.edu/
https://www.bcbl.eu/databases/espal/
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Using LexFindR59

Installing and loading LexFindR60

The package is implemented in R and can be utilized like any R package. The package is61

under review for distribution on the R package repository, CRAN. Once the stable version of the62

package has been released on CRAN, users will be able to install it using the Tools::Install Packages63

menu in R Studio, or via the following command:64

65

install.packages("LexFindR")

66

The current developmental version can be installed from github with the following commands:67

# uncomment the line below to install devtools if needed
# install.packages("devtools")
# the line below only needs to be run once
devtools::install_github("maglab-uconn/LexFindR")

Once installed, the package can be loaded with the following command.68

69

library(LexFindR)

Getting started70

The package comes with two lexicons: the 212-word slex lexicon (with only 14 phonemes) from71

the TRACE model of spoken word recognition (McClelland & Elman, 1986) as a small data set for the72

user to experiment with, and a larger lexicon (lemmalex) that we compiled from various open-access,73

non-copyrighted materials. The primary source is the SUBTLEX subtitle corpus (Brysbaert & New,74

2009), which we cross-referenced with the copyrighted Francis and Kučera (1982) database to reduce75

the word list to “lemma” (base- or uninflected) forms. Pronunciations were drawn from the larger76

CMU Pronouncing Dictionary (CMU Computer Science, 2020) without lexical stress for both lexicons77

(with those for slex transcribed by Nenadić and Tucker (2020)). The second lexicon is large enough to78

demonstrate the full capabilities of the package. The two data sets are automatically loaded when we79

load LexFindR. We can use the tidyverse (Wickham et al., 2019) glimpse function to view essential80

details about the lexicons, and view their first few lines.81

82

library(LexFindR)
library(tidyverse) # to use glimpse for previewing R objects

glimpse(slex)

## Rows: 21283

## Columns: 384

## $ Item <chr> "ad", "ar", "ark", "art", "art^st", "bab", "babi", "b...85

## $ Pronunciation <chr> "AA D", "AA R", "AA R K", "AA R T", "AA R T AH S T", ...86

## $ Frequency <int> 53, 4406, 50, 274, 112, 45, 23, 341, 87, 125, 125, 95...87
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glimpse(lemmalex)

## Rows: 17,75088

## Columns: 389

## $ Item <chr> "a", "abandon", "abandonment", "abate", "abbey", "abb...90

## $ Frequency <dbl> 20415.27, 8.10, 0.96, 0.10, 3.18, 0.84, 0.02, 0.24, 3...91

## $ Pronunciation <chr> "AH", "AH B AE N D IH N", "AH B AE N D AH N M AH N T"...92

Both lexicons are loaded as R dataframes with three fields. “Item” is a label (orthography in93

the case of lemmalex, and transcriptions in the original phonemic conventions used for the TRACE94

model in the case of slex). “Pronunciation” is a space-delimited phonemic transcription using the95

ARPAbet conventions of the CMU Pronouncing Dictionary (ARPAbet transcriptions for TRACE96

items are from Nenadić & Tucker, 2020). We will discuss shortly how to specify alternative delimters,97

including a “null” delimiter for working with orthographic forms or pronunciation forms that use one98

character per phoneme without spaces. “Frequency” is occurrences-per-million words; frequencies are99

based on Kučera and Francis (1967) for slex and on Brysbaert and New (2009) for lemmalex.100

More information about the lexicons can by queried with the ‘?’ command (we do not present101

the output here as it is rather extensive):102

103

?slex
?lemmalex

Note that you can use any lexicon you can load into an R dataframe. You may find it convenient104

to use the same field names as in slex and lemmalex, but it is not necessary. For work on phonological105

word forms, you typically will have both “Item” (usually orthography) and “Pronunciation”, but as we106

will see later, you can do useful things with LexFindR with any list of forms, including orthographic107

forms. To use this package with orthographic forms, refer to the section below on Working with108

orthography or other “undelimited” forms, or other delimiters.109

LexFindR commands110

Table 1 provides a list of LexFindR commands along with brief descriptions. To use any of111

the LexFindR functions, we provide a target pattern and a word list to compare it to. LexFindR will112

compare the target pattern to the patterns in the word list to find items that have particular relations113

to the target. The functions can return indices of items that meet the criteria of the function, but we114

can also tell LexFindR to return instead the list of matching forms, the list of accompanying labels115

for matching forms (e.g., spellings), or the frequencies of matching forms. As we progress through116

examples, we will see when these different options are useful.117

Cohorts. Let’s begin with cohorts. Cohorts are words that overlap at word onset, and are118

called “cohorts” because they comprise the set of words predicted to be strongly activated as a spoken119

word is heard (and thus to form the recognition cohort) by the Cohort Model (Marslen-Wilson &120

Welsh, 1978). While definitions vary, LexFindR is equipped to handle overlap in any number of121

phonemes. By default, it uses a very common cohort definition: overlap in the first two phonemes.122

However, it contains a parameter – overlap – to allow the researcher to adjust how many initial123

phonemes must match for two words to be cohorts. We can get the set of cohort indices for a pattern124

with a command like this for the pronunciation of CAR:125

126
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Table 1
LexFindR functions briefly described.
Function Description
get_cohorts Returns items that overlap at onset
get_cohortsP Returns cohorts that are not also neighbors
get_embeds_in_target Returns items that embed in the target
get_embeds_in_targetP Returns items that embed in the target that are not also cohorts or

neighbors
get_fw Returns the sum of the log frequencies in a list
get_fwcp Returns the ratio of the target word’s log frequency to the summed

log frequencies of all words meeting the competitor definition
get_homoforms Returns items with the same form as the target
get_neighbors Returns items that differ by no more than a single deletion, addition,

or substitution (can be limited to any combination of deletion,
addition, and substitution with the *overlap* parameter)

get_neighborsP Returns neighbors that are not also cohorts or rhymes
get_nohorts Returns items that meet the definitions for both cohorts and

neighbors
get_rhymes Returns items that mismatch at word onset by no more than a

specified number of elements
get_target_embeds_in Returns items that the target embeds within
get_target_embeds_inP Returns items that the target embeds within that are not also

cohorts or neighbors
get_uniqpt Returns the position at which the target becomes a unique completion

in the lexicon (or word length + 1 if the word is not unique at offset)

get_cohorts("K AA R", slex$Pronunciation)

## [1] 66 67 68 69 70 71127

This tells us that slex entries 66-71 are cohorts of CAR (overlapping in at least the initial two128

positions, since 2 is the default overlap). To get the competitors themselves rather than the indices,129

we could specify that we want forms:130

131

get_cohorts("K AA R", slex$Pronunciation, form = TRUE)

## [1] "K AA L IY G" "K AA P" "K AA P IY" "K AA R"132

## [5] "K AA R D" "K AA R P AH T"133

To see the labels of those items (in TRACE’s phonemic transcriptions), we can use standard134

R conventions (and should see the phonemic transcriptions for COLLEAGUE, COP, COPY, CAR,135

CARD, and CARPET):136

137

slex[get_cohorts("K AA R", slex$Pronunciation), ]$Item

## [1] "kalig" "kap" "kapi" "kar" "kard" "karp^t"138

Alternatively, we could request the count of cohorts (going back to the default overlap = 2):139
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140

get_cohorts("K AA R", slex$Pronunciation, count = TRUE)

## [1] 6141

That is not a large number of cohorts. Let’s compare it to the count we get from lemmalex:142

143

get_cohorts("K AA R", lemmalex$Pronunciation, count = TRUE)

## [1] 272144

As expected, we get many more from a more realistically-sized lexicon. Note that most145

LexFindR functions have exactly the same structure, returning indices by default, but with options146

to return forms or counts.147

Finally, let’s see how we can change the cohort definition in terms of how many phonemes148

must match. Let’s say we want to try a definition of cohorts with overlap in the first three phonemes149

for the cohort of CARD:150

151

get_cohorts("K AA R D", slex$Pronunciation, form = TRUE, overlap = 3)

## [1] "K AA R" "K AA R D" "K AA R P AH T"152

We could repeat any of the preceding example commands with 3-phoneme overlap by simply153

adding “overlap = 3” to each command.154

Neighborhood. Neighbors are another possible competitor often considered in word recog-155

nition research. The standard neighbor definition for spoken words comes from the Neighborhood156

Activation Model (NAM; Luce & Pisoni, 1998). While NAM includes a graded similarity rule, most157

often, researchers use the simpler DAS rule: two words are considered neighbors (and are expected158

to be strongly activated if either one is heard) if they differ by no more than a single phonemic159

deletion, addition, or substitution. For example, CAR (/kar/) has many neighbors, including the160

deletion neighbor ARE (note that neighbors are based on pronunciation here, not spelling), addition161

neighbors SCAR and CARD, and substitution neighbors at every position, such as BAR, CORE,162

and COP (though as we will see, CAR has no medial [vowel] substitution neighbors in slex). Let’s163

look at CAR’s neighbors in slex, using analogous commands to those we used for cohorts.164

165

# get indices
get_neighbors("K AA R", slex$Pronunciation)

## [1] 2 10 67 69 70 104 152 184166

# get forms
get_neighbors("K AA R", slex$Pronunciation, form = TRUE)

## [1] "AA R" "B AA R" "K AA P" "K AA R" "K AA R D" "P AA R" "S K AA R"167

## [8] "T AA R"168

# get labels
slex[get_neighbors("K AA R", slex$Pronunciation), ]$Item

## [1] "ar" "bar" "kap" "kar" "kard" "par" "skar" "tar"169
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# get count
get_neighbors("K AA R", slex$Pronunciation, count = TRUE)

## [1] 8170

Note that in visual word recognition, it is much more common to consider only substitution171

neighbors (often called “Coltheart’s N”; Coltheart, Davelaar, Jonasson, & Besner, 1977). So if you172

are working with orthography, you may only want substitution neighbors. Or perhaps you would173

like to explore the relative impact of deletion, addition, and substitution neighbors. LexFindR’s174

get_neighbors function anticipates the potential need for such flexibility. By default, it assumes you175

want all three, but you can specify any single type or any combination with the neighbors argument176

and specifying deletion neighbors with “d”, addition neighbors with “a”, and/or substitution neighbors177

with “s”. Here are some examples:178

179

# get forms of deletion neighbors (just ARE)
get_neighbors("K AA R", slex$Pronunciation, form = TRUE, neighbors = "d")

## [1] "AA R"180

181

# get forms of addition neighbors (CARD, SCAR)
get_neighbors("K AA R", slex$Pronunciation, form = TRUE, neighbors = "a")

## [1] "K AA R D" "S K AA R"182

183

# get forms of substitution neighbors (BAR, COP, CAR, PAR, TAR)
get_neighbors("K AA R", slex$Pronunciation, form = TRUE, neighbors = "s")

## [1] "B AA R" "K AA P" "K AA R" "P AA R" "T AA R"184

185

# get forms of deletion (ARE) and addition (CARD, SCAR) neighbors
get_neighbors("K AA R", slex$Pronunciation, form = TRUE, neighbors = "ad")

## [1] "AA R" "K AA R D" "S K AA R"186

Of course, we can easily do other things using basic R commands, such as determine what187

proportion of CAR’s neighbors are substitution neighbors:188

189

# what proportion of CAR's neighbors are substitution neighbors?
get_neighbors("K AA R", slex$Pronunciation, neighbors = "s", count = TRUE) /

get_neighbors("K AA R", slex$Pronunciation, count = TRUE)

## [1] 0.625190

Other competitor types. In addition to cohorts and neighbors, LexFindR comes with191

analogous functions for several other similarity types.192

• get_rhymes: returns items that mismatch at word onset by no more than a specified number193

of phonemes, using a mismatch argument which the user can supply. The default mismatch194

argument is 1 phoneme, meaning the function will by default return items that mismatch at195
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word onset by a maximum of 1 phoneme (so not a standard definition of poetic rhyme or196

phonological rime). With this default argument, rhymes will include items that are addition or197

deletion neighbors at first position (e.g., CAR’s rhymes will include ARE and SCAR) as well as198

substitution neighbors at position 1 (e.g., BAR, TAR). If mismatch were set to 2, for example,199

CAR would additionally match any 3-phoneme word ending in /r/ and any 4-phoneme word200

ending in /ar/.201

• get_embeds_in_target: returns items that are embedded within a target word. For SCAR,202

this would include ARE and CAR.203

• get_target_embeds_in: returns items that the target embeds within. For CAR, this would204

include SCAR and CARD.205

• get_homoforms: returns items with the same form as the target. We use “homoform” because206

these would be homophones for phonological forms but homonyms for orthographic forms.207

LexFindR also anticipates the possibility that a researcher may want to find competitor types208

that do not overlap. For example, CARD is both a cohort and a neighbor of CAR, so which set209

should it appear in? We propose a novel category called nohorts – neighbors that are also cohorts –210

and provide “P” (pure) versions of several competitor-type functions that return non-overlapping211

sets.212

• get_nohorts: Cohorts and neighbors are overlapping sets, although not all cohorts are neighbors213

(e.g., CAR and CARPET are cohorts but not neighbors) and not all neighbors are cohorts.214

Nohorts are the intersection of cohorts and neighbors. Note that the target word will be part215

of the nohort set, and not part of cohortsP or neighborsP, which we define next.216

• get_cohortsP: the set of “pure” cohorts that are not also neighbors.217

• get_neighborsP: the set of “pure” neighbors that are not also cohorts or rhymes.218

• get_embeds_in_targetP: set of items that embed in the target that are not also cohorts or219

neighbors.220

• get_target_embeds_inP: set of items that the target embeds in that are not also cohorts or221

neighbors.222

The nohort and “P” functions use the base-R intersect and setdiff functions to find set223

intersections and differences. To see the code for any function in R, you can simply enter the function224

name with no arguments and no following parentheses. Let’s look at the code for get_nohorts.225

Many of the details provided may not be useful for a typical user, but the intersect command is the226

interesting part of this example.227

228

get_nohorts

## function(target, lexicon, neighbors = "das", sep = " ", form = FALSE, count = FALSE) {229

## idx <- intersect(230

## get_cohorts(target, lexicon, sep, form = FALSE, count = FALSE),231

## get_neighbors(target, lexicon, neighbors, sep, form = FALSE, count = FALSE)232

## )233

##234

## get_return(idx, lexicon, form, count)235

## }236

## <bytecode: 0x7ff36ae4dfa0>237

## <environment: namespace:LexFindR>238

239

Now let’s examine the get_neighborsP function to see how the setdiff is used to find “pure”240

sets.241
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242

get_neighborsP

## function(target, lexicon, neighbors = "das", sep = " ", form = FALSE, count = FALSE) {243

## idx <- setdiff(244

## setdiff(245

## get_neighbors(target, lexicon, neighbors),246

## get_cohorts(target, lexicon, sep, form = FALSE, count = FALSE)247

## ),248

## get_rhymes(target, lexicon, sep, form = FALSE, count = FALSE)249

## )250

##251

## get_return(idx, lexicon, form, count)252

## }253

## <bytecode: 0x7ff38de457a0>254

## <environment: namespace:LexFindR>255

256

This function uses nested setdiff calls to first find neighbors excluding cohorts and then to257

exclude rhymes from that set. A user could use these functions as examples to create their own258

specific subsets of items.259

Form length. You may wish to calculate form length. This is easy to do with base R. If260

you use CMU pronunciations, as in lemmalex, we can use a technique for counting words separated261

by whitespace with the lengths command in R.262

263

# get lengths by splitting on spaces
lemmalex$Length <- lengths(strsplit(lemmalex$Pronunciation, " "))

glimpse(lemmalex)

## Rows: 17,750264

## Columns: 4265

## $ Item <chr> "a", "abandon", "abandonment", "abate", "abbey", "abb...266

## $ Frequency <dbl> 20415.27, 8.10, 0.96, 0.10, 3.18, 0.84, 0.02, 0.24, 3...267

## $ Pronunciation <chr> "AH", "AH B AE N D IH N", "AH B AE N D AH N M AH N T"...268

## $ Length <int> 1, 7, 11, 4, 3, 4, 8, 10, 7, 9, 8, 7, 8, 4, 6, 5, 8, ...269

270

If you have a null-delimited form, where each character is a single letter or phoneme, we can271

use the nchar function.272

# get lengths by counting characters for orthography or 1-char per phoneme forms
slex$Length <- nchar(slex$Item)

glimpse(slex)

## Rows: 212273

## Columns: 4274

## $ Item <chr> "ad", "ar", "ark", "art", "art^st", "bab", "babi", "b...275

## $ Pronunciation <chr> "AA D", "AA R", "AA R K", "AA R T", "AA R T AH S T", ...276
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## $ Frequency <int> 53, 4406, 50, 274, 112, 45, 23, 341, 87, 125, 125, 95...277

## $ Length <int> 2, 2, 3, 3, 6, 3, 4, 4, 4, 3, 4, 5, 2, 4, 3, 4, 3, 4,...278

279

Uniqueness point. We have added one other common lexical dimension to the LexFindR280

functions (get_uniqpt), which is the uniqueness point (UP) of a form. This is the position at which281

an item becomes the only completion in the lexicon. For example, in slex, /kard/ (CARD) becomes282

unique at position 4, as does /karpˆt/ (CARPET). SCAR becomes unique at position 3. CAR283

(/kar/) is not unique at its final position, so its uniqueness point is set to its length plus one.284

285

get_uniqpt("K AA R", slex$Pronunciation)

## [1] 4286

get_uniqpt("S K AA R", slex$Pronunciation)

## [1] 3287

Again, CAR is not unique by word offset, so its UP is its length plus one. SCAR becomes288

unique at position 3, one before its offset. Let’s consider some additional useful steps. We could289

normalize UPs by dividing them by word length plus one, the maximal possible score. So CARD290

would have a normalized UP of 0.8 (4/5), while CARPET’s would be 0.57 (4/7), and CAR’s would291

be 1.0 (4/4). Here are some examples.292

# Get UPs for all items in slex
slex$UP <- unlist(lapply(slex$Pronunciation,

FUN = get_uniqpt, lexicon = slex$Pronunciation
))

# Now let's normalize UP by word length + 1
slex$UP.norm <- slex$UP / (slex$Length + 1)

# Check examples
subset(slex, Item == "kar" | Item == "skar" | Item == "kard" | Item == "karp^t")

## Item Pronunciation Frequency Length UP UP.norm293

## 69 kar K AA R 386 3 4 1.0000000294

## 70 kard K AA R D 62 4 4 0.8000000295

## 71 karp^t K AA R P AH T 22 6 4 0.5714286296

## 152 skar S K AA R 22 4 3 0.6000000297

Helper functions298

LexFindR includes two helper functions that can be applied to the output of other functions:299

get_fw and get_fwcp.300

Log frequency weights: get_fw. Intuitively, the number (count) of potential competitors301

may be important. But some competitors might have more influence than others; in particular,302

words with higher frequency-of-occurrence may compete more strongly. So we may wish to consider303

the frequencies of competitors. We can use the indices returned by functions like get_cohorts or304

get_neighbors to get the frequencies of the items. Let’s do this for the word CAR in slex and305

lemmalex and get some summary statistics.306
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# get CAR's slex cohorts' frequencies
slex_cohort_frequencies <- slex$Frequency[

get_neighbors("K AA R", slex$Pronunciation)
]
summary(slex_cohort_frequencies)

## Min. 1st Qu. Median Mean 3rd Qu. Max.307

## 10.0 21.5 47.0 632.9 190.2 4406.0308

# get CAR's lemmalex cohorts' frequencies
llex_cohort_frequencies <- lemmalex$Frequency[

get_neighbors("K AA R", lemmalex$Pronunciation)
]
summary(llex_cohort_frequencies)

## Min. 1st Qu. Median Mean 3rd Qu. Max.309

## 0.220 1.353 6.635 58.336 30.830 485.250310

Typically, frequencies are log scaled, as this provides a better fit when they are used to predict311

human behavior (e.g., word recognition time). It would be useful, therefore, to weight the count of312

competitors by log frequencies. The LexFindR helper function get_fw does this. You supply it with313

a list of frequencies, and it takes their logs and returns the sum. This is simple enough that you314

could do it with basic R functions yourself. However, get_fw provides some useful error checking.315

Specifically, it checks whether the minimum frequency in your set of frequencies is less than one,316

since taking the log would return a negative value. If so, it also suggests a minimum constant to317

specify for pad to add to each frequency before taking the log. Let’s consider how we might use this.318

First, let’s try using get_fw to give us summed log frequencies for the frequencies we collected above319

for CAR’s slex cohorts.320

get_fw(slex_cohort_frequencies)

## [1] 35.1571321

This gives us the sum without any problem, as the minimum frequency in322

slex_cohort_frequencies is greater than 1. Now let’s try with l lex_cohort_frequencies.323

get_fw(llex_cohort_frequencies)

## Warning: `min(competitors_freq) + pad` is 0.22 which is < 1;324

## * Consider adding pad >= 0.78325

## [1] 55.64038326

Now we get a value (55.64038) but also a warning because the minimum value is less than 1.327

So let’s add the pad option. Using 1 will bring our minimum to a value greater than 1, avoiding328

results with non-positive values.329

get_fw(llex_cohort_frequencies, pad = 1)

## [1] 65.67193330

Log Frequency Weighted Competitor Probabilities: get_fwcp. We could go a step331

beyond frequency weights and calculate the Frequency Weighted Competitor Probability (FWCP) of a332

word, inspired by the Neighborhood Activation Model’s Frequency-Weighted Neighborhood Probability333

(FWNP; Luce & Pisoni, 1998). This is calculated as the ratio of the target word’s log frequency to334

the sum of all words meeting the competitor definition, as in the following equation.335
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FWCP = log(Frequencytarget)∑
c∈competitors log(Frequencyc)

Notably, on most competitor definitions, this includes the target word itself, so we can think336

of the ratio as expressing what proportion of the “frequency weight” of the target’s competitors337

is contributed by the target itself. For spoken words, the larger the ratio, the more easily the338

target word tends to be recognized. To calculate this with LexFindR, we supply a set of competitor339

frequencies and the target word’s frequency to the get_fwcp function. Note that we can include a340

pad option as for get_fw, and it will be applied to both the target word’s frequency and the list of341

competitor frequencies; again, this should be done if the minimum frequency value is less than 1.342

Let’s verify that the minimum frequency in slex is greater than 1.343

# check the minimum frequency
min(slex$Frequency)

## [1] 10344

The next two code blocks demonstrate how to get the FWCP for neighbors (i.e., the FWNP)345

and then for cohorts.346

# because get_neighbors returns indices by default, we can use its output as
# the keys to get corresponding frequencies from another column in the
# dataframe
competitors_freq <- slex$Frequency[get_neighbors("K AA R", slex$Pronunciation)]
target_freq <- slex$Frequency[which(slex$Pronunciation == "K AA R")]

# now we can the FWCP based on neighbors;
# minimum frequency is > 1 so we won't specify a pad
get_fwcp(target_freq, competitors_freq)

## [1] 0.1694064347

348

# Now let's get the FWCP for cohorts
competitors_freq <- slex$Frequency[get_cohorts("K AA R", slex$Pronunciation)]
target_freq <- slex$Frequency[which(slex$Pronunciation == "K AA R")]

get_fwcp(target_freq, competitors_freq)

## [1] 0.2459427349

Note that get_fwcp is not simply computing the ratio of target-to-competitor frequencies; it is350

first converting the frequencies to log frequencies. If your lexicon file has frequencies already in log351

form, you should not use the get_fwcp function, but instead you should calculate the ratios directly.352

Also note that it is fairly standard to express frequencies as occurrences-per-million. If your basis is353

different (e.g., occurrences-per-six million), you may want to transform your frequencies to the more354

standard per-million basis. Finally, we recommend that you examine distributions before using the355

results of get_fwcp, as these often exhibit difficult-to-mitigate deviations from normality. One may356

be better served by examining target frequencies and competitor frequency weights (obtained with357

get_fw) separately.358
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Working with orthography or other “undelimited” forms, or other delimiters359

By default, LexFindR functions expect the forms you supply to be space-delimited, which is360

the typical convention for CMU pronunciations. Using a delimiter allows you to have form codes361

(typically phoneme codes) made up of more than one character. But what if you want to work with362

orthography, or a phoneme code that uses one character per phoneme without delimiters? You can363

simply specify sep = "" to indicate that your forms have a “null” delimiter. We can illustrate this364

with the orthography in the “Item” field in lemmalex.365

366

# Let's list orthographic substitution neighbors for CAR in lemmalex
get_neighbors("car", lemmalex$Item, form = TRUE, neighbor = "s", sep = "")

## [1] "bar" "cab" "cam" "can" "cap" "car" "cat" "caw" "cur" "ear" "far" "jar"367

## [13] "mar" "par" "tar" "war"368

Now let’s try it with TRACE’s original phoneme encodings, which use one character per369

phoneme. Those original forms are in the “Item” field of slex:370

371

# Let's list orthographic substitution neighbors for CAR in slex
get_neighbors("kar", slex$Item, form = TRUE, neighbor = "s", sep = "")

## [1] "bar" "kap" "kar" "par" "tar"372

Batch processing with target list and lexicon373

Often, we may need to get the competitors for each word in the lexicon, with respect to the374

entire lexicon. This would be a prerequisite for selecting words with relatively many vs. few neighbors,375

for example. One way to do this would be to use the base R function lapply. Here is how we could376

do this for cohorts. The final glimpse command will show us the first few instances of each field.377

# reset R
rm(list = ls())
library(LexFindR)

# define the lexicon with the list of target words to compute
# cohorts for; we will use *target_df* instead of modifying
# slex or lemmalex directly
target_df <- slex

# specify the reference lexicon; here it is actually the list
# of pronunciations from slex, as we want to find all cohorts
# for all words in our lexicon. It is not necessary to create
# a new dataframe, but because we find it useful for more
# complex tasks, we use this approach here
lexicon_df <- target_df

# this instruction will create a new column in our target_df
# dataframe, "cohort_idx", which will be the list of lexicon_df
# indices corresponding to each word's cohort set
target_df$cohort_idx <-
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lapply(
# in each lapply instance, select the target pronunciation
target_df$Pronunciation,
# in each lapply instance, apply the get_cohorts function
FUN = get_cohorts,
# in each lapply instance, compare the current target
# Pronunciation to each lexicon Pronunciation
lexicon = lexicon_df$Pronunciation

)

# let's look at the first few instances in each field...
glimpse(target_df)

## Rows: 212378

## Columns: 4379

## $ Item <chr> "ad", "ar", "ark", "art", "art^st", "bab", "babi", "b...380

## $ Pronunciation <chr> "AA D", "AA R", "AA R K", "AA R T", "AA R T AH S T", ...381

## $ Frequency <int> 53, 4406, 50, 274, 112, 45, 23, 341, 87, 125, 125, 95...382

## $ cohort_idx <list> [1, <2, 3, 4, 5>, <2, 3, 4, 5>, <2, 3, 4, 5>, <2, 3,...383

Consider the cohort_idx field. We can see that /ad/ (ODD) has only one cohort (itself), while384

/ar/ (ARE) has four (items 2, 3, 4, 5, or /ar/, /ark/, /art/, and /artˆst/, i.e., ARE, ARK, ART,385

ARTIST).386

What if we also want the lists of cohort forms or labels and frequencies? Rather than calling387

the function three times, we could speed up the process (speed will be very important when we work388

with large lexicons!) by calling get_cohorts only once, and then using the indices to get the other389

items we want. In the next example, we keep working with target_df and its new field cohort_idx390

(which has the list of indices [row counts] of records that meet the cohort definition for each target).391

392

# continuing the code block above,
# this instruction creates a new field, cohort_str, which will
# be the list of forms corresponding to the list of indices
# in cohort_idx
target_df$cohort_str <-

lapply(
# on each instance of lapply (each target word), we apply
# this simple function of returning the Item (label) for
# each cohort index (idx)
target_df$cohort_idx, function(idx) {

lexicon_df$Item[idx]
}

)

# to create a list of frequencies for each cohort of a
# target item, we do the same thing, but now we get the
# Frequency rather than the Item
target_df$cohort_freq <-

lapply(
target_df$cohort_idx, function(idx) {

lexicon_df$Frequency[idx]
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}
)

# to get the count of cohorts for each item, we *could* run
# get_cohorts again with "count = TRUE", but we can use the
# "lengths" command to get the count of items in cohort_str
# (or cohort_idx) instead. We'll put the result in a new
# field in the dataframe called "cohort_count"
target_df$cohort_count <- lengths(target_df$cohort_str)

# finally, we can get the cohort frequency weight for each
# word (the summed log frequencies of all its cohorts)
target_df$cohort_fw <- lapply(target_df$cohort_freq, get_fw)

393

Let’s look at the results:394

glimpse(target_df)

## Rows: 212395

## Columns: 8396

## $ Item <chr> "ad", "ar", "ark", "art", "art^st", "bab", "babi", "b...397

## $ Pronunciation <chr> "AA D", "AA R", "AA R K", "AA R T", "AA R T AH S T", ...398

## $ Frequency <int> 53, 4406, 50, 274, 112, 45, 23, 341, 87, 125, 125, 95...399

## $ cohort_idx <list> [1, <2, 3, 4, 5>, <2, 3, 4, 5>, <2, 3, 4, 5>, <2, 3,...400

## $ cohort_str <list> ["ad", <"ar", "ark", "art", "art^st">, <"ar", "ark",...401

## $ cohort_freq <list> [53, <4406, 50, 274, 112>, <4406, 50, 274, 112>, <44...402

## $ cohort_count <int> 1, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 3, 3, 3, 3, 3, 3,...403

## $ cohort_fw <list> [3.970292, 22.63437, 22.63437, 22.63437, 22.63437, 3...404

We can see that cohort_idx, cohort_str, and cohort_freq all contain lists, and we can verify405

that for a given word, the lists are the same length (e.g., one frequency form for each cohort). There406

should only be one value per target word in cohort_count and cohort_fw, which we can see is the407

case as well.408

Working with different target and lexicon lists. In some cases, you may only want409

to get details for a subset of items in the lexicon – or even for a list of forms that are not in the410

lexicon. In these cases, you can simply specify a shorter target list rather than making the target411

list and lexicon the same. Note that of course, if you do not have frequencies for your items, you412

will not be able to use the get_fwcp command. As an example, we might want to examine what the413

neighborhoods of the words in the TRACE lexicon would be in the context of a realistically-sized414

lexicon. We can do this by using slex as our target list and lemmalex as our lexicon.415

416

# Again, it is not necessary to copy slex and lemmalex to target_df and
# lexicon_df, but doing so can promote clarity in more complex workflows
target_df <- slex
lexicon_df <- lemmalex

# first, *lapply* get_cohorts
target_df$cohort_idx <-

lapply(
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target_df$Pronunciation,
FUN = get_cohorts,
lexicon = lexicon_df$Pronunciation

)

# let's also get cohort counts
target_df$cohort_count <- lengths(target_df$cohort_idx)

glimpse(target_df)

## Rows: 212417

## Columns: 5418

## $ Item <chr> "ad", "ar", "ark", "art", "art^st", "bab", "babi", "b...419

## $ Pronunciation <chr> "AA D", "AA R", "AA R K", "AA R T", "AA R T AH S T", ...420

## $ Frequency <int> 53, 4406, 50, 274, 112, 45, 23, 341, 87, 125, 125, 95...421

## $ cohort_idx <list> [<10577, 10578, 10579, 10582>, <762, 763, 764, 765, ...422

## $ cohort_count <int> 4, 69, 69, 69, 69, 64, 64, 64, 64, 64, 64, 64, 32, 32...423

Comparing this to our earlier results, we see that ODD would have 4 cohorts in lemmalex424

instead of 1 within slex.425

Parallelizing for speed426

If we are getting competitors for every word in a lexicon, speed becomes a concern, especially427

if we want to do this for many competitor types. To quantify this, let’s time how long it takes to428

calculate cohorts for all words in lemmalex. We will use the R tictoc package (Izrailev, 2014) to time429

the process. For this demonstration, we are using a MacBook Pro with an Intel Core i9 CPU and430

32gb of RAM.431

# load functions for timing
library(tictoc)

# set targets and lexicon to be the large lemmalex lexicon
target_df <- lemmalex
lexicon_df <- target_df

# start the timer
tic("get_cohorts without parallelization")

# lapply the get_cohorts function -- fast, vectorized, but not parallel
# warning: this could take a long time, depending on your hardware
target_df$cohort_idx <-

lapply(
target_df$Pronunciation,
FUN = get_cohorts,
lexicon = lexicon_df$Pronunciation

)
toc()

## get_cohorts without parallelization: 110.576 sec elapsed432
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tic("get additional fields")
# get cohort strings
target_df$cohort_str <- lapply(

target_df$cohort_idx, function(idx) {
lexicon_df$Item[idx]

}
)

# get cohort counts
target_df$cohort_count <- lengths(target_df$cohort_str)

toc()

## get additional fields: 0.05 sec elapsed433

glimpse(target_df)

## Rows: 17,750434

## Columns: 6435

## $ Item <chr> "a", "abandon", "abandonment", "abate", "abbey", "abb...436

## $ Frequency <dbl> 20415.27, 8.10, 0.96, 0.10, 3.18, 0.84, 0.02, 0.24, 3...437

## $ Pronunciation <chr> "AH", "AH B AE N D IH N", "AH B AE N D AH N M AH N T"...438

## $ cohort_idx <list> [<>, <2, 3, 4, 7, 8, 14, 15, 16, 18, 19, 29, 30, 31,...439

## $ cohort_str <list> [<>, <"abandon", "abandonment", "abate", "abbreviate...440

## $ cohort_count <int> 0, 61, 61, 61, 39, 39, 61, 61, 39, 39, 39, 39, 39, 61...441

442

On our demonstration laptop, get_cohorts with lapply took ~111 seconds (on an older work-443

station we tested, it took several minutes). If you only have to do this once, that may be tolerable.444

But we can do better! We could easily parallelize using the R future package, and its commands like445

future.apply (Bengtsson, 2013). There are various ways to engage multiple cores with this package,446

as detailed in its documentation. The plan(multisession, workers = num_cores) is quite convenient,447

and works on Windows, Macintosh, and Linux with Rstudio and base R. In the following code block,448

we show how to load future.apply and set things up to use multiple cores.449

450

# uncomment the line below to install, but you only need
# to do this once.
# install.packages("future.apply")
library(future.apply)

# how many cores do we have?
num_cores <- availableCores()
print(paste0("Using num_cores: ", num_cores))

## [1] "Using num_cores: 12"451

452

# now let future.apply figure out how to optimize parallel
# division of labor over cores
plan(multisession, workers = num_cores)
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453

With this setup, the only thing left to do is to replace our apply functions with their future.apply454

equivalents. In the example below, we just replace lapply with future_lapply to parallelize the function455

that gets competitors (there’s no real need to do this with the other apply call as it is not the bottleneck;456

in fact, it is so poorly suited for parallelization that it is slowed by a factor of ~10 if we do use457

future_apply).458

459

# load functions for timing
library(tictoc)

# set targets and lexicon to be the large lemmalex lexicon
target_df <- lemmalex
lexicon_df <- target_df

# start the timer
tic("get_cohorts WITH parallelization")

# lapply the get_cohorts function -- fast, vectorized, but not parallel
# warning: this could take a long time, depending on your hardware
target_df$cohort_idx <-

future_lapply(
target_df$Pronunciation,
FUN = get_cohorts,
lexicon = lexicon_df$Pronunciation

)
toc()

## get_cohorts WITH parallelization: 34.531 sec elapsed460

# get cohort strings
target_df$cohort_str <- lapply(

target_df$cohort_idx, function(idx) {
lexicon_df$Item[idx]

}
)

target_df$cohort_count <- lengths(target_df$cohort_str)

toc()

glimpse(target_df)

## Rows: 17,750461

## Columns: 6462

## $ Item <chr> "a", "abandon", "abandonment", "abate", "abbey", "abb...463

## $ Frequency <dbl> 20415.27, 8.10, 0.96, 0.10, 3.18, 0.84, 0.02, 0.24, 3...464

## $ Pronunciation <chr> "AH", "AH B AE N D IH N", "AH B AE N D AH N M AH N T"...465

## $ cohort_idx <list> [<>, <2, 3, 4, 7, 8, 14, 15, 16, 18, 19, 29, 30, 31,...466

## $ cohort_str <list> [<>, <"abandon", "abandonment", "abate", "abbreviate...467

## $ cohort_count <int> 0, 61, 61, 61, 39, 39, 61, 61, 39, 39, 39, 39, 39, 61...468
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We see an improvement from 111 seconds to approximately 35; it took a bit more than 3469

times longer without parallelization. On the older workstation, the improvement was more dramatic,470

from several minutes to around 35 seconds (around 10 times faster with parallelization). Again, such471

differences may not seem important if you are running a search once, but if you want to do many472

different kinds of searches, or explore novel similarity definitions, speed will become important. In473

Appendix 1, we present an example of parallelized code for conducting several LexFindR competitor474

searches in series.475

Conclusions476

LexFindR fills important gaps in the language scientist’s toolkit. It provides a free, fast,477

extensible, tested, and readily shared tool that can be integrated into typical analysis workflow within478

R. Researchers inclined to contribute extensions to LexFindR should refer to Appendix 2 for basic479

guidance on how to do so. We hope our fellow researchers will find LexFindR useful.480
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Appendix 1: Extended example – Getting several competitor types496

This example shows how you can go through several competitor types for a lexicon, adding497

columns for the indices, labels, frequencies, counts, frequency weights, and FWCP for each competitor498

type. For an example implemented in tidyverse (Wickham et al., 2019) piping style, see the package499

vignettes for LexFindR.500

library(LexFindR)
library(tidyverse) # for glimpse
library(future.apply) # parallelization
library(tictoc) # timing utilities

# In this example, we define a dataframe source for target words
# (target_df) and another for the lexicon to compare the target
# words to (lexicon_df). Often, these will be the same, but we keep
# them separate here to make it easier for others to generalize from
# this example code.

# Code assumes you have at least 3 columns in target_df & lexicon_df:
# 1. Item -- a label of some sort, can be identical to Pronunciation
# 2. Pronunciation -- typically a phonological form
# 3. Frequency -- should be in occurrences per million, or some other
# raw form, as the functions below take the log of
# the frequency form. See advice about padding in
# the main article text.
#
# Of course, you can name your fields as you like, and edit the
# field names below appropriately.
target_df <- slex
lexicon_df <- target_df

# Prepare for parallelizing
# 1. how many cores do we have?
num_cores <- availableCores()
print(paste0("Using num_cores: ", num_cores))

## [1] "Using num_cores: 12"501

# 2. now let future.apply figure out how to optimize parallel
# division of labor over cores
plan(multisession, workers = num_cores)

# the functions in this list all return lists of word indices; the
# uniqueness point function is not included because it returns a
# single value per word.
fun_list <- c(

"cohorts", "neighbors",
"rhymes", "homoforms",
"target_embeds_in", "embeds_in_target",
"nohorts", "cohortsP", "neighborsP",
"target_embeds_inP", "embeds_in_targetP"

)
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# we need to keep track of the P variants, as we need to tell get_fwcp
# to add in the target frequency for these, as they exclude the target
Ps <- c(

"cohortsP", "neighborsP", "target_embeds_inP",
"embeds_in_targetP"

)

# determine how much to pad based on minimum frequency
if (min(target_df$Frequency) == 0) {

pad <- 2
} else if (min(target_df$Frequency) < 1) {

pad <- 1
} else {

pad <- 0
}

# now let's loop through the functions
for (fun_name in fun_list) {

# start timer for this function
tic(fun_name)

# the P functions do not include the target in the denominator for
# get_fwcp; if we want this to be a consistent ratio, we need to
# add target frequency to the denominator
add_target <- FALSE
if (fun_name %in% Ps) {

add_target <- TRUE
}

# inform the user that we are starting the next function, make sure
# we are correctly adding target or not
cat("Starting", fun_name, " -- add_target = ", add_target)
func <- paste0("get_", fun_name)

# use *future_lapply* to do the competitor search, creating
# a new column in *target_df* that will be this function's
# name + _idx (e.g., cohort_idx)
target_df[[paste0(fun_name, "_idx")]] <-

future_lapply(target_df$Pronunciation,
FUN = get(func),
lexicon = lexicon_df$Pronunciation

)

# list the competitor form labels in functionname_str
target_df[[paste0(fun_name, "_str")]] <- lapply(

target_df[[paste0(fun_name, "_idx")]],
function(idx) {

lexicon_df$Item[idx]
}

)
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# list the competitor frequencies in functionname_freq
target_df[[paste0(fun_name, "_freq")]] <- lapply(

target_df[[paste0(fun_name, "_idx")]],
function(idx) {

lexicon_df$Frequency[idx]
}

)

# put the count of competitors in functionname_num
target_df[[paste0(fun_name, "_num")]] <-

lengths(target_df[[paste0(fun_name, "_idx")]])

# put the FW in functionname_fwt using the "mapply" function
# to input multiple arguments to the get_fw function.
# using "lapply" would require a helper function
target_df[[paste0(fun_name, "_fwt")]] <-

mapply(get_fw,
competitors_freq = target_df[[paste0(fun_name, "_freq")]],
pad = pad

)

# put the FWCP in functionname_fwcp
target_df[[paste0(fun_name, "_fwcp")]] <-

mapply(get_fwcp,
target_freq = target_df$Frequency,
competitors_freq = target_df[[paste0(fun_name, "_freq")]],
pad = pad, add_target = add_target

)

toc()
}

## Starting cohorts -- add_target = FALSEcohorts: 0.212 sec elapsed502

## Starting neighbors -- add_target = FALSEneighbors: 0.15 sec elapsed503

## Starting rhymes -- add_target = FALSErhymes: 0.141 sec elapsed504

## Starting homoforms -- add_target = FALSEhomoforms: 0.135 sec elapsed505

## Starting target_embeds_in -- add_target = FALSEtarget_embeds_in: 0.133 sec elapsed506

## Starting embeds_in_target -- add_target = FALSEembeds_in_target: 0.137 sec elapsed507

## Starting nohorts -- add_target = FALSEnohorts: 0.129 sec elapsed508

## Starting cohortsP -- add_target = TRUEcohortsP: 0.132 sec elapsed509

## Starting neighborsP -- add_target = TRUEneighborsP: 0.129 sec elapsed510

## Starting target_embeds_inP -- add_target = TRUEtarget_embeds_inP: 0.134 sec elapsed511

## Starting embeds_in_targetP -- add_target = TRUEembeds_in_targetP: 0.129 sec elapsed512

# Now let's streamline the dataframe; we'll select the num, fwt, and fwcp
# columns and put them in that order, while not keeping some of the other
# 'helper' columns we created

export_df <- target_df %>%
select(Item | Pronunciation | Frequency
| ends_with("_num") | ends_with("_fwt") | ends_with("_fwcp"))
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# save the results
write_csv(

export_df, "slex_lexdims.csv"
)

glimpse(export_df)

## Rows: 212513

## Columns: 36514

## $ Item <chr> "ad", "ar", "ark", "art", "art^st", "bab", "...515

## $ Pronunciation <chr> "AA D", "AA R", "AA R K", "AA R T", "AA R T ...516

## $ Frequency <int> 53, 4406, 50, 274, 112, 45, 23, 341, 87, 125...517

## $ cohorts_num <int> 1, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 3, 3, 3,...518

## $ neighbors_num <int> 4, 8, 6, 5, 1, 4, 4, 2, 1, 7, 5, 1, 7, 5, 8,...519

## $ rhymes_num <int> 3, 5, 4, 3, 1, 2, 2, 1, 1, 5, 4, 1, 6, 3, 4,...520

## $ homoforms_num <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...521

## $ target_embeds_in_num <int> 6, 29, 5, 9, 1, 2, 1, 1, 1, 2, 1, 1, 5, 1, 1...522

## $ embeds_in_target_num <int> 1, 1, 2, 2, 5, 1, 3, 2, 1, 2, 4, 2, 1, 3, 3,...523

## $ nohorts_num <int> 1, 3, 3, 3, 1, 3, 3, 2, 1, 3, 2, 1, 2, 2, 3,...524

## $ cohortsP_num <int> 0, 1, 1, 1, 3, 4, 4, 5, 6, 4, 5, 6, 1, 1, 0,...525

## $ neighborsP_num <int> 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2,...526

## $ target_embeds_inP_num <int> 3, 21, 1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0...527

## $ embeds_in_targetP_num <int> 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0,...528

## $ cohorts_fwt <dbl> 3.970292, 22.634373, 22.634373, 22.634373, 2...529

## $ neighbors_fwt <dbl> 21.533445, 37.968634, 33.688446, 27.349358, ...530

## $ rhymes_fwt <dbl> 13.142723, 24.473191, 19.684596, 15.046612, ...531

## $ homoforms_fwt <dbl> 3.970292, 8.390723, 3.912023, 5.613128, 4.71...532

## $ target_embeds_in_fwt <dbl> 29.792782, 127.685319, 22.680328, 42.517044,...533

## $ embeds_in_target_fwt <dbl> 3.970292, 8.390723, 12.302746, 14.003851, 35...534

## $ nohorts_fwt <dbl> 3.970292, 17.915874, 17.915874, 17.915874, 4...535

## $ cohortsP_fwt <dbl> 0.000000, 4.718499, 4.718499, 4.718499, 17.9...536

## $ neighborsP_fwt <dbl> 8.390723, 3.970292, 0.000000, 0.000000, 0.00...537

## $ target_embeds_inP_fwt <dbl> 16.650059, 88.968478, 2.995732, 22.751933, 0...538

## $ embeds_in_targetP_fwt <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 16.5...539

## $ cohorts_fwcp <dbl> 1.00000000, 0.37070710, 0.17283550, 0.247991...540

## $ neighbors_fwcp <dbl> 0.1843779, 0.2209909, 0.1161236, 0.2052380, ...541

## $ rhymes_fwcp <dbl> 0.3020905, 0.3428536, 0.1987352, 0.3730493, ...542

## $ homoforms_fwcp <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...543

## $ target_embeds_in_fwcp <dbl> 0.13326355, 0.06571407, 0.17248529, 0.132020...544

## $ embeds_in_target_fwcp <dbl> 1.0000000, 1.0000000, 0.3179797, 0.4008275, ...545

## $ nohorts_fwcp <dbl> 1.0000000, 0.4683401, 0.2183551, 0.3133047, ...546

## $ cohortsP_fwcp <dbl> 1.0000000, 0.6400626, 0.4532777, 0.5432957, ...547

## $ neighborsP_fwcp <dbl> 0.3211947, 0.6788053, 1.0000000, 1.0000000, ...548

## $ target_embeds_inP_fwcp <dbl> 0.19254240, 0.08618315, 0.56632333, 0.197888...549

## $ embeds_in_targetP_fwcp <dbl> 1.0000000, 1.0000000, 1.0000000, 1.0000000, ...550
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Appendix 2: Bug reports and user contributions551

How to report bugs. Report any bugs at https://github.com/maglab-uconn/LexFindR/552

issues by clicking on “New Issue”.553

How to create an extension. To contribute new functions, first please read the R files554

that are part of the LexFindR package. New functions can be added to extensions.R on your local555

installation. New functions should be carefully tested and the code should be clearly commented.556

Once you are confident your code is ready to be shared, move on to the next step of submitting your557

code via github.558

How to contribute extensions via github. Extensions are welcomed through a github559

“pull request”. Once the user has created a local clone of the forked repository, the user can edit the560

competitors.R or extensions.R file and push their edits to their forked path. Once these edits have been561

made, users can open a pull request. Before every pull request, run R CMD check to ensure that the562

code is clean. Please also style your code using the tidyverse style guide at https://style.tidyverse.org/563

(Wickham, n.d.) and document your code using roxygen2 (Wickham, Danenberg, Csárdi, & Eugster,564

2020). We will monitor pull requests and merge appropriate changes.565

https://github.com/maglab-uconn/LexFindR/issues
https://github.com/maglab-uconn/LexFindR/issues
https://github.com/maglab-uconn/LexFindR/issues
https://style.tidyverse.org/
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