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Abstract
A fundamental problem in speech perception is how (or whether) listeners accommodate variability in the way talkers produce
speech. One view of the way listeners cope with this variability is that talker differences are normalized – a mapping between
talker-specific characteristics and phonetic categories is computed such that speech is recognized in the context of the talker’s
vocal characteristics. Consistent with this view, listeners process speech more slowly when the talker changes randomly than
when the talker remains constant. An alternative view is that speech perception is based on talker-specific auditory exemplars in
memory clustered around linguistic categories that allow talker-independent perception. Consistent with this view, listeners
become more efficient at talker-specific phonetic processing after voice identification training. We asked whether phonetic
efficiency would increase with talker familiarity by testing listeners with extremely familiar talkers (family members), newly
familiar talkers (based on laboratory training), and unfamiliar talkers. We also asked whether familiarity would reduce the need
for normalization. As predicted, phonetic efficiency (word recognition in noise) increased with familiarity (unfamiliar < trained-
on < family). However, we observed a constant processing cost for talker changes even for pairs of family members. We discuss
how normalization and exemplar theories might account for these results, and constraints the results impose on theoretical
accounts of phonetic constancy.
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Introduction

One of the most remarkable aspects of spoken language un-
derstanding is phonetic constancy despite multiple sources of
acoustic variability, such as differences in acoustic environ-
ment, speaking rate, and talker characteristics. A talker’s pro-
ductions of a particular phoneme may vary depending on seg-
mental context (Liberman, Delattre, & Cooper, 1952), prosod-
ic context (Cutler, Dahan, & Donselaar, 1997; Fougeron &
Keating, 1997), or discourse context (e.g., whether
information is new or old; Fowler & Housum, 1987; Fowler,

Levy, &Brown, 1997; Nooteboom&Kruyt, 1987). The prob-
lem is compounded by differences between talkers (e.g., in
size or other physical aspects of the vocal tract, or in dialect),
yielding a many-to-many mapping between acoustic patterns
and percepts (Peterson & Barney, 1952). Most research on
talker differences in speech perception has focused on how
listeners might overcome the contribution of talker variability
to the lack of invariance problem. For decades, theoretical
accounts assumed that talker differences must be normalized
– that is, that listeners must compute a mapping in real time
using talker-specific characteristics and the relationship of
acoustic patterns to phonetic categories (Gerstman, 1968;
Ladefoged & Broadbent, 1957; Miller, 1989; Nearey, 1989;
Nusbaum & Morin, 1992; Potter & Steinberg, 1950; Rakerd
& Vebrugge, 1987; Strange, 1989; Syrdal & Gopal, 1986;
Traunmuller, 1981).

The normalization hypothesis has been supported by nu-
merous studies documenting a performance cost in speech
perception associated with talker variability (e.g., slower
and/or more errorful performance when stimuli are mixed
across test trials frommultiple talkers rather than when stimuli
are blocked by talker: Choi, Hu, & Perrachione, 2018;
Magnuson & Nusbaum, 2007; Martin, Mullennix, Pisoni, &
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Summers, 1989; Mullennix, Pisoni, & Martin, 1989;
Nusbaum & Morin, 1992). This cost is often interpreted as
reflecting the operation of a normalization mechanism that
uses a talker's vocal characteristics to compute a scaled map-
ping between acoustic patterns and phonological categories,
an interpretation supported by evidence showing increased
demands on attention processes with talker changes (e.g.,
Wong et al., 2004).Moreover, some results are consistent with
the idea (cf. Joos, 1948) that normalization yields a mapping
that is applied to subsequent utterances in the absence of ev-
idence for a talker change. For example, Ladefoged and
Broadbent (1957; see Ladefoged, 1989, for a replication)
found that identification of a target /bVt/ syllable frame (where
V stands for vowel) could be shifted reliably depending on the
talker characteristics in an immediately preceding carrier
phrase (“Please say what this word is”): an item identified as
bit following one synthetic talker's carrier phrase was identi-
fied as bet following another's, depending on the heights of the
first and second formants (F1 and F2). The fact that a carrier
phrase changes perception of a following target word suggests
that listeners do not automatically encode the talker character-
istics of each segment or syllable independently as has been
suggested by some views of talker normalization. These the-
ories (so-called intrinsic normalization or structural
estimation theories) argue that each segment of speech con-
tains sufficient acoustic information (e.g., from F0 and F3) to
calibrate phonetic recognition to the speaker's vocal character-
istics (e.g.,Miller & Liberman, 1979; Shankweiler, Strange, &
Verbrugge, 1977; Syrdal & Gopal, 1986; see Neary, 1989, or
Nusbaum & Magnuson, 1997, for reviews).

Two related alternatives to talker normalization theories
have been proposed. Proponents of exemplar models of
speech perception (e.g., Johnson, 1994, 1997, 2005;
Pierrehumbert, 2002) and proponents of nonanalytic episodic
theories (Goldinger, 1998; Pisoni, 1997; Nygaard & Pisoni,
1998) have argued that similarity to stored traces of speech
that statistically sample the space of talker characteristics
would provide a sufficient basis for phonetic constancy with-
out explicit normalization. Instead, on such views, an incom-
ing speech sample activates acoustically similar episodes in
memory, and the incoming speech is recognized based upon
the set of activated traces. Recognition efficiency is predicted
to be proportional to the number of similar stored exemplars.
From this perspective, there is no difference (for the percep-
tual system) between acoustic information corresponding to
phonetic structure and acoustic information corresponding to
vocal characteristics, and both are encoded automatically as an
integral whole as part of recognition. While exemplar theories
allow for or posit explicitly analytic mechanisms (e.g., exem-
plars are based on the results of formant or feature extraction),
nonanalytic theories posit that episodes are stored in memory
as intact, unanalyzed wholes. Note that while there are some
subtle differences between episodic and nonanalytic theories,

they share the key assumption that phonetic constancy does
not require normalization or accommodation of talker vari-
ability. We will group them together throughout this paper
based on this salient similarity.

Episodic/nonanalytic theories reject normalization in light
of evidence that listeners are sensitive to (presumably) pho-
netically irrelevant surface details of utterances. For example,
several studies suggest there is a contingent relationship be-
tween phonetic and indexical information (e.g., talker identity,
dialect, etc.) carried in speech, as listeners have difficulty ig-
noring irrelevant variability in either dimension (Mullennix &
Pisoni, 1990), and training on talker identification facilitates
phonetic perception of speech produced by trained-on talkers
(Nygaard & Pisoni, 1998; Nygaard, Sommers, & Pisoni,
1994), suggesting perceptual learning occurs for both types
of information. There is also ample evidence that listeners
encode talker-specific surface details and other “non-linguis-
tic” characteristics of speech. Consistency in talker character-
istics facilitates memory (e.g., Church & Schacter, 1994;
Craik & Kirsner, 1974; Creelman, 1957; Goldinger, 1996;
Goldinger, Pisoni, & Logan, 1991; Palmeri, Goldinger, &
Pisoni, 1993; Schacter & Church, 1992; Sheffert & Fowler,
1995), as well as performance in speech-processing tasks such
as shadowing (Goldinger, 1998; Pufahl & Samuel, 2014).

On such views, the problem of phonetic constancy has
been classically misconstrued, and in fact may be simplified
by considering regularities introduced by indexical and pho-
netic variation; that is, the acoustic correlates of talker vari-
ability are not random, and may constrain, per the notion of
“lawful variability” (Elman & McClelland, 1986), rather than
complicate, the problem of phonetic constancy (and vice
versa; cf. Remez et al., 1997). In part, this rejection of normal-
ization follows from an overgeneralization about normaliza-
tion theories; some proponents of exemplar and nonanalytic
theories claim that normalization must entail recoding in a
talker-invariant, abstract phonetic code, and discarding of
any non-phonetic surface detail. While some have made ex-
plicit claims of this sort, normalization does not logically de-
pend on reductive abstraction that explicitly discards nonpho-
netic details (e.g., Joos, 1948, in perhaps the first detailed
consideration of talker accommodation, proposed that the
signal and internal categories must be brought into
registration by warping either or both; see footnote 3 of
Magnuson & Nusbaum, 2007). But how could exemplar/
nonanalytic theories explain costs associated with talker
changes?

On these views, if recent instances carry more weight than
older ones, talker consistency will lead to faster performance,
on the assumption that successive samples of speech will be
more similar to each other than samples from different talkers
(although this overlooks an important issue in the lack of
invariance problem; two successive speech samples from
one talker can be dramatically different acoustically). In
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contrast, a talker change weakens activation of speech sam-
ples in long-term memory because of the reduced similarity
between successive samples.

The emphasis in the exemplar view on contingent encoding
of phonetic and indexical characteristics (Nygaard & Pisoni,
1998) and the importance of the number of exemplars in mem-
ory activated by any particular sample of speech (Goldinger,
1998) suggests an important issue for both the exemplar and
normalization views: the impact of talker familiarity. Talkers
become familiar because we hear them often. Presumably, this
leads to many opportunities for learning (encoding and storing
in memory) their phonetic and indexical characteristics and
increases the number and/or strength of stored exemplars in
memory. This predicts that speech perception should be gen-
erally more efficient for familiar talkers than unfamiliar
talkers. Indeed, experience identifying talkers' identities pro-
vides sufficient familiarity with their productions that subse-
quently listeners are significantly better at identifying speech
produced by those talkers than by unfamiliar talkers (Nygaard
& Pisoni, 1998; Nygaard, Sommers, & Pisoni, 1994). High
familiarity acquired outside the laboratory also provides a sig-
nificant boost in one's ability to separate speech produced
concurrently by two talkers (e.g., Johnsrude, Mackey,
Hakyemez, Alexander, Trang, & Carlyon, 2013, found a sig-
nificant advantage in a cocktail-party paradigmwhen one talk-
er was the listener's spouse), and in identifying speech in ad-
verse conditions (e.g., Souza, Gehani, Wright, & McCloy,
2013, found advantages for "frequent communication part-
ners" – spouses or friends).

However, a normalization theory like contextual
tuning (Joos, 1948; Ladefoged & Broadbent, 1957;
Magnuson & Nusbaum, 2007; Nusbaum & Magnuson,
1997; Zhang & Chen, 2016) can make similar predictions
given that a sample of a talker's speech provides information
about the talker's vocal characteristics. If the operations re-
quired to map a talker’s characteristics to phonetic categories
are subject to perceptual learning, the operations for adjusting
to a familiar talker’s characteristics might become automa-
tized. This would predict that adjusting to a change from one
familiar talker to another ought to be easier than a change
between two unfamiliar (and therefore unautomatized) talkers
(Logan, 1988, 2002; Nygaard, Sommers, & Pisoni, 1994).

Figure 1 presents a schematic of contextual tuning based on
Magnuson and Nusbaum (2007). As speech is processed con-
tinuously, samples are monitored for evidence of a talker
change. When a change is detected, a process is triggered that
computes the acoustic-perceptual mapping for the talker.
Achieving a robust mapping may take many milliseconds of
input. As processing continues, the mapping is continuously
tuned based on bottom-up fit and top-down error checking
(e.g., a parse of "fress orange" would suggest the need to
adjust the /s/-/ʃ/ boundary). Given the recent report from
Choi et al. (2018) that mixed-talker processing costs are

observed even when stimuli are not phonetically ambiguous,
we propose that detecting a talker change would also trigger
reanalysis, even in the absence of any linguistic ambiguity.
Although the diagram may imply serial stages, consider, for
example, the arrow from "Speech sample" to "Apply map-
ping": even as a talker change is detected, the speech stream
continues, and the system must apply in parallel the current
mapping even as it is in the process of adjusting to a change in
talker. Crucially, on this view, the process of computing the
mapping after a talker change is particularly attentionally de-
manding, leading to the consistent slowing observed in
mixed- versus blocked-talker conditions in simple tasks like
word or syllable monitoring (Nusbaum & Morin, 1992).

If the mapping for familiar talkers could be stored in mem-
ory (whether in the form of a mapping per se or the operations
[cf. Kolers, 1976; Kolers & Ostry, 1974] to appropriately
warp inputs to align them with representations), perhaps the
resource-demanding mapping computation could be
bypassed, as schematized in Fig. 2. In the elaborated

Fig. 1 Schematic of contextual tuning theory based on Nusbaum and
Magnuson (1997). The schematic is intended to depict processes that
happen in continuous cascade, not in strict serial order. Note the arrow
from "Speech sample" to "Apply mapping," indicating that as tuning is
attempted, the system continues to operate with the current estimate by
default. The dashed arrow indicates the top-down (closed-loop) aspect of
contextual tuning: error checking (e.g., difficulty in lexical or supralexical
parsing) drives constant tuning. The gray box ("Compute mapping") is
the resource-demanding component hypothesized to create relative slow-
downs in mixed- versus blocked-talker conditions. Source: Magnuson
(2018a)

Fig. 2 The contextual tuning diagram elaborated to include a potential
way for familiarity to avoid computing talker-percept mappings. If a
familiar talker is (implicitly) detected, perhaps the mapping for that talker
can be retrieved for memory, allowing the resource-demanding
"Compute mapping" step to be skipped. Source: Magnuson (2018b)
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schematic, detecting a change in characteristics triggers a
search for a mapping for a known talker (or perhaps for a
talker highly similar to the new talker; Zhang & Chen,
2016). If retrieving a mapping is less demanding than com-
puting one, this would predict a reduced cost for a change to a
familiar talker.

Thus, contextual tuning, exemplar, and episodic/
nonanalytic accounts all potentially predict that talker-
change costs may not be observed for highly familiar talkers
(albeit for different reasons). However, if the processing cost
typically found after a talker change reflects an obligatory
process that monitors the acoustic-phonetic mapping from
speech to perceptual categories, it may be that familiarity can-
not affect this cost; before operations specific to familiar vocal
characteristics can be brought to bear, the speech signal may
need to be analyzed sufficiently to allow the familiar talker
characteristics to be detected.

We examined in three experiments whether perceptual pro-
cessing advantages found for recognizing the speech of famil-
iar talkers (e.g., Nygaard & Pisoni, 1998) extend to adjusting
to talker changes. In Experiment 1, we compared the costs of
talker changes between familiar talkers (family members)
with costs for changes between unfamiliar talkers. In
Experiment 2, we tested the familiarity of family-member
voices by comparing voice identification for family members'
voices with voices learned in a single experimental session. In
Experiment 3, in order to compare the effects of experimental
training and long-term experience with voices on speech-
(rather than voice-) identification performance, we asked sub-
jects to transcribemorae presented in noise that were produced
by talkers that were very familiar (family members), newly
familiar talkers that subjects had been trained to identify, or
talkers that subjects had heard but not been trained to identify.

Experiment 1

We designed Experiment 1 to test whether processing costs
that typically accompany changes between unfamiliar talkers
would be observed for highly familiar talkers. We used a
speeded target-monitoring procedure (Nusbaum & Morin,
1992) in which listeners are shown a visual target (orthograph-
ic representation of phoneme or word) and monitor a sequence
of utterances, pressing a key whenever they hear the target
(with multiple instances of the target positioned within a
pseudo-random sequence of spoken distractors). In
Experiment 1, the speech consisted of morae (Japanese sylla-
bles) produced by familiar talkers (subjects’ family members)
and unfamiliar talkers. In a series of blocked-talker blocks of
trials, all morae were produced by a single talker. In a series of
mixed-talker blocks, the morae were produced by two talkers.
In the mixed-talker condition, the two talkers could both be
familiar, or one or both could be unfamiliar. This allowed us to

examine whether a change in talker slows processing com-
pared to blocked-talker conditions, even when the two talkers
are highly familiar. Note that many studies use laboratory
training to familiarize participants with talkers (with notable
exceptions such as the long-time co-workers' voices used by
Remez et al., 1997). By using extremely familiar voices – a
participant's family members – we can exploit a level of fa-
miliarity much greater than could be achieved via brief labo-
ratory training (although we compare family members to
trained-on talkers in Experiment 2). Furthermore, we expect
the minimal level of familiarity for family members to be
higher than for co-workers or other potentially familiar adult
voices. This should result in better speech recognition for
these highly familiar family members.

Method

Materials We recorded two parents and one child from nine
Japanese families reading lists of Japanese morae (consonant-
vowel sequences, in the case of each of our items). The fam-
ilies were recruited from Kyoto and Nara prefectures in the
area near ATR (Advanced Telecommunications Research
Institute International, where the experiments were conduct-
ed). Children ranged in age from 7 to 12 years old. Adults and
older children read a list of 100 morae. Younger children read
a 45-item subset of the full list, but this included all items
ultimately used for this experiment. The morae were recorded
and simultaneously digitized at a sampling rate of 44.1 kHz
and 16-bit resolution, and were later down-sampled to 22.05
kHz. Items were hand-edited to remove silence at the begin-
ning and end of each utterance, and RMS amplitude was dig-
itally normalized. Average mora duration was approximately
180 ms.

Participants Both adults from seven of the nine families we
recorded participated in Experiment 1, as well as one adult
from another family (the mother from family 3, "fam3-
mom"). The father from one family (fam3-dad) and both
adults from one family (family 5) were unable to participate
in the experiment. One participant (fam1-mom) was excluded
due to data recording errors. Thus, a total of 15 adults partic-
ipated in Experiment 1, with data from 14 included for anal-
yses. All of the subjects were native speakers of Japanese, and
all reported having normal hearing and normal or corrected-
to-normal vision, and no history of hearing or speech disor-
ders. Sample size was similar to those in previous studies
using speeded monitoring tasks to examine multi-talker pro-
cessing costs (e.g.,Magnuson&Nusbaum, 2007; Nusbaum&
Morin, 1992).

ProcedureWe used a speeded target-monitoring task based on
that described by Nusbaum and Morin (1992), and measured
response times and accuracy. Subjects were presented with an
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orthographic (hiragana) representation of a target mora on a
computer display and were instructed to press a response but-
ton whenever they heard the mora they saw on the screen.
Morae were presented on-line to subjects seated at worksta-
tions over STAXLambda-SR-Signature headphones. See Fig.
3 for a schematic of the procedure.

On each trial, subjects heard a sequence of 16 morae with a
stimulus-onset asynchrony between mora onsets of 830 ms.
Trials were separated by 3,000 ms of silence, during which a
message appeared on the screen to alert subjects that the target
mora was changing. Four target morae were randomly posi-
tioned among 12 distractors, with the following constraints:
targets could not be first or last in a trial, and targets had to be
separated by at least one distractor. Four morae served as
targets (/bo/, /gu/, /ki/, and /pa/) and 16 as distractors (/be/,
/bu/, /ga/, /go/, /ji/, /ka/, /ko/, /me/, /mu/, /na/, /ni/, /pe/, /pi/, /ri/,
/ro/, and /zo/). Target morae served as distractors when they
were not the target.

Each subject listened to four talkers in the blocked-talker
condition, in which all targets and distractors in each trial were
produced by a single talker. The four talkers were a familiar
adult (Fa, the subject's spouse), a familiar child (Fc, the sub-
ject's child), an unfamiliar adult (Ua), and an unfamiliar child
(Uc). Half the subjects were assigned male unfamiliar talkers
from one of the families, and half were assigned female unfa-
miliar talkers from another family. The same pair of unfamil-
iar talkers was assigned to husbands and wives from the same
family. Therefore, there were equal numbers of female and
male subjects listening to male and female unfamiliar talkers.
Each subject also listened to six pairs of talkers in the mixed-
talker condition, where half the targets and distractors were
produced by each of two talkers and randomly ordered. The
talker pairs were: FaFc (familiar), UaUc (unfamiliar), FaUa,
FaUc, FcUa, and FcUc (crossed). Presentation order of
blocked-talker and mixed-talker trials across subjects was
controlled with a Latin square design. All manipulations were

within subjects. There were eight trials per talker in the
blocked-talker condition (with four targets per trial) and 16
trials per talker pair in the mixed-talker condition (such that
there was the same number of trials [8] per talker in the
blocked condition and within each mixed-condition pair).

Results

All analyses were conducted using R version 3.6.2 (R
Core Team, 2019). Analyses of reaction time and accu-
racy for Experiment 1 were performed with linear
mixed-effects models (with sum-coded categorical fixed
effects), implemented with the R packages afex
(Singmann, Bolker, Westfall, Aust, & Ben-Shachar,
2020) and lme4 (Bates, Mächler, Bolker, & Walker,
2015). We first created all possible permutations of ran-
dom effects structures (which afex treats as sum-coded
by default), and then applied a backwards-stepping se-
lection procedure to the models that converged, and
selected the model with the maximal random effects
structure that accounted for significantly more variance
than the next-most maximal model (Matuschek, Kliegl,
Vasishth, Baayen, & Bates, 2017). All fixed effects
were set as factors and were sum coded. Mixed-effects
models were fit using the afex command “mixed,” and
the values from the resulting ANOVA table are reported
for each model. P-values were estimated using the
Satterthwaite (1946) method or a likelihood-ratio test
(for logistic models with binomial outcomes).

Accuracy A generalized linear mixed-effects model with a
logit link was fit to assess participants’ accuracy in the
word-monitoring task stimulus-by-stimulus. For a non-target,
inhibiting a response was a correct rejection (scored as 1),
whereas a response was a false alarm (scored as 0). The op-
posite was true for targets (responses were hits and coded as 1,

Fig. 3 Experimental procedure for Experiment 1. At the beginning of
each trial, a message appeared for 3 s informing participants what mora
to monitor for (messages were in Japanese). Then the target mora was

displayed continuously throughout the trial as participants heard a
sequence of 16 morae with four instances of the target (but never in
first or last position). Source: Magnuson (2020)
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while failures to respond were misses and coded as 0). The
selected model contained fixed effects of Blocking (items
Blocked by talker, or items from two talkers Mixed), talker
Familiarity (Familiar vs. Unfamiliar), and talker Age (Adult
vs. Child), and their interactions, as well as by-subject random
slopes and intercepts for the three-way interaction. Accuracy
on the talker-monitoring task was near ceiling (mean
proportion correct = 0.990, SD = 0.10; see Table 1 for a
summary by talker Familiarity, talker Age, and Blocking).
No main effects or interactions were significant.

Reaction time For the monitoring task from Experiment 1, we
began by selecting only correct responses and then removed
any responses with reaction times (RTs) more than 3 standard
deviations from the mean (which removed only 20 responses,
or 0.3%). Summary data is presented in Table 2. We first fit
generalized linear-mixed effects models to the reaction time
data, and applied the model selection procedure described
above. The selected model included fixed effects of (talker)
Familiarity (Familiar vs. Unfamiliar), (talker) Age (Adult vs.
Child), Blocking (Blocked or Mixed talker trials), and their
interactions, along with by-subject random slopes and inter-
cepts for the three-way interaction term. The model was ap-
plied to raw RTs with an inverse Gaussian distribution with
identity link, as recommended by Lo and Andrews (2015).
Central tendencies for RTs as a function of talker Age, talker
Familiarity, and Blocking, along with distributions and indi-
vidual data points, are presented in Fig. 4. Means for individ-
ual participants are shown in Fig. 5.

The main effect of Blocking was significant (χ2 = 6.30, p =
0.012), with slower responses overall for Mixed (M = 361 ms,
SD = 99) versus Blocked trials (M = 340, SD = 94). The main
effect of Age was also significant (χ2 = 12.40, p < 0.001), with
faster responses to targets produced by Adult talkers (M = 345
ms, SD = 94) than Child talkers (M = 366 ms, SD = 101).
Crucially, the main effect of talker Familiarity was not signif-
icant (χ2 = 0.84, p = 0.360), with a trend for slower responses
for Familiar talkers (M = 360 ms, SD = 101) than for
Unfamiliar talkers (M = 351 ms, SD = 96). There was a sig-
nificant interaction of talker Familiarity and talker Age (χ2 =
5.74, p = 0.017). We used the R package emmeans (Lenth,

2020) to investigate the source of this interaction via post hoc
analyses, which yielded the following conclusions: There was
a significant effect of talker Age for Unfamiliar talkers (p <
0.0001), as participants were slower to respond for Unfamiliar
Child talkers (M = 371, SD = 104) than Unfamiliar Adult
talkers (M = 331, SD = 84), but response latencies were similar
(p = 0.110) for Familiar Child (M = 361, SD = 99) and
Familiar Adult (M = 359, SD = 102) talkers. No other inter-
actions were significant. We also confirmed that the effect of

Table 1 Mean (standard deviation) accuracy (proportion correct) by
talker Familiarity, Age, and Blocking in Experiment 1

Familiarity Age Accuracy

Blocked Mixed

Familiar Adult 0.996 (0.06) 0.994 (0.05)

Familiar Child 0.997 (0.05) 0.986 (0.12)

Unfamiliar Adult 0.996 (0.07) 0.989 (0.10)

Unfamiliar Child 0.990 (0.10) 0.986 (0.12) Fig. 4 Violin plots of log RT in Experiment 1 (superimposed over jittered
individual trial data points)

Table 2 Mean (standard deviation) response times (RTs) by talker
Familiarity, Age, and Blocking in Experiment 1 (all mixed combinations
included)

Familiarity Age RT (ms) RT (log ms)

Blocked Mixed Blocked Mixed

Familiar Adult 330 (97) 369 (102) 5.76 (0.28) 5.87 (0.28)

Familiar Child 353 (96) 364 (100) 5.83 (0.27) 5.86 (0.27)

Unfamiliar Adult 313 (77) 337 (86) 5.72 (0.23) 5.79 (0.25)

Unfamiliar Child 363 (99) 374 (105) 5.86 (0.27) 5.89 (0.28)
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Blocking was significant for both Unfamiliar talkers
(Blocked: M = 337, SD = 92; Mixed: M = 355, SD = 97; p =
0.005) and Familiar talkers (Blocked: M = 342, SD = 97;
Mixed: M = 366, SD = 101; p < 0.0001).

However, note that this analysis does not isolate the condi-
tions where Familiarity could havemaximal impact. When we
consider Mixed trials for Familiar Adult and Child talkers in
this analysis, we are including cases where those Familiar
talkers' productions were mixed with each other, but also
when they were mixed with Unfamiliar talkers' productions.
It is possible that Familiarity may be able to mitigate the im-
pact of talker changes when both talkers are familiar (e.g., if
talker adjustments can be avoided for familiar talkers but not
for unfamiliar ones, the adjustment to unfamiliar talkers may
be masking the benefit of familiarity). To assess this, we con-
ducted a follow-up analysis restricting the data to Mixed trials
that only included either the Familiar Adult and Familiar

Child paired together or the Unfamiliar Adult and
Unfamiliar Child paired together. The logic is that these com-
binations represent maximal conditions of Familiarity (both
talkers Familiar or both talkers Unfamiliar). Summary data
for this restricted analysis are presented in Table 3. We used

Fig. 5 Individual subject response times for Experiment 1 by talker Familiarity, talker Age, and Blocking

Table 3 Mean (standard deviation) response times (RTs) by talker
Familiarity and talker Age in Mixed-talker trials restricted to cases where
both talkers were Familiar or both were Unfamiliar in Experiment 1

Familiarity Age RT (ms) RT (log ms)
Mixed Mixed

Familiar Adult 376 (108) 5.89 (0.28)

Familiar Child 367 (102) 5.87 (0.28)

Unfamiliar Adult 340 (84) 5.80 (0.24)

Unfamiliar Child 376 (102) 5.89 (0.27)
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the same model selection procedure. The selected model in-
cluded fixed effects of talker Familiarity (Familiar vs.
Unfamiliar), talker Age (Adult vs. Child), Blocking
(Blocked or Mixed talker trials), and their interactions, along
with by-subject random slopes and intercepts for the three-
way interaction term.

The results were quite similar. The main effect of Blocking
was significant (χ2 = 6.37, p = 0.012), with slower responses
overall for Mixed (M = 365 ms, SD = 100) versus Blocked
trials (M = 340, SD = 94). The main effect of Age was also
significant (χ2 = 9.14, p = 0.003), with faster responses to
targets produced by Adult talkers (M = 340 ms, SD = 95) than
Child talkers (M = 365 ms, SD = 100). Crucially, as in the
original analysis, the main effect of talker Familiarity was not
significant (χ2 = 1.20, p = 0.273), with the same weak trend
for slower responses for Familiar talkers (M = 357 ms, SD =
102) than for Unfamiliar talkers (M = 348 ms, SD = 94). We
again observed a significant interaction of talker Familiarity
and talker Age (χ2 = 5.87, p = 0.015). Post hoc analyses using
the R package emmeans (Lenth, 2020) showed the same pat-
tern as in the original analysis: there was a significant effect of
talker Age for Unfamiliar talkers (p < 0.0001), with partici-
pants slower to respond for Unfamiliar Child talkers (M = 370,
SD = 100) than Unfamiliar Adult talkers (M = 327, SD = 82),
but response latencies were more similar (p = 0.385) for
Familiar Child (M = 360, SD = 99) and Familiar Adult (M =
353, SD = 105) talkers. No other interactions were significant.
We again confirmed that the effect of Blocking was signifi-
cant for both Unfamiliar talkers (Blocked:M = 337, SD = 92;
Mixed: M = 358, SD = 95; p = 0.014) and Familiar talkers
(Blocked:M = 342, SD = 97; Mixed:M = 372, SD = 105; p =
0.0001). Thus, we observed significantly slower responses for
Mixed-talker conditions even when the mixed talkers were
both highly familiar.

Discussion

In Experiment 1, we observed a constant cost of mixing
talkers (with a main effect of Blocking on accuracy, as well
as effects of Blocking on RT for both Familiar and Unfamiliar
talker pairs). Overall, the RT effects had a similar magnitude
to what has been observed in previous studies using this par-
adigm with native speakers of American English (e.g.,
Nusbaum & Morin, 1992; Magnuson & Nusbaum, 2007).
We found no advantage for our extremely familiar talkers
(family members) compared to strangers: it appears that even
familiar pairs of talkers require accommodation, given reliably
slower responses and poorer accuracy in the mixed-talker con-
dition compared to the blocked-talker condition. Although
effects appear to be smaller for Child talkers (Fig. 4), note
that nearly all participants showed the pattern of slower RTs
for Mixed-talker than Blocked-talker trials for all talkers
(see Fig. 5, where 11 of 14 participants showed the

predicted trend for Familiar and Unfamiliar Child talkers,
and 13 or 14 of 14 participants showed the predicted trend
for Adult talkers).

This result is counter to the nonanalytic, exemplar, and
normalization predictions we discussed earlier: Each account
provides a logical basis to expect better performance follow-
ing a change between familiar talkers compared to a change
between unfamiliar talkers (contingent learning of indexical
and phonetic characteristics [Nygaard & Pisoni, 1998], acti-
vation of more exemplars for familiar talkers in an episodic
lexicon model [Goldinger, 1998], or perceptual learning on
the operations of a normalization mechanism, cf. Fig. 2).

The consistent slowing of responses to speech produced by
a different talker, regardless of talker familiarity, suggests that
listeners are processing the change in talker characteristics,
possibly in service of computing the mapping between talker
characteristics and phonetic categories (i.e., normalization or
accomodation, as in the contextual tuning hypothesis
schematized in Fig. 1). On a normalization account, while
information in memory about the talker may facilitate
phonetic recognition, the change in talker must first be
detected from the acoustic signal, and internal reference
frames for segmental interpretation must be adjusted ac-
cordingly. However, an alternative interpretation of our
results is that the manipulation of familiarity was insuffi-
cient to support recognition of talker characteristics. That
is, the lack of a main effect of familiarity suggests the
possibility that although we used speech from talkers
who should have been familiar, perhaps the listeners were
unable to recognize talkers from the short speech samples
we used, preventing any familiarity advantage. We ad-
dress this concern in Experiments 2 and 3.

Experiment 2

Although it has been conjectured that talker-change costs re-
sult from the simultaneous encoding of talker identity and
linguistic message (e.g., Mullennix & Pisoni, 1990), it is not
entirely clear that the acoustic properties that support talker
identification and (putative) talker normalization are necessar-
ily the same. Nonetheless, if listeners were unable to recognize
a talker from the speech samples we used, it might also be the
case that the speech samples contained insufficient detail to
allow episodic benefits to emerge. Most previous perceptual
studies of talker identification (or discrimination) have used
longer duration materials than those we used in Experiment 1
(e.g., 2–4 s, Van Lancker et al., 1985; 6–120 s, Legge,
Grosmann, & Pieper, 1984). In Experiment 2, we used a talker
identification task to test whether the morae we used provided
an adequate basis for recognizing familiar talkers, as well as a
sufficient basis for learning to recognize unfamiliar talkers.
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Method

Subjects The same subjects who participated in Experiment 1
participated in Experiment 2, approximately 1 month after
Experiment 1. This included the mother from Family 1
(whose data for Experiment 1 were lost due to recording
errors). The father from Family 3 also participated, for a total
of 16 participants (results do not change materially if the two
additional participants who did not participate in Experiment 1
are excluded).

Materials For each participant, three adult-child pairs of
talkers were used in Experiment 2: the familiar talkers (a sub-
ject's spouse and child), and two unfamiliar talker pairs (one
adult and one child) that the participant had not heard in
Experiment 1. The unfamiliar talkers (whom participants
would be trained to identify) were of the same sex as the
familiar talkers for each subject. In order to ensure a fairly
constant level of difficulty for all subjects, the unfamiliar
talkers were chosen to have a measured average fundamental
frequency within approximately 10 Hz of the appropriate fa-
miliar talker. Three subsets of the morae recorded for
Experiment 1 were used. Five morae were used for familiari-
zation, 10 were used for training, and 20 were used for testing.

ProcedureMorae were presented on-line to subjects seated at
workstations over STAX Lambda-SR-Signature headphones.
There were six blocks in Experiment 2. The first block pro-
vided familiarization with the novel talkers. Subjects heard the
four unfamiliar talkers in a fixed order. The talker order was
cycled through five times with different morae. For each trial,
subjects had to make a four-alternative choice among keys
labeled (in Japanese): unfamiliar adult 1, unfamiliar adult 2,
unfamiliar child 1, and unfamiliar child 2. When subjects
answered correctly, they heard a chime. When they answered
incorrectly, they heard a buzzer and then the item was repeat-
ed and they answered again.

The next three blocks were for training. First, subjects were
presented with 20 trials from each of the two unfamiliar adults
only (two repetitions of ten items), and then from the two unfa-
miliar children only (two repetitions of ten items). Although there
were still four choices, each part was effectively a two-alternative
forced choice, as adults and children were not confusable. Morae
were presented in randomorder so that the talker varied from trial
to trial. The items used for these two blocks were the same ones
used for the familiarization block. After training separately on the
adults and children, subjects had a final training block with new
items produced by all four unfamiliar talkers presented in random
order (two repetitions of ten new items per talker). Feedback was
given for all training blocks in the same form as for the familiar-
ization block.

Training was followed by a practice block with all six
talkers (familiar and unfamiliar, one presentation of two items

per talker) and a test block with all six talkers. Familiar adult
and familiar child were added to the response keys for the
practice and test blocks (making this a four-alternative forced
choice; though again, adults and children were not confusable,
which effectively narrowed the task to three choices), and
feedback was eliminated. The practice block consisted of
two items produced by each talker, chosen randomly from
the list of items used in the familiarization block and presented
in random order. The test block used two repetitions of 20 new
items produced by each of the six talkers presented in random
order. All manipulations were within subjects.

Results

Accuracy Participants learned to identify the new unfamiliar
talkers (which we will label "trained" talkers for the sake of
clarity when we reach Experiment 3) fairly well based on
relatively little training with just 30 mora tokens.
Figure 6 shows mean accuracy by talker Familiarity and
Age for individual participants. There is substantial vari-
ability, but also an apparent advantage for familiar talkers
(adults in particular), which is confirmed in Table 4. A gen-
eralized linear mixed-effects model with a logit link was fit
to assess participants’ accuracy in the talker identification
task (with misidentifications coded as 0 and correct identi-
fications coded as 1). We used the same selection procedure
described for Experiment 1 to select among possible ran-
dom effect structures. The selected model contained fixed
effects of talker Familiarity (Familiar vs. Trained-on), and
talker Age (Adult vs. Child), and their interaction, as well as
by-subject random slopes and intercepts for the two-way
interaction and the main effect of talker Age. There was a
significant effect of talker Familiarity (χ2 = 7.48, p = 0.006),
resulting from greater proportion correct on Familiar talkers
(M = 0.87, SD = 0.33) than Trained-on talkers (M = 0.80, SD
= 0.40). The main effect of talker Age was not significant
(χ2 = 0.23, p = 0.632), but the interaction of Age and
Familiarity was significant (χ2 = 7.01, p = 0.008). The pat-
tern in Table 4 gives a sense of the source of the interaction,
with higher accuracy for Familiar Adult than Familiar Child
talkers, and the opposite pattern for Unfamiliar talkers. Post
hoc tests indicated that the effect of Age was not significant
for either Familiar talkers (p = 0.082) or Trained-on talkers
(p = 0.131). However, the effect of Familiarity was signif-
icant for Adult talkers (p = 0.001) but not for Child talkers (p
= 0.957). This may follow from either (or both) the some-
what lower accuracy for Familiar Child talkers compared to
Familiar Adult talkers, or the better performance on
Trained-on Child talkers than Trained-on Adult talkers.
This suggests that for our participants, their own child's
voice did not stand out as much as their spouse's, and/or that
the unfamiliar Trained-on Child talkers were more distinc-
tive than the unfamiliar Trained-on Adult talkers.
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Reaction time

We also examined RT, although accuracy was our primary
concern. The RT pattern complemented that of accuracy (see
Table 4). As in Experiment 1, we began by selecting only
correct responses and then removed any responses with RTs
more than 3 standard deviations from the mean (which re-
moved 1.4% of responses). We first fit generalized linear-
mixed effects models to the reaction time data, and applied
the model selection procedure described for Experiment 1.
The selected model included fixed effects of talker
Familiarity (Familiar vs. Trained), talker Age (Adult vs.
Child), and their interaction, along with by-subject random
slopes and intercepts for the two-way interaction term. As in
Experiment 1, the model was applied to raw RTs with an
inverse Gaussian distribution with identity link, as recom-
mended by Lo and Andrews (2015).

As in the accuracy analysis, the main effect of Familiarity
was significant (χ2 = 5.38, p = 0.020), with faster responses

overall for Familiar talkers (M = 1397 ms, SD = 712) than
Trained talkers (M = 1785, SD = 830). The main effect of Age
was not significant (χ2 = 1.87, p = 0.171). There was a signif-
icant interaction of talker Familiarity and talker Age (χ2 =
5.14, p = 0.023). Post hoc analyses using the R package
emmeans (Lenth, 2020) showed that the effect of Familiarity
was significant for Adult talkers (p < 0.0001) but not Child
talkers (p < 0.644), despite the trend for faster responses for
Familiar Child talkers compared to Trained-on Child talkers
(note that variability was quite high).

Discussion

We observed advantages for familiar talkers in both accuracy
and reaction time. Clearly, listeners can reliably identify
talkers from a single mora, and there is sufficient talker-
specific information contained in a mora to confer perfor-
mance advantages for familiar talker identification. The pres-
ent results suggest that the lack of a familiarity effect in
Experiment 1 was not a consequence of the morae being too
short to provide an adequate basis for retrieving talker charac-
teristics (at least not those necessary for identification). The
reliable effects of familiarity on accuracy and RT demonstrate
that family members were indeed significantly more familiar
to the participants than the trained-on talkers. However, the
stimulus properties relevant for voice identification may not
overlap completely with those relevant for phonetic process-
ing; Experiment 3 tests whether our mora stimuli are suffi-
ciently long to enable talker-specific benefits from phonetic
processing under challenging conditions with degraded

Table 4 Means (and standard deviations in parentheses) for accuracy
(proportion correct) and reaction time (RT; for correct responses) by
talker Familiarity and talker Age in Experiment 2

Familiarity Age Accuracy RT (ms)

Familiar Adult 0.905 (0.293) 1,296 (563)

Familiar Child 0.843 (0.364) 1,507 (831)

Trained-on Adult 0.740 (0.440) 1,826 (820)

Trained-on Child 0.859 (0.348) 1,748 (838)

Fig. 6 Proportion correct for individual subjects in the talker identification task in Experiment 2 by talker Familiarity and talker Age3
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stimuli (as Nygaard et al., 1994, found for phonetic
identification of speech in noise).

Experiment 3

Speech perception is more accurate for familiar talkers than
for unfamiliar talkers (Nygaard et al., 1994; Nygaard &
Pisoni, 1998). However, the results of Experiment 1 suggest
that this recognition advantage may not generalize to the per-
ceptual costs imposed by talker variability, as we observed
talker change costs for even potentially maximally familiar
talkers – participants' own family members. Experiment 2
tested whether the speech samples we used might be too short
to provide sufficient information about talker characteristics.
While the results of Experiment 2 demonstrate that morae
convey enough indexical information to support learning talk-
er vocal characteristics and to support talker identification, it is
not clear that the speech perception advantage reported by
Nygaard and colleagues (Nygaard et al., 1994; Nygaard &
Pisoni, 1998) would be obtained with the same materials.
We designed Experiment 3 to test whether our materials pro-
vide sufficient information about talker characteristics to en-
able both learning of talker identity (as we observed in
Experiment 2) and subsequent facilitation of speech percep-
tion under difficult conditions, as Nygaard and colleagues
(Nygaard et al., 1994; Nygaard & Pisoni, 1998) found with
training on words and sentences presented in noise.

Experiment 3 was conducted with 12 subjects from
Experiment 2 about 8 weeks later. We first reinforced each
participant's talker identification training with a short bout of
the training regimen from Experiment 2. Then we presented
participants with degraded speech (“sample-degraded”, with
the sign changed for 10% of waveform samples selected at
random) produced by three different pairs of talkers: highly
Familiar talkers (the familiar adult and child from
Experiments 1 and 2), Trained-on talkers (unfamiliar adult 1
and unfamiliar child 1 from Experiment 2), and Exposed-to
talkers (the unfamiliar adult and child from Experiment 1,
whom participants had heard in the mora monitoring task in
Experiment 1, but whom subjects had never been asked to
identify). The task was to transcribe each mora. In addition,
the morae were presented in two conditions, as in Experiment
1: blocked by talker, and items from multiple talkers mixed
within a block.

The primary prediction for Experiment 3 is that since the
morae provide sufficient cues for talker identification (given
the results of Experiment 2), we ought to find that talker iden-
tity training facilitates identification of degraded morae (as
predicted by the results of Nygaard & Pisoni, 1998). If we fail
to observe such an advantage, this would leave doubt about
the relevance of Experiment 1 to the question of whether

familiarity mitigates the contribution of talker variability to
the lack of invariance problem.

Method

Participants Twelve participants who participated in
Experiment 2 participated in Experiment 3 approximately 8
weeks later. These participants were the mothers and fathers
from families 2, 4, 6, 7, 8, and 9. Other participants declined to
return.

Materials For talker identification training and testing, the
items were the same as those used for Experiment 2. The same
unfamiliar talkers that participants were trained to identify in
Experiment 2 (with labels "unfamiliar adult 1," "unfamiliar
adult 2," "unfamiliar child 1," and "unfamiliar child 2") were
assigned to subjects in Experiment 3.

For each subject, the items for mora identification were
produced by each of six talkers: the Familiar adult and child
(the participant's spouse and child), a Trained-on adult and
child (the talkers assigned for each participant as unfamiliar
adult 1 and unfamiliar child 1 for Experiment 2) and an
"Exposed-to" pair of talkers that the participant had heard in
the mora-monitoring task in Experiment 1, but that had not
been included in talker identification training in Experiment 2.
Including Trained-on and Exposed-to talkers allowed us to
compare the effects of simple exposure to talkers in the exper-
imental setting with the effects of explicit talker identification
training. There were 30 morae for each talker (/bi/, /ba/, /bo/,
/gi/ /ge/, /gu/, /ki/, /ke/, /ku/, /mi/, /ma/, /mo/, /ni/, /ne/, /no/,
/nu/, /pi/, /pe/, /pa/, /po/, /pu/, /ri/, /re/, /ra/, /ro/, /ru/, /ze/, /za/,
/zo/, and /zu/). Each appeared once per talker in the Blocked
condition and once per talker in the Mixed condition, in ran-
dom order.

In order to avoid ceiling levels of accuracy, we degraded
the items for mora identification by randomly selecting 10%
of the samples of each item and changing the signs of the
values of these samples. This resulted in a sufficient level of
degradation that the morae were moderately difficult to iden-
tify, while preserving the amplitude envelope of the items
(Horii, House & Hughes, 1971; O’Malley & Peterson, 1966).

Procedure There were five parts to the experiment. First, par-
ticipants were re-familiarized to the same four unfamiliar
talkers they had heard in Experiment 2 (Ua1, Uc1, Ua2, and
Uc2), though only one pair would be used later as the "trained-
on" talkers. The re-familiarization block was identical to the
familiarization block used in Experiment 2, except that only
two morae per talker were used.

Second, participants were retrained to identify the four un-
familiar talkers. This retraining was identical to the training
session used in Experiment 2, although the items were in new,
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randomly generated orders. The purpose of this retraining was
to ensure participants would return at least to the level of
performance they exhibited by the end of Experiment 2, prior
to examining the effect of phonetic identification on later talk-
er identification.

Third, participants practiced identifying the four unfamiliar
talkers along with the two familiar talkers. This practice block
was identical to the one used in Experiment 2. Fourth, partic-
ipants were given a talker identification test identical to the
test used in Experiment 2, except that only 15morae per talker
were used.

Then subjects transcribed sample-degraded morae pro-
duced by the familiar talkers, the exposed-to talkers, and the
trained-on talkers (one pair of the “unfamiliar” talkers’ sub-
jects had been trained to identify in Experiments 2 and 3). The
mora identification in noise phase consisted of two blocks. In
one block, 30 morae produced by each of the six talkers were
presented consecutively (blocked-talker condition). After 30
items from one talker, the 30 items from the next talker
followed immediately. In the other block, the same set of 30
items per talker (180 total) was randomly ordered (mixed-
talker condition). The order of mixed and blocked conditions
was counterbalanced across participants.

Participants were seated at workstations. At the beginning
of each trial, the trial number appeared on the screen, and the
mora was played simultaneously. There was a 2-s inter-trial-
interval duringwhich participants were to transcribe what they
had heard onto a numbered answer sheet. As we described
earlier, zeroes were added to the end of each mora such that
each was 830 ms long. Thus, the interval between mora onsets

was 2,830 ms. Finally, we note that all manipulations were
within subjects.

Results

Talker identification Results following the talker-training
post-test are shown for individual subjects in Fig. 7. The ad-
ditional talker identification training resulted in approximately
equal numbers of participants showing modest advantages for
Familiar or Trained-on talkers. Only two participants failed to
identify all talkers above chance levels (fam4-mom failed to
identify the unfamiliar child above chance, and fam6-dad
failed to identify his own child above chance). We first exam-
ined the accuracy data with all participants included (see
Table 5 for summaries).

We fit a generalized linear mixed-effects model with a logit
link to assess participants’ accuracy in the talker identification
task (with misidentifications coded as 0 and correct identifi-
cations coded as 1). We used the same selection procedure
described for Experiment 1 to select among all permutations
of possible random effect structures. The model selected
contained fixed effects of talker Familiarity (Familiar vs.
Trained), and talker Age (Adult vs. Child), and their interac-
tion, as well as by-subject random slopes and intercepts for the
two-way interaction and the main effect of talker Age. There
was a significant effect of talker Familiarity (χ2 = 7.03, p =
0.008), resulting from greater proportion correct on Familiar
talkers (M = 0.872, SD = 0.334) than Trained-on talkers (M =
0.825, SD = 0.380). The main effect of talker Age was not

Fig. 7 Post-test talker identification accuracy by familiarity for individual subjects in Experiment 3
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significant (χ2 = 2.85, p = 0.091), nor was the interaction of
Age and Familiarity (χ2 = 2.46, p = 0.117). We repeated the
analysis with the poor-performing participants (fam4-mom
and fam6-dad), but this did not alter the pattern of
significance.

Speech-in-noise (mora transcription) task Mora transcription
responses were considered correct only if the participant pro-
duced the expected mora in full (i.e., we did not give partial
credit if the participant supplied the correct consonant but
incorrect vowel, or vice versa). Chance performance could
be considered somewhere between approximately 1/100
(based on approximately 100 CV syllables in Japanese) or 1/
30 (given that we used 30morae, although participants did not
know that). In either case, participants performed well above
chance, with a mean proportion correct of 0.63. Proportion
correct by Blocking, talker Age, and Talker is shown in Fig. 8.

We fit a generalized linear mixed-effects model with a logit
link to assess participants’ accuracy in the mora transcription
in noise task (with incorrect transcriptions coded as 0 and
correct transcriptions coded as 1). We used the same selection
procedure described for Experiment 1 to select among all per-
mutations of possible random effect structures. The selected
model contained fixed effects of Blocking (Blocked or
Mixed), Talker (Familiar, Trained-on, or Exposed-to), and
talker Age (Adult vs. Child), and their interactions, as well
as by-subject random slopes and intercepts for the three-way
interaction and the main effects of Blocking and Talker. There
was a significant effect of Blocking (χ2 = 4.45, p = 0.035),
resulting from greater proportion correct when items were
Blocked by talker (M = 0.648, SD = 0.478) rather than
Mixed (M = 0.610, SD = 0.488). The main effect of talker
Age was also significant (χ2 = 34.2, p < 0.001), resulting from
greater proportion correct for Adult (M = 0.686, SD = 0.464)
than Child talkers (M = 0.572, SD = 0.495). Despite trends for
accuracy to increase with talker familiarity in Fig. 8, the main
effect of Talker was not significant (χ2 = 2.39, p = 0.302). No
interactions were significant.

While we did not see the predicted clear impact of talker
familiarity, to further investigate the apparent trend in
Fig. 8 for accuracy to be lower for Exposed-to talkers, we
conducted post hoc tests comparing each level of Talker.
Accuracy was highest for Familiar talkers (M = 0.661, SD =
0.47), then for Trained-on talkers (M = 0.639, SD = 0.48), and
lowest for Exposed-to talkers (M = 0.590, SD = 0.49). While
the difference between Familiar and Trained-on talkers was

Table 5 Mean (standard deviation) for accuracy (proportion correct)
and reaction time (RT) by talker Familiarity and talker Age in the talker
identification task in Experiment 3

Familiarity Age Accuracy RT (ms)

Familiar Adult 0.894 (0.308) 1,296 (563)

Familiar Child 0.850 (0.358) 1,507 (831)

Trained-on Adult 0.844 (0.363) 1,826 (820)

Trained-on Child 0.806 (0.396) 1,748 (838)

Fig. 8 Transcription accuracy for morae presented in noise for Adult and Child talkers by talker Familiarity and Blocking in Experiment 3. Error bars
indicate standard error

Atten Percept Psychophys



not significant (p = 0.649, demonstrating the impact of talker
identification training), the difference between Familiar and
Exposed-to talkers was (p = 0.008; there was also a strong
trend for Trained-on vs. Exposed-to: p = 0.069). Thus, we
see evidence for benefits of talker familiarity (through daily,
real-life experience or laboratory training) for this speech-in-
noise task.

Discussion

Even after a break of 8 or more weeks between Experiments 2
and 3, most participants quickly recovered the level of talker
identification accuracy observed after training in Experiment
2. Accuracy in the mora identification task was also correlated
with familiarity, both as a function of extensive exposure out-
side the lab (family members) and talker identification training
in the lab (trained-on vs. exposed-to talkers). This replicates
the generalization effect reported by Nygaard et al. (1994) and
Nygaard and Pisoni (1998) – training on talker identity bene-
fits linguistic identification.

Thus, the short CV items used in the current experi-
ments provide a sufficient basis for retrieving talker char-
acteristics that facilitate both talker and linguistic identifi-
cation. The results of Experiments 2 and 3 demonstrate that
the morae used in Experiment 1 provide sufficient talker
information to lead to reliable effects of talker familiarity
in other tasks. This means that the performance deficits
observed for talker variability in mora monitoring in
Experiment 1 cannot be attributed to the qualities of the
materials used. Thus, even when listening to highly famil-
iar talkers such as family members, talker variability exacts
a performance cost.

General discussion

Aswe discussed in the Introduction, quite different theoretical
perspectives on talker differences (talker normalization theo-
ries vs. nonanalytic and exemplar theories) predict a reduction
of talker variability effects with increased talker familiarity.
On the normalization view, repeated adjustments to familiar
talkers’ voices might automatize the talker-specific adjust-
ments reducing processing costs (Nygaard et al., 1994). On
an exemplar view, an advantage for familiar talkers should
follow from greater representation of familiar talkers among
stored exemplars in memory (Goldinger, 1998; Johnson,
1990, 1997) or from contingent/integral encoding of indexical
and phonetic properties of voices, leading to general benefits
in any processing task as a result of perceptual learning
(Nygaard & Pisoni, 1998). Increased talker familiarity there-
fore should change the way listeners process talker variability.
However, the results of Experiment 1 show that this prediction

does not hold: a change in talkers results in a consistent pro-
cessing cost, even when the talkers are highly familiar.

Experiments 2 and 3 showed that this result cannot be
attributed to inadequate cues to talker characteristics in the
materials we used, since the items provided an adequate basis
for identifying familiar talkers and learning to identify unfa-
miliar ones. Experiment 3 also showed that, as has been re-
ported previously (Nygaard et al., 1994; Nygaard & Pisoni,
1998), familiarity with a talker as a result of laboratory train-
ing in talker identification facilitates speech perception under
difficult conditions, and furthermore, that extensive familiari-
ty based on exposure to talkers outside the lab (e.g., years of
experience with family members) has similar effects.

If talker familiarity improves recognition accuracy under
noisy and degraded listening conditions, why doesn’t famil-
iarity improve recognition performance when there is talker
variability? In Experiment 1, similar slowing was observed for
mora recognition given changes between familiar talkers and
changes between unfamiliar talkers. We suggest that the cost
results from prerequisite processing of a talker’s voice that
must occur before any familiarity benefit can occur. That is,
there is a parallel-contingent relation (Turvey, 1973) between
voice characteristics and phonetic identification, as has previ-
ously been discussed byMullennix and Pisoni (1990). That is,
the implications of a talker's acoustic-phonetic characteristics
for mapping to perceptual categories must be taken into ac-
count in some way before familiarity can be exploited. This
could be explicit talker recognition, or simply sufficient anal-
ysis of speech samples to trigger talker-specific procedural
memory. We hypothesize that it is the latter, and that this
analysis corresponds to attunement to talker characteristics
as in Figs. 1 and 2. This analysis apparently must occur for
familiar or unfamiliar talkers, leading to the constant cost ob-
served in Experiment 1. That is, even if procedural memory
for mapping a talkers' productions to phonological categories
boosts subsequent processing (e.g., identification in noise, as
in Experiment 3 and Nygaard et al., 1994), knowledge about a
talker, procedural or otherwise, can only benefit processing
once talker characteristics have been detected. This process
appears to be fast and efficient, although it imposes signifi-
cant, detectable demands on speech processing, resulting in a
constant cost of about 20–30ms that cannot be improved upon
by extensive experience with individual talkers.

Indeed, Nusbaum andMorin (1992) made a compelling case
that this cost is due to increased working memory load (based
on their results showing that talker variability interacts with
phonological workingmemory; e.g., RT increased significantly
as load increased in mixed-talker conditions, but not in blocked
talker conditions). Wong, Nusbaum, and Small (2004) found
that in a mixed-talker condition, cortical activity increases in
areas associated with speech (posterior superior temporal gy-
rus), consistent with increased capacity demands in processing
other spoken language materials (Just et al., 1996), but also
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areas associated with shifts of attentional processing (superior
parietal cortex, e.g., see Posner, 2003; Yantis et al., 2002).

These studies were used to argue that a change in talker
imposes a measurable load on working memory due to the
increased uncertainty about phonetic recognition (see
Nusbaum & Morin, 1992), even though there is no difference
in the explicit memory aspects of the recognition task in the
blocked- and mixed-talker conditions. The observed working
memory load was interpreted as reflecting the need to test
among alternative phonetic interpretations of the acoustic pat-
tern of a stimulus. When there is a talker change, listeners
appear to shift attention to a different set of acoustic properties
(including F0 and F3; see Nusbaum & Morin, 1992) that pro-
vide information about talker vocal characteristics that can re-
duce this uncertainty. As proposed by Choi et al. (2018), on the
basis of their finding that a mixed-talker cost is observed even
when talker variability does not result in task-relevant phonetic
ambiguity (e.g., deciding whether one has heard sigh or buy),
this also appears to be an obligatory process under typical cir-
cumstances. However, consistent with active attentional con-
trol, Magnuson and Nusbaum (2007) found that talker normal-
ization may be modulated by listeners’ expectations. They pre-
sented listeners with speech produced by two synthetic
"talkers" differing in fundamental frequency by 10 Hz (with
only very minor corollary variation in other parameters), and
told different groups of subjects they would be hearing two
talkers, or one talker, and a third group received no instructions
about talkers. Only the group expecting to hear two talkers
showed the typical talker-change cost (approximately 20 ms
slowing in mixed- vs. blocked-talker condition). While this
effect may only be observable under extremely specific condi-
tions (a case where there is discernible variation that is not
automatically attributed to talker variability), it is consistent
with an active control mechanism that can be modulated by
attention (Heald & Nusbaum, 2014; Magnuson & Nusbaum,
2007; Nusbaum & Magnuson, 1997).

With respect to exemplar and episodic/nonanalytic theo-
ries, the familiarity benefits we observed in talker identifica-
tion (Experiment 2) and phonetic processing (Experiment 3)
are quite consistent with previous findings. However, it is not
apparent how current exemplar models would account for the
attentional and expectation effects we have just reviewed. A
constant performance cost for talker changes might be consis-
tent with an exemplar model, if we assume that a processing
benefit should accrue when successive stimuli are highly sim-
ilar in respect to the overall characteristics of the talker that
produced them (although why similarity in talker characteris-
tics should produce a measurable effect given potentially larg-
er phonetic variability within a talker [e.g., one talkers' pro-
ductions of "ball" and "done"] than between talkers [e.g., one
talkers' productions of "ball" and "done"].

The implications for the contingent/integral encoding of
phonetic and indexical characteristics account are more

complex. The results of Nygaard and Pisoni (1998), among
others reviewed earlier, call for a rethinking of the conven-
tional separation of linguistic and indexical properties of
speech. As we discussed, we agree with Nygaard et al.
(1994) and Mullennix and Pisoni (1990) that the perception
of these dimensions is contingent. It is important to note that
change deafness studies indicate that talker changes are not
always detected (e.g., Vitevitch, 2003 reports such evidence,
and that processing advantages associated with preserving
talker characteristics depend on whether or not talker
changes are noticed) and detection of a talker change may
depend on listener expectations to monitor for the change
(Fenn et al., 2011; Theodore, Blumstein, & Luthra, 2015).

We differ with Nygaard and Pisoni (1998) as to the degree
and nature of the contingency. Nygaard and Pisoni argue these
aspects of the signal are wholly inseparable, which is the basis
for their argument against normalization: if the two dimen-
sions are not separable perceptually or in memory, a normal-
ization mechanism that purports to isolate and operate on the
phonetic dimension is illogical. Further, by appeal to an
instance-based mechanism like that posited in Goldinger’s
(1998) episodic lexicon theory, normalization is unnecessary
(although in Goldinger's simulations, separate elements
were used to code indexical and phonetic characteristics,
whereas in real speech, indexical and phonetic characteristics
are not distinct; see Magnuson & Nusbaum, 2007, pp. 404-
405, for a more detailed critique).

Nygaard and Pisoni cite the results of Mullennix and Pisoni
(1990) as evidence of the inseparability of the dimensions, given
that Mullennix and Pisoni found evidence of integral processing
using a Garner (1974) interference task. However, Mullennix
and Pisoni emphasized the asymmetries in the interference pat-
terns they observed. When talker and phonetic variability were
increased together, there were linear increases in the amount of
interference observed, but phonetic variation interfered less with
talker processing than talker variability interfered with phonetic
identification. There was also greater interference for the pho-
netic task from task-irrelevant phonetic variability than with
talker variability, and vice-versa. When talker and phonetic var-
iability were increased separately (Mullennix & Pisoni’s
Experiment 2), interference increased linearly as phonetic vari-
ability increased, while a nearly constant cost was found for
talker variability, whether the number of talkers was four or
16. This suggests a more complex relationship between these
aspects of the signal than all-or-none integrality. Indeed, many
authors, including Garner (1974), have proposed that there is a
continuum of separability of stimulus dimensions, rather than
discrete categories of integrality or separability (e.g., Ashby &
Maddox, 1994; Potts, Melara, & Marks, 1998).

While integrality of talker and phonetic information is con-
sistent with the contingency view of Nygaard and colleagues,
partial, asymmetric contingency is consistent with the contex-
tual tuning account, which closely resembles the original
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explanation of Mullennix and Pisoni (1990). They interpreted
the absence of a talker set-size effect as indicating that lis-
teners can selectively ignore phonetic variability while attend-
ing to talkers’ voices (even though the two dimensions are
closely related), and that “two qualitatively different types of
processes are utilized” for processing phonetic and talker in-
formation. They proposed that operations that decode talker
and phonetic identity work in parallel, but in a contingent
fashion (cf. Turvey, 1973). Because talker characteristics con-
dition phonetic realizations of speech sounds, phonetic iden-
tification is hierarchically dependent on an analysis of talker
characteristics. Varying talker characteristics simultaneously
varies phonetic characteristics (for many or most words), even
if the word produced is constant. In contrast, when the talker is
constant, the talker characteristics available to a listener do not
change dramatically between most words.

Indeed, whether effects of surface specificity are observed
depends on the task used and how quickly it can be performed.
Luce and Lyons (1998) found specificity effects in an explicit
recognition task, but not in an implicit task (priming in lexical
decision). McLennan and Luce (2005) have found a temporal
dissociation between processing of lexical information and
surface specificity (speaking rate and talker identity). When
processing was fast (because the materials were relatively easy
to process), they observed equivalent priming for repeated
words whether rate or talker identity was constant or varied
between presentations. When processing was slowed by the
relative difficulty of the materials, greater priming was found
when surface specificity was preserved. This difference in
time course for phonetic information and non-phonetic sur-
face variability is consistent with the interpretation that prim-
ing effects in these experiments depend upon reactivation of
linguistic representations and episodic event memories that
are distinct (but not completely independent, in the sense that
there are redundancies and associations between them).

Our view of the larger picture is that speech perception
emerges from multiple processes working in parallel on differ-
ent, but not necessarily independent, aspects of the signal. This
is consistent with evidence from multiple neurophysiological
maps in auditory cortex (e.g., Dick et al., 2012; Hackett, 2007;
Woods et al., 2009), indicating that there are parallel auditory
representations subserving different aspects of perception. We
expect that these include (but are not limited to) the recovery of
phonetic categories, indexical information about the talker, and
episodic traces of the speech event and its context. As
Andruski, Blumstein, and Burton (1994) showed, processes
recovering the linguistic message preserve subcategorical detail
at least until initial contact is made with the lexicon. It is also
clear that episodic traces of speech events that include a high
degree of surface detail are simultaneously laid down
(Goldinger, 1996, 1998; Palmeri et al., 1993), although these
specificity effects may depend on the salience of talker changes
(Fenn et al., 2011; Theodore et al., 2015; Vitevitch, 2003).

While representations of prior speech episodes may also be
activated as speech is heard and potentially influence lexical
processing (Goldinger, 1998), there seems to be a distinction
between phonetic representations and other aspects of speech,
as the nature of the task determines to what degree non-
phonetic surface details of speech are activated (Luce &
Lyons, 1998), and these representations also appear to operate
on slightly different time scales, with priority for phonetic rep-
resentations (McLennan & Luce, 2005). Similar observations
have led some to the conclusion that listeners both encode in-
stances and derive abstract (talker-invariant) encodings
(Magnuson & Nusbaum, 2007; Pierrehumbert, 2016; Pisoni
& Levi, 2007). Work by Myers and colleagues has begun pro-
viding evidence for parallel neural representations that are
talker-invariant versus talker-specific (e.g., Myers &
Theodore, 2017; Salvata, Blumstein, & Myers, 2012).

Much of the debate about how listeners achieve phonetic
constancy despite talker variability in the past few years has
been shaped by the assertion that normalizing talker differ-
ences necessarily implies that surface detail is stripped from
the speech signal and is forever lost. This is not the only view
of normalization. Although preservation of surface detail has
been argued to be evidence against normalization (e.g.,
Goldinger, 1996, 1998; Palmeri et al., 1993; Pisoni, 1997), it
is not dispositive. We agree that a strong abstractionist view is
held by some (e.g., Andruski et al., 1994, assumed nonpho-
netic variation is eventually discarded, but focused on deter-
mining how late in lexical access subcategorical information
is available – and indeed found that the effects of
subcategorical perturbations of VOT became undetectable in
their procedure after 50–250 ms). However, this is not a re-
quirement of normalization. Perhaps the earliest specific de-
scription of a normalization mechanism was provided by Joos
(1948), and on his account, either internal representations or
the acoustic signal are warped to bring the two into registra-
tion, with no information discarded. Evidence for contingen-
cies of “linguistic” and “non-linguistic” characteristics of ut-
terances in memory and processing definitively rules out a
model of speech perception in which there is a single repre-
sentation of the signal from which phonetically irrelevant in-
formation is cast off as quickly as possible. But this evidence
does not remove the need to explain how listeners achieve
phonetic constancy despite talker differences.

Conclusions

We presented three main results. First, as has been found in
several other studies (e.g., Magnuson & Nusbaum, 2007;
Nusbaum & Morin, 1992), stability in talker characteristics
improves performance in linguistic tasks, which is consistent
with both normalization and exemplar theories. Second, in ac-
cord with several previous reports (Johnsrude et al., 2013;
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Nygaard et al., 1994; Nygaard & Pisoni, 1998; Souza et al.,
2013), we found that familiarity with a talker's characteristics
(acquired in the lab or outside the lab) facilitates linguistic
processing. Third, and most importantly, the results of
Experiment 1 indicate that there is a constant cost associated
with talker changes independent of talker familiarity. Even the
talkers we might expect to be the most familiar possible (one's
own spouse and child) appear to require adjustments in
acoustic-perceptual mapping when there is a talker change.
This result is also consistent with normalization and exemplar
accounts, but imposes constraints on both.

If statistical sampling of variability using exemplar mech-
anisms is the basis for phonetic constancy, the lack of facili-
tation in changes from one familiar talker to another should
constrain the relative weighting of short-term versus long-
term exemplar traces – short-term similarity appears to swamp
long-term similarity, at least so far as the impact of talker
changes is concerned. Or, as we discussed above, it may be
even more likely that any benefit for familiarity depends on
first having access to familiar talker characteristics through
analytic processing of speech after a talker change.

While the current results by themselves do not provide a
dispositive basis for preferring one account over another, the
normalization explanation accounts for a broader range of data.
Normalization is consistent with the processing cost associated
with talker changes, as well as with the context sensitivity of
talker-specific phonetic categorization (Ladefoged &
Broadbent, 1957). In particular, the contextual tuning theory
of normalization (Magnuson & Nusbaum, 2007; Nusbaum &
Morin, 1992; Nusbaum & Magnuson, 1997) also provides an
account for effects of attention (Nusbaum & Morin, 1992;
Wong et al., 2004) including top-down expectations
(Magnuson & Nusbaum, 2007). It does not simultaneously
account for specificity effects (Goldinger, 1996, 1998; Martin
et al., 1989; Mullennix et al., 1989; Palmeri et al., 1993), and
thus this view requires other processes operating in parallel to
provide a comprehensive account of speech perception.

However, while exemplar/episodic approaches promise si-
multaneous accounts of specificity effects and phonetic con-
stancy despite talker variability, they have yet to propose a
plausible account of the latter. Goldinger’s (1998) simulations
that simultaneously accounted for specificity effects and pho-
netic constancy were a crucial first step, but depended on the
unrealistic assumption that indexical and phonetic character-
istics could be coded independently (different units in the
input vectors represented the two types of information), while
in real speech, talker differences condition the realization of
phonetic productions (and vice-versa).

We suggest that benefits of learning about talkers actually
depend upon processes that simultaneously support normaliza-
tion and access to anymemory for a talker – to applymemory for
a talker's characteristics (and/or the operations to apply to them),
enough speech must be processed to afford retrieval (indeed, the

analysis of talker characteristics relevant for phonetic mapping
may be a fundamental component of talker recognition, given the
utility of talker-specific phonetic patterns for talker identification;
Remez et al., 1997). That is, consistent with the conclusions of
Mullennix and Pisoni (1990), we assume there are multiple pro-
cesses that operate on the speech signal, hierarchically organized
in a parallel-contingent manner (Turvey, 1973). Determining the
mapping between characteristics of the current talker and internal
representations must be among the first and most important pro-
cesses that operate, as suggested by our finding that even the
most familiar talkers appear to require attention-demanding per-
ceptual accommodation.

Author Note We thank Inge-Marie Eigsti, Jennifer Pardo, Hideki
Kawahara, and Tsuneo Yamada for comments that greatly improved this
paper. Preparation of the manuscript was facilitated by the following
grants: NSF 1754284 (PI: JSM), NSF IGERT 1144399 (PI: JSM), and
NSF NRT 1747486 (PI: JSM).

Open Practices Statement Data and R scripts are available at
https://osf.io/9xmnc.

References

Andruski, J. E., Blumstein, S. E., & Burton, M. (1994). The effect of
subphonetic differences on lexical access. Cognition, 52, 163–187.

Ashby, F. G., & Maddox, W. T. (1994). A response time theory of
separability and integrality in speeded classification. Journal of
Mathematical Psychology, 38, 423–466.

Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting
linear mixed-effects models using lme4. Journal of Statistical
Software, 67(1). https://doi.org/10.18637/jss.v067.i01

Choi, J. Y., Hu, E. R., & Perrachione, T. K. (2018). Varying acoustic-
phonemic ambiguity reveals that talker normalization is obligatory
in speech processing. Attention, Perception, & Psychophysics, 80,
784–797.

Church, B.A., & Schacter, D.L. (1994). Perceptual specificity of auditory
priming: Implicit memory for voice intonation and fundamental fre-
quency. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 20, 521–533.

Craik, F.I.M., & Kirsner, K., (1974). The effects of speaker's voice on
word recognition. Quarterly Journal of Experimental Psychology,
26, 274-284.

Creelman, C.D. (1957). The case of the unknown talker. Journal of the
Acoustical Society of America 29, 655.

Cutler, A., Dahan, D., & Donselaar, W. van (1997). Prosody in the com-
prehension of spoken language: a literature review. Language &
Speech, 40, 141–201.

Dick, F., Tierney, A.T., Lutti, A., Josephs, O. Sereno, M.I., & Weiskopf,
N. (2012). In vivo functional and myeloarchitectonic mapping of
human primary auditory areas. Journal of Neuroscience, 32,
16095–16105.

Elman, J. L., & McClelland, J. L. (1986). Exploiting lawful variability in
the speechwave. In J. S. Perkell &D.H. Klatt (Eds.), Invariance and
Variability in Speech Processes (pp. 360-380). Lawrence Erlbaum
Associates: Hillsdale, NJ.

Fenn, K. M., Shintel, H., Atkins, A. S., Skipper, J. I., Bond, V. C., &
Nusbaum, H. C. (2011). When less is heard than meets the ear:
Change deafness in a telephone conversation. Quarterly Journal of
Experimental Psychology, 64, 1442–1456.

Atten Percept Psychophys

http://https://osf.io/9xmnc
https://doi.org/10.18637/jss.v067.i01


Fougeron, C. A., & Keating, P. (1997). Articulatory strengthening at
edges of prosodic domains. Journal of the Acoustical Society of
America, 101, 3728 – 3740.

Fowler, C. A., & Housum, J. (1987). Talkers’ signaling of “new” and
“old” words in speech and listeners’ perception and use of the dis-
tinction. Journal of Memory and Language, 26, 489–450.

Fowler, C. A., Levy, E. T., & Brown, J. M. (1997). Reductions of spoken
words in certain discourse contexts. Journal of Memory and
Language, 37, 24–40.

Garner, W. R. (1974). The Processing of Information and Structure.
Potomac, Maryland: Lawrence Erlbaum.

Gerstman, L. J. (1968). Classification of self-normalized vowels. IEEE
Transactions on Audio Electroacoustics, AU-16, 78–80.

Goldinger, S. D. (1996). Words and voices: Episodic traces in spoken
word identification and recognition memory. Journal of
Experimental Psychology: Learning, Memory & Cognition, 22,
1166–1183.

Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical
access. Psychological Review, 105, 251–279.

Goldinger, S. D., Pisoni, D. B., & Logan, J. S. (1991). On the nature of
talker variability effects on recall of spoken word lists. Journal of
Experimental Psychology: Learning, Memory, & Cognition, 17,
152–162.

Hackett, T.A. (2007). Organization and correspondence of the auditory
cortex of humans and nonhuman primates. In J.H. Kass (Ed.),
Evolution of the nervous system, (pp 109 –119). Oxford, UK:
Elsevier.

Heald, S. L., & Nusbaum, H. C. (2014). Speech perception as an active
cognitive process. Frontiers in Systems Neuroscience. https://doi.
org/10.3389/fnsys.2014.00035

Horii, Y., House, A.S., & Hughes, G.W. (1971). A masking noise with
speech envelope characteristics for studying intelligibility. Journal
of the Acoustical Society of America, 49, 1849–1856.

Johnson, K. (1990). The role of perceived speaker identity in F0 normal-
ization of vowels. Journal of the Acoustical Society of America, 88,
642–654.

Johnson, K. (1994). Memory for vowel exemplars. Journal of the
Acoustical Society of America, 95, 2977.

Johnson, K. (1997). Speech perception without speaker normalization:
An exemplar model. InK. Johnson& J.W.Mullennix (Eds.), Talker
Variability in Speech Processing (pp. 145–166). San Diego:
Academic Press.

Johnson, K. (2005). Speaker normalization in speech perception. In D.B.
Pisoni & R. Remez (Eds.), The Handbook of Speech Perception.
Oxford: Blackwell Publishers. pp. 363–389.

Johnsrude, I.S., Mackey, A., Hakyemez, H., Alexander, E., Trang, H.P.,
& Carlyon, R.P. (2013). Swinging at a cocktail party: voice famil-
iarity aids speech perception in the presence of a competing voice.
Psychological Science, 24, 1995–2004.

Joos, M. (1948). Acoustic phonetics. Baltimore: Linguistic Society of
America.

Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., Rep, M., van
Dijl, J. M., Suda, K., Schatz, G., et al. (1996). Brain activation
modulated by sentence comprehension. Science, 274(5284), 114–
116.

Kolers, P. A. (1976). Reading a year later. Journal of Experimental
Psychology: Human Learning and Memory, 2, 554–565.

Kolers, P. A. and Ostry, D. J. (1974). Time course of loss of information
regarding pattern analyzing operations. Journal of Verbal Learning
and Verbal Behavior, 13, 599–612.

Ladefoged, P. (1989). A note on “Information conveyed by vowels”
Journal of the Acoustical Society of America, 85, 2223–2224.

Ladefoged, P., and Broadbent, D. E. (1957). Information conveyed by
vowels. Journal of the Acoustical Society of America, 29, 98–104.

Legge, G. E., Grosmann, C., & Pieper, C.M. (1984). Learning unfamiliar
voices. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 10, 298–303.

Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-
Squares Means. R package version 1.4.6. https://CRAN.R-project.
org/package=emmeans

Liberman, A. M., DeLattre, P. D., & Cooper, F. S. (1952). The role of
selected stimulus variables in the perdcetion of unvoiced stop con-
sonants. American Journal of Psychology, 65, 497–516.

Lo, S., & Andrews, S. (2015). To transform or not to transform: Using
generalized linear mixed models to analyse reaction time data.
Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2015.01171

Logan, G. D. (1988). Toward an instance theory of automatization.
Psychological Review, 95, 492–527.

Logan, G. D. (2002). An instance theory of attention and memory.
Psychological Review, 109, 376–400.

Luce, P. A., & Lyons, E. A. (1998). Specificity of memory representa-
tions for spoken words. Memory & Cognition, 26, 708–715.

Magnuson, J. S. (2018a). Contextual tuning theory without memory.
Figshare https://doi.org/10.6084/m9.figshare.5977387.v1

Magnuson, J. S. (2018b). Contextual tuning with memory. Figshare
https://doi.org/10.6084/m9.figshare.5977444.v1

Magnuson, J. (2020). Mora monitoring procedure. Figshare https://doi.
org/10.6084/m9.figshare.12560294.v1

Magnuson, J. S., & Nusbaum, H. C. (2007). Acoustic differences, listener
expectations, and the perceptual accommodation of talker variabili-
ty. Journal of Experimental Psychology: Human Perception and
Performance, 33, 391–409.

Martin, C. S., Mullennix, J. W., Pisoni, D. B., & Summers, W. V. (1989).
Effects of talker variability on recall of spoken word lists. Journal of
Experimental Psychology: Learning, Memory, & Cognition, 15,
676–684.

McLennan, C. T., & Luce, P. A. (2005). Examining the time course of
indexical specificity effects in spoken word recognition. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 31,
306–321.

Miller, J. D. (1989). Auditory-perceptual interpretation of the vowel.
Journal of the Acoustical Society of America, 85, 2114–2134.

Miller, J. L., & Liberman, A. M. (1979). Some effects of later-occurring
information on the perception of stop consonant and semivowel.
Perception & Psychophysics, 25, 457–465.

Mullennix, J. W., & Pisoni, D. B. (1990). Stimulus variability and pro-
cessing dependencies in speech perception. Perception &
Psychophysics, 47, 379–390.

Mullennix, J. W., Pisoni, D. B., & Martin, C. S. (1989). Some effects of
talker variability on spoken word recognition. Journal of the
Acoustical Society of America, 85, 365–378.

Myers, E. B., & Theodore, R. M. (2017). Voice-sensitive brain networks
encode talker-specific phonetic detail. Brain and Language, 165,
33–44.

Nearey, T. M. (1989). Static, dynamic, and relational properties in vowel
perception. Journal of the Acoustical Society of America, 85, 2088–
2113.

Nooteboom, S. G., & Kruyt, J. G. (1987). Accent, focus distribution, and
the perceived distribution of given and new information: An exper-
iment. Journal of the Acoustical Society of America, 82, 1512 –
1524.

Nusbaum, H. C., & Magnuson, J. S. (1997). Talker normalization:
Phonetic constancy as a cognitive process. In K. Johnson & J. W.
Mullennix (Eds.), Talker Variability in Speech Processing (pp. 109–
132). San Diego: Academic Press.

Nusbaum, H. C., & Morin, T. M. (1992). Paying attention to differences
among talkers. In Y. Tohkura, Y. Sagisaka, & E. Vatikiotis-Bateson
(Eds. ), Speech Perception, Speech Production, and Linguistic
Structure, pp. 113–134. Tokyo: OHM.

Atten Percept Psychophys

https://doi.org/10.3389/fnsys.2014.00035
https://doi.org/10.3389/fnsys.2014.00035
https://cran.r-roject.org/packagemmeans
https://cran.r-roject.org/packagemmeans
https://doi.org/10.3389/fpsyg.2015.01171
https://doi.org/10.6084/m9.figshare.5977387.v1
https://doi.org/10.6084/m9.figshare.5977444.v1
https://doi.org/10.6084/m9.figshare.12560294.v1
https://doi.org/10.6084/m9.figshare.12560294.v1


Nygaard, L. C., & Pisoni, D. B. (1998). Talker-specific learning in speech
perception. Perception & Psychophysics, 60, 355–376.

Nygaard, L. C., Sommers, M. S., & Pisoni, D. B. (1994). Speech percep-
tion as a talker-contingent process. Psychological Science, 5, 42–46.

O’Malley, M.H., & Peterson, G.E. (1966). An experimental method for
prosodic analysis. Phonetica, 15, 1 – 13.

Palmeri, T. J., Goldinger, S. D., & Pisoni, D. B. (1993). Episodic
encoding of voice attributes and recognition memory for spoken
words. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 19, 309–328.

Peterson, G. E. and Barney, H. L. (1952). Controlmethods used in a study
of vowels. Journal of the Acoustical Society of America, 24, 175–
184.

Pierrehumbert, J. (2002) Word-specific phonetics. In C. Gussenhoven
and N. Warner (Eds.), Laboratory Phonology 7, pp. 101–139.
Berlin: Mouton de Gruyter.

Pierrehumbert, J. B. (2016). Phonological representation: Beyond ab-
stract versus episodic. Annual Review of Linguistics, 2, 33–52.

Pisoni, D. B. (1997). Some thoughts on “normalization” in speech per-
ception. In K. Johnson & J. W. Mullennix (Eds.), Talker Variability
in Speech Processing (pp. 9–32). San Diego: Academic Press.

Pisoni, D.B. & Levi, S.V. (2007). Representations and representational
specificity in speech perception and spoken word recognition. In
M.G. Gaskell (Ed.), The Oxford Handbook of Psycholinguistics,
pp. 3–18. Oxford University Press: UK.

Posner, Michael I. (2003). Imaging a science of mind. Trends in
Cognitive Sciences, 7(10), 450–453.

Potter, R., & Steinberg, J. (1950). Toward the specification of speech.
Journal of the Acoustical Society of America, 22, 807–820.

Potts, B.C., Melara, R. D., & Marks, L. E. (1998). Circle size and diam-
eter tilt: A new look at integrality and separability. Perception &
Psychophysics, 60, 101–112.

Pufahl, A. & Samuel, A. G. (2014). How lexical is the lexicon? Evidence
for integrated auditory memory representations. Cognitive
Psychology, 70, 1–30.

R Core Team (2019). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/.

Rakerd, B. & Verbrugge, R. R. (1987). Evidence that the dynamics in-
formation for vowels is talker independent in form. Journal of
Memory and Language, 26,558–563.

Remez, R. E., Fellowes, J. M., & Rubin, P. E. (1997). Talker identifica-
tion based on phonetic information. Journal of Experimental
Psychology: Human Perception & Performance, 23, 651–666.

Salvata, C, Blumstein, S.E., Myers, E. B. (2012). Speaker Invariance for
Phonetic Information: an FMRI Investigation. Language and
Cognitive Processes, 27(2), 210–230.

Satterthwaite, F. E. (1946). An approximate distribution of estimates of
variance components. Biometrics Bulletin, 2, 110–114. https://doi.
org/10.2307/3002019

Schacter, D. L., & Church, B. A. (1992). Auditory priming and explicit
memory for words and voices. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 18, 915–930.

Shankweiler, D., Strange, W., & Verbrugge, R. (1977). Speech and the
problem of perceptual constancy. In R. Shaw & J. Bransford (Eds. ),
Perceiving, acting, and knowing (pp. 315–345). Hillsdale, NJ:
Erlbaum.

Sheffert, S. M. & Fowler, C. A. (1995). The effects of voice and visible
speaker change on memory for spoken words. Journal of Memory
and Language, 34, 665–685.

Singmann, H., Bolker, B., Westfall, J., Aust, F. & Ben-Shachar, M. S.
(2020). afex: Analysis of Factorial Experiments. R package version
0.27–2. https://CRAN.R-project.org/package=afex

Souza, P. E., Gehani, N., Wright, R. A., & McCloy, D. R. (2013). The
advantage of knowing the talker. Journal of the American Academy
of Audiology, 24(8), 689–700.

Strange, W. (1989). Dynamic specification of coarticulated vowels spo-
ken in sentence context. Journal of the Acoustical Society of
America, 85, 2135–2153.

Syrdal, A. K. and Gopal, H. S. (1986). A perceptual model of vowel
recognition based on the auditory representation of American
English vowels. Journal of the Acoustical Society of America, 79,
1086–1100.

Theodore, R. M., Blumstein, S. E., & Luthra, S. (2015). Attention mod-
ulates specificity effects in spoken word recognition: Challenges to
the time-course hypothesis.Attention, Perception, & Psychophysics,
77, 1674–1684.

Traunmuller, H. (1981). Perceptual dimension of openness in vowels.
Journal of the Acoustical Society of America, 69, 1465–1475.

Turvey, M. T. (1973). On peripheral and central processes in vision:
Inferences from an information-processing analysis of masking with
patterned stimuli. Psychological Review, 80, 1–52.

Van Lancker, D., Kreiman, J., & Emmorey, K. (1985). Familiar voice
recognition: Patterns and parameters, part I: Recognition of back-
ward voices. Journal of Phonetics, 13, 19–38.

Vitevitch, M.S. (2003). Change deafness: The inability to detect changes
in a talker's voice. Journal of Experimental Psychology: Human
Perception and Performance, 29, 333–342.

Wong, P.C.M., Nusbaum, H.C., & Small, S.L. (2004). Neural bases of talker
normalization. Journal of Cognitive Neuroscience, 16, 1173–1184.

Woods, D. L, Stecker, G.C., Rinne T,. Herron T.J., Cate, A.D., Yund, E.W.,
Liao, I., &Kang, X. (2009). Functional maps of human auditory cortex:
Effects of acoustic features and attention. PLoS One 4:e5183.

Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M.
A., Pekar, J. J., Courtney, S. M. (2002). Transient neural activity in
human parietal cortex during spatial attention shifts. Nature
Neuroscience, 5(10), 995–1002.

Zhang, C. & Chen, S. (2016). Towards an integrative model of talker
normalization. Journal of Experimental Psychology: Human
Perception and Performance, 42, 1252–1268.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Atten Percept Psychophys

https://www.r-roject.org/
https://doi.org/10.2307/3002019
https://doi.org/10.2307/3002019
https://cran.r-roject.org/packagefex

	Talker familiarity and the accommodation of talker variability
	Abstract
	Introduction
	Experiment 1
	Method
	Results
	Discussion

	Experiment 2
	Method
	Results
	Reaction time
	Discussion

	Experiment 3
	Method
	Results
	Discussion

	General discussion
	Conclusions
	References


