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Abstract 

Despite the lack of invariance problem (the many-to-many 
mapping between acoustics and percepts), we experience 
phonetic constancy and typically perceive what a speaker 
intends. Models of human speech recognition have side-
stepped this problem, working with abstract, idealized inputs 
and deferring the challenge of working with real speech. In 
contrast, automatic speech recognition powered by deep 
learning networks have allowed robust, real-world speech 
recognition. However, the complexities of deep learning 
architectures and training regimens make it difficult to use 
them to provide direct insights into mechanisms that may 
support human speech recognition. We developed a simple 
network that borrows one element from automatic speech 
recognition (long short-term memory nodes, which provide 
dynamic memory for short and long spans). This allows the 
network to learn to map real speech from multiple talkers to 
semantic targets with high accuracy. Internal representations 
emerge that resemble phonetically-organized responses in 
human superior temporal gyrus, suggesting that the model 
develops a distributed phonological code despite no explicit 
training on phonetic or phonemic targets. The ability to work 
with real speech is a major advance for cognitive models of 
human speech recognition. 
Keywords: spoken word recognition; computational models; 
neural networks; deep learning 

Introduction 
Human speech recognition (HSR) poses some of the greatest 
unsolved scientific challenges in the cognitive and neural 

sciences. Despite a many-to-many mapping between acoustic 
patterns and percepts (for now, let us assume percepts are 
phonemes, i.e., consonants and vowels), listeners experience 
phonetic constancy: we hear what the speaker intends even 
though the same acoustic pattern can cue different phonemes 
depending on context, and different patterns can cue the same 
phoneme. This challenge is the lack of invariance problem.  

Many factors complicate the acoustic-perceptual mapping: 
(a) coarticulation (temporal and articulatory overlap of 
phonemes in series; Liberman et al., 1967), (b) lack of robust 
boundaries between phonemes or words (Cole & Jakimik, 
1980), and (c) shifts in the mapping due to variation in 
speaking rate (Miller & Baer, 1983), talker characteristics 
(Joos, 1948; Peterson & Barney, 1952), phonetic context 
(Liberman et al., 1967), coarticulation (Liberman et al., 
1952), and novelty of message content (Fowler & Hosum, 
1987). Similar problems are found in other perceptual 
domains (e.g., visual objects must be recognized despite 
variation in size, rotation, and illumination; DiCarlo & Cox, 
2007). However, the temporal and transient nature of speech 
compounds the challenge. 
 
Deep vs. minimal networks for speech recognition  
One might suppose that the lack of invariance problem has 
been solved in contemporary automatic speech recognition 
(ASR) systems, such as those used daily by billions of 
smartphone users. The deep-learning neural network models 
underlying the best ASR (Hinton et al., 2012) provide robust 

����



real-world application but little guidance for theories of HSR. 
Deep nets for ASR require many complex and richly 
connected layers, as well as complex, carefully engineered 
training regimens.  

That said, researchers interested in HSR have developed 
less complex deep networks with the aim of illuminating 
possible mechanisms supporting audition and HSR. 
Nagamine et al. (2015), for example, examined hidden units 
of a 5-layer network trained explicitly on phoneme 
recognition and observed responses strikingly similar to 
phonetically-structured responses in human superior 
temporal gyrus (Mesgarani et al., 2014). Kell et al. (2018) 
used a deep network to achieve human-like accuracy on two 
unusual tasks: (1) recognizing the word at the center of a two 
second sample of speech and (2) musical genre identification. 
Their network had many layers and required complex 
training. The first 7 layers were shared for speech and music, 
but then it branched into specialized speech and music 
pathways (with 5 additional layers). The model surpassed 
standard spectrotemporal filter models of auditory cortex in 
predicting human cortical responses to natural sounds 
(measured with fMRI. Kell et al. suggested that deep 
networks might provide the only computational approach 
able to achieve human-like performance for natural stimuli.  

We optimistically disagree. Our aim is to develop 
maximally simple (minimal) models of HSR. Theoretical 
progress will be difficult if our models approach the 
complexity of their biological target (the neural basis for 
HSR). At the same time, we aim to grapple with details that 
have been left out of deep learning models of auditory 
perception. First, several models have achieved high 
accuracy by side-stepping the temporal nature of speech (e.g., 
by treating an utterance or sound as a static image, with time 
as one axis) rather than as a time series. Furthermore, such 
models have not addressed the kinds of human data of 
greatest interest to psycholinguists who study human spoken 
word recognition, such as the time course of lexical activation 
and competition (Allopenna et al., 1998).  

Simpler shallow computational models have been applied 
to grappled with over-time inputs and time course of lexical 
competition, but with two different limitations: (1) they do 
not use real speech as input  (instead using, for example, 
|abstract distributed phonetic features over time (TRACE: 
McClelland & Elman, 1986) or human diphone confusion 
probabilities (Shortlist B: Norris & McQueen, 2008); (2) they 
tend not to address learning. Models developed since the mid 
1980s have either adopted these simplifications in order to 
address the time course of spoken word recognition with 
large vocabularies, or have strived for greater realism but in 
small-inventory models (e.g., Grossberg et al., 1997), or have 
attempted to incorporate ASR approaches into cognitive 
models of spoken word recognition (e.g., Scharenborg, 2010; 
Scharenborg et al., 2005). Such approaches have led to 
genuine insights, but the models tend to have low accuracy, 
limited empirical coverage, or both.  
 

Minimal models from long short-term memory nodes  
Our aim is to develop a minimal cognitive model of HSR that 

could learn to map over-time speech to semantics, without 
explicit phonetic training, that remains simple enough to 
generate hypotheses for mechanisms that could support HSR. 
However, current network-based cognitive models of HSR 
do not appear adequate for processing real speech. 

Thus, we examined a variety of network architectures and 
elements used in network models used for ASR. We found 
that a two-layer recurrent network provides the needed power 
for our goal domain if its hidden units are long short-term 
memory (LSTM) nodes (Hochreiter & Schmidhuber, 1997). 
LSTM nodes add 3 internal gates and a memory cell that 
allow nodes to develop sensitivity to information over long 
time scales, mitigating the vanishing gradient problem 
(Hochreiter et al., 2001). In the following sections, we 
describe a new neural network model of HSR, EARSHOT 
(Emulation of Auditory Recognition of Speech by Humans 
Over Time), that we believe approaches the minimal 
complexity required to map real speech to semantics. 

Methods 

Network structure and parameters 
The EARSHOT network is schematized in Fig. 1. Its 256 
input units are fully connected to 512 LSTM hidden units. 
The hidden layer is fully recurrent (i.e., every unit has a 
connection to every other unit). A tanh activation function is 
applied to hidden outputs. The hidden units are fully 
connected to 300 output units. High accuracy on our task 
(described below) required ~500 hidden units (performance 
is not improved by increasing to 750 or 1000 hidden nodes).  

Materials 
We pseudo-randomly selected 1000 words from a list of 
uninflected English words, with the constraints that (a) word 
length varied from 1-8 phonemes (mean = 5.5) and (b) every 
phoneme had to occur in at least 10 words. We created speech 
files for each of the 1000 words pronounced by 10 talkers in 
the Apple text-to-speech application, say (5 females [Agnes, 
Kathy, Princess, Vicki, Victoria] and 5 males [Alex, Bruce, 
Fred, Junior, Ralph]). Mean duration was 659 ms (range: 
289-1121 ms). We also created 360 consonant-vowel (CV) 
and VC syllables for testing purposes (using 15 vowels and 
24 consonants). Sound files were converted to spectrographic 
representations with 256 channels in 10 ms steps with 
sampling rate of 8000 hz.  

We created random sparse vectors for each word as a proxy 
for semantic representations. Vectors had 300 elements, with 
10 “on” (set to 1, others set to 0). This common simplification 
is considered acceptable given the largely arbitrary mapping 
from form to menaing (e.g., Lazlo & Plaut, 2012).   

Training method 
We trained 10 instantiations of EARSHOT. For each model, 
a different one of the 10 talkers was excluded from training 
(reserved to test generalization to a novel talker). We 
excluded 100 different randomly selected words from each 
trained-on talker (reserved to test generalization to unseen 
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items from trained-on talkers). So for each model, the training 
set was 8100 input-output patterns, with all 10,000 pairs 
included for testing.  

Each training epoch included one presentation of each of 
the 8100 training items in random order with no pause or 
other indication of word boundaries. The target pattern was 
the semantic vector for the current word, and it was compared 
to the output at each time step. To enhance learning, we used 
minibatch gradient descent, Noam decay, and Adam 
optimizing (Vaswani et al., 2017). Full details are available in 
a longer preprint (Magnuson et al., 2018). Connections were 
trained using backpropagation through time (Werbos, 1988). 
Training accuracy largely plateaued by 8000 epochs. We then 
resumed training with formerly excluded talkers included. 
The logic was that when humans encounter new talkers, we 
presumably learn to adapt to them by learning any 
idiosyncratic aspects of their acoustics-to-percepts mapping 
(e.g., by using lexical hypotheses to guide learning). In 
simple tests of generalization, the model cannot learn. We 
continued training for another 2000 epochs (8001-10,000). 
 

Testing method Every 1000 epochs, models were tested with 
all 10,000 words (including excluded words and talkers). 
Successful recognition was operationalized as the output 
vector’s cosine similarity to the target exceed any other 
item’s cosine similarity to the output by at least 0.05 for at 

least 100 ms, and subsequently, no item could exceed the 
target’s cosine similarity to the output before word offset. 
 

Replicability We trained all 10 models 3 times; only minor 
variations were observed between iterations. We present 
results from the first run of each model in this report.  
 

Hardware and software Simulations were conducted on a 
Windows 10 workstation with an i7-6700k CPU, 64-gb of 
RAM, and a Titan-X (12-gb) graphics card. Simulations were 
implemented using Python 3.6 and TensorFlow 1.7. Each 
model required approximately 10 hours for training.  
 

Alternative architectures In developing EARSHOT, we 
explored dozens of combinations of candidate architectures 
and model elements. We limited networks to 2 layers of 
forward connections (inputsàhiddenàoutputs). We varied 3 
aspects of models: number of hidden units (typically from 
100 to 1000 nodes before rejecting a model if accuracy 
plateaued below 90%), hidden unit type (standard integrative 
nodes vs. LSTMs), and degree of recurrence (full recurrence, 
as in the model reported here, vs. single-step recurrence, as 
in simple recurrent networks; Elman, 1990). For inputs, we 
explored spectrograms at various resolutions, Mel Frequency 
Cepstral Coefficients (MFCCs), and cochleagrams. Most 
combinations failed to achieve high accuracy. Aside from the 
model reported here, the only combinations that achieved 
greater than 90% accuracy was an MFCC-based model that 
failed to show human-like time course despite high accuracy. 
Note that this does not mean that only a single set of 
parameters worked; the model described above begins 
achieving high accuracy with more than 256 LSTM hidden 
units, and maximal accuracy with ~500 or more LSTM nodes. 

Results 
Accuracy and time course  
We present key model behavior results in Fig. 2. Mean 
accuracy on training items was quite high (88%) after 8000 
epochs. Accuracy was 67% for excluded words from trained-
on talkers but only 33% for excluded talkers, with a very wide 
range (4% to 78%). When training resumed with all talkers 
and items included, performance improved rapidly (to 89% 
and 86% for excluded words and talkers, respectively, 93% 
for previously trained-on items).  

 Next, we consider the challenge of simulating the time 
course of HSR (Allopenna et al., 1998). This is a central 
behavioral target in psycholinguistics but has not been 
addressed in deep learning models of speech (Kell et al., 
2018; Nagamine et al., 2015). Our minimal model exhibits 
the correct qualitative pattern for phonological competition 
(Fig. 2B) and makes predictions similar to the gold-standard 
of HSR, TRACE (Fig. 2C; McClelland & Elman, 1986). This 
similarity might suggest that any model that can map speech 
inputs to word-form outputs (as in TRACE) or semantic 
outputs (EARSHOT) would exhibit this human-like time 
course. However, this is not the case. As we noted above, an 
MFCC-based model was able to achieve high accuracy, but 
could not simulate the patterns seen in Figs. 2B and 2C.  

 
Figure 1. Model input and structure. (A) Audio files are 
converted to spectrograms (B), with 256 channels (rows) in 
10 ms steps (columns). Color indicates amplitude (blue-red 
indicates low-high). (C). The model is a standard recurrent 
network, except "long short-term memory" nodes are used in 
the hidden layer, allowing it to become sensitive to multiple 
temporal grains. 
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Unpacking the model 
How can we determine how the model works, and how can 
its mechanisms guide theories of HSR (both cognitive and 
neural)? To address this, we borrowed an approach that 
Mesgarani et al. (2014) developed for decoding human 
electrocorticography data. We presented the model with all 
possible CV and VC vowels, and examined the responses of 
every hidden unit over time. For every hidden unit paired 
with every phoneme, we calculated a Phonetic Sensitivity 
Index (PSI). For example, for unit 239, we would note its 
mean activation in response to /b/ from the onset of /b/ to 100 
ms later. We then subtract unit 239’s response to each other 
phoneme in turn from its response to /b/. When the difference 
is > 0.3, the PSI for {239, /b/} would be incremented. We 
repeat this for all 39 phonemes. The maximum PSI for a unit-
phoneme pair would be 38 (indicating a unit that responded 
more strongly to that phoneme than to any other).  

We calculated the PSI for all unit-phoneme pairs. Then, we 
subjected the resulting unit-by-phoneme matrix to 
hierarchical clustering (Fig. 3). This allows us to ask whether 
phonetic structure emerges as the model learns to map speech 
to semantics, even though no explicit information about 
phonetic features or phonemes is given in training. 

About 50% of hidden units exhibited structured responses 
in the SI time window (20% of electrodes examined by 
Mesgarani et al. [2014] met their inclusion criteria). The 
hierarchically clustered PSI solution bears remarkable 
resemblance to that derived from electrodes in human 
superior temporal gyrus, with selective responses for 

phonetically similar phonemes.  
The PSI analysis reveals an internal phonetic code that 

emerges over training. However, hidden units have more 
complex dynamics than are revealed by the PSIs. Profiles 
include strong responses at phoneme onset, but also delayed 
and sustained responses (see Magnuson et al., 2018). In 
future work, we will explore how the full combination of 
response profiles support EARSHOT’s robust performance. 
It is also possible that the variety of response profiles 
observed in the model could be the basis for hypotheses 
regarding candidate response profiles that might occur in 
human cortical recordings.  

Discussion 
Decades after the lack of invariance problem – the absence 
of invariant cues to speech sounds (e.g., Joos, 1948; 
Liberman et al., 1952; Peterson & Barney, 1952) – was first 
described, speech science offers limited explanations for 
human phonetic constancy. A significant obstacle is that 
computational models of HSR have side-stepped the problem 
of working directly on the speech signal. Instead, models 
have focused on the challenges inherent in spoken word 
recognition beyond initial encoding, using simplified inputs 
such as gradient phonetic features (McClelland & Elman, 
1986), phonemes (Hannagan et al., 2013; You & Magnuson, 
2018), or human phoneme confusion probabilities (Norris & 
McQueen, 2008) instead of real speech. Ironically, 
simplifying assumptions can complicate theoretical 
challenges (Magnuson, 2008) by masking constraints (in this 

 
Figure 2. Model performance. (A) Accuracy by epoch averaged over 10 models. When training resumed with all items included (epochs 
8001-10,000), high performance was achieved quickly for all talkers. (B) Competition time course (correct trials), for 2 criterial competitor 
types. For a target (e.g., CAT), “Cohort” represents mean cosine similarity for words overlapping in the first 2 phonemes (CAN, CASTLE). 
“Rhyme” words rhyme with the target (BAT, SAT). “Unrelated” is the average for all words phonologically dissimilar from the target. This 
pattern closely follows human performance (Allopenna et al., 1998). (C) For comparison, we conducted simulations with the TRACE model, 
with its standard 212-word lexicon, 14-phoneme inventory, and idealized “pseudo-spectral” inputs. Crucially, EARSHOT displays the same 
rank ordering and similar timing for competitor types as the gold-standard TRACE model. 
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case, e.g., prosodic cues to phoneme identity or word length).  
Simplifying assumptions about input were motivated by 

complexity concerns. As McClelland and Elman (1986) 
argued, models aimed at guiding psychological theory must 
prioritize psychological over computational adequacy, 
favoring simplicity and understandability over full, end-to-
end modeling. A comprehensive and robust model that is 
itself too complex to understand offers little guidance to HSR 
theories.  

In developing EARSHOT, our aim was to maximally 
conserve psychological adequacy (i.e., simplicity) in a model 
that takes real speech as input. Borrowing one tool from ASR 
– long short-term memory (LSTM) nodes (Hochreiter & 
Schmidhuber, 1997) – allowed a shallow recurrent network 
to learn to map from speech to pseudo-semantics while 
exhibiting human-like dynamics of lexical activation and 
competition (similar to TRACE; Fig. 2). Generalization (on 
items from trained-on talkers that were not included in 
training, as well as talkers wholly excluded from training) 
was fairly low and quite variable. On the one hand, this 
represents a major advance, since there simply are no other 
cognitive models of HSR that operate on real speech. This is 
the first time such a simple model has been applied to 
problems entailed by doing so (talker variability, etc.). On the 
other hand, relatively low and variable generalization may 

reflect the degree to which the model memorizes training 
patterns. In ongoing work, we are exploring the use of more 
variable inputs, but ultimately, we must move to using open-
ended training items produced by natural talkers. 

Another contrast with other models of HSR is that 
EARSHOT is a learning model. Although we have thus far 
used an unnatural training regimen, EARSHOT allows the 
exploration of more naturalistic learning.  

Admittedly, how the model succeeds in learning to map 
speech to semantics is not yet completely clear. By importing 
techniques from human electrocorticography (Mesgarani et 
al., 2014), we were able to track responses of hidden units to 
specific phonemes (Fig. 3) and observe the model’s emergent 
sensitivity to phonetic structure. It develops this sensitivity 
without any explicit training or information about phonetic 
features or phonemes. Deeper understanding will require 
more complex analyses of not just hidden units, but also 
output units and weight layers.  

However, the preliminary similarity of EARSHOT’s 
hidden unit responses to responses in human superior 
temporal cortex (Mesgarani et al., 2014) suggests that our 
approach has potential for new means of developing 
cognitive models that are potentially linkable to the neural 
substrates supporting HSR. Speculatively, we would propose 
that response profiles observed in hidden units in a model like 

 
Fig. 3. Phonetic sensitivity revealed by hierarchical clustering. Phonetic Sensitivity Index (PSI) based on hidden unit (x-axis) responses in 
the presence of specific phonemes. For every hidden unit-phoneme pair, PSI was incremented for every phoneme to which the hidden unit 
responded substantially more weakly (yellow indicates high selectivity, with maximum PSI of 38, given 39 phonemes). 246 HUs showing 
selective responses are included. We used hierarchical clustering to sort both axes, revealing substantial structure in hidden unit responses. 
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EARSHOT could provide hypotheses for human cortical 
responses. 

In conclusion, EARSHOT may provide a first step towards 
a comprehensive solution to the overarching challenge for 
theories and models of HSR – the lack-of-invariance 
problem. Simulations on previously out-of-reach topics 
(talker and rate variability, etc.) can be conducted with the 
same materials presented to human listeners. Our aim in this 
brief report is to provide a snapshot of the basic properties of 
EARSHOT. In a longer subsequent report, we will describe 
our ongoing work to more fully assess the capabilities of the 
model. 
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