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Abstract
This article describes a new Python distribution of TISK, the time-invariant string kernel model of spoken word recognition
(Hannagan et al. in Frontiers in Psychology, 4, 563, 2013). TISK is an interactive-activation model similar to the TRACE model
(McClelland & Elman in Cognitive Psychology, 18, 1–86, 1986), but TISK replaces most of TRACE’s reduplicated, time-
specific nodes with theoretically motivated time-invariant, open-diphone nodes. We discuss the utility of computational models
as theory development tools, the relative merits of TISK as compared to other models, and the ways in which researchers might
use this implementation to guide their own research and theory development. We describe a TISK model that includes features
that facilitate in-line graphing of simulation results, integration with standard Python data formats, and graph and data export. The
distribution can be downloaded from https://github.com/maglab-uconn/TISK1.0.
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In this article, we introduce an easy-to-use, freely available, and
extensible implementation of the time-invariant string kernel
(TISK) model of spoken word recognition (Hannagan,
Magnuson, & Grainger, 2013). Our motivations in making this
model available follow from our strong belief that models are
essential tools for developing and testing theories of even mod-
erate complexity, and our strong commitment to making models
freely available to promote the replication of simulations, the
comparison of models, and (therefore) the exploration of model
predictions.We briefly discuss thesemotivations in the following
two sections, and then we turn to the details of the TISK model
and of the freely available distribution of the TISK code de-
scribed below.

The utility of computational models
in the brain and cognitive sciences

As Farrell and Lewandowsky (2010) have discussed, replica-
tion in scientific reasoning is a crucial and often overlooked

aspect of the scientific process. They suggest that when theo-
ries are specified verbally, scientists risk engaging in a game
of Btelephone,^ in which different scientists may construe the
same description of a theory in qualitatively different ways,
via disparate mental models. They argue that formal theory
specifications, such as implemented simulation models, pro-
mote replicability of scientific reasoning; rather than intuiting
behavior implied by a theory, it can be observed via simula-
tion, potentially confirming or disconfirming intuitive predic-
tions or producing unexpected behavior. Furthermore, they
point out that implementing a theory requires a high level of
precision regarding not just theoretical assumptions, but con-
crete details such as rates of learning or activation spread.
Note that a theory with just a few Bmoving parts^ (e.g., for-
ward activation flow between levels and lateral inhibition
within levels) quickly becomes Bintuitively intractable^ (i.e.,
one cannot predict its behavior beyond a small number
of steps), or even analytically intractable (i.e., depend-
ing on the dynamics assumed or implied, a model’s
category- or item-specific behavior may not be derivable
by equation). Magnuson, Mirman, and Harris (2012)
have discussed examples from the spoken word recog-
nition literature in which seemingly logical predictions
about what a model would do were not confirmed when
simulations were actually conducted. Thus, the behavior
implied by a theory may often be derivable only by simula-
tion, making models essential tools for theory development
and theory testing.
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There are also pitfalls that come with implementing models,
however.Magnuson et al. (2012) pointed out that implementing
a model also requires grappling with details that may be outside
the scope of the theory, including simplifying assumptions. For
example, in the domain of speech and spoken word recognition
(SWR), most current models do not take real speech as input.
Instead, a temporary simplifying assumption is accepted:
Rather than waiting for all problems at the level of the speech
signal to be solved, assume the input is the output of a prepro-
cessing stage corresponding to a string of abstract phonemic or
phonetic features extracted from speech. As Magnuson (2008)
discussed, such simplifying assumptions can paradoxically
complicate the problem under study (e.g., a focus on
phonemic inputs hides potential subphonemic constraints on
spoken word recognition, as was exquisitely demonstrated by
Salverda, Dahan, & McQueen, 2003) while eventually acquir-
ing a functional status in theoretical reasoning similar to that of
the true theoretical commitments, highlighting some questions
(e.g., the embedding problem in SWR—that most words have
multiple words embedded within them, such as CAT in
CATALOG; McQueen, Cutler, Briscoe, & Norris, 1995), and
masking some others (e.g., sub- and supraphonemic cues to
word length that potentially mitigate embedding; Salverda
et al., 2003; see also Davis, Marslen-Wilson, & Gaskell, 2002).

Even when the simplifying assumptions are clearly identi-
fied as such, they pose challenges for model interpretation,
even (or potentially especially) when they appear to be outside
the scope of a theory (Lewandowsky, 1993). Magnuson et al.
(2012) discussed four decreasingly interesting levels at which
models can fail (or succeed): theory (core predictions, inde-
pendent of details of implementation), implementation (as-
pects of the architecture, such as representation of the input,
output, or model-internal levels), parameters (specific values
governing, e.g., the strength of connections between or within
levels), and linking hypotheses (operational definitions relat-
ing model and human behavior to stimulus properties).

Ideally, experimental simulations have the potential to
identify instances where a core theoretical commitment is
falsified (e.g., [hypothetically] a demonstration that feedback
or lateral inhibition in an interactive-activation model gener-
ates predictions that run counter to human performance).

Implementational details (choices of representations and
model architecture) are a crucial aspect of translating a theory
to a model, but failures (or successes) attributable to this level
cannot falsify a theory (unless all reasonable implementational
choices have been exhausted). For example, evidence for hu-
man sensitivity to subphonemic coarticulatory detail does not
falsify a theory when its corresponding model has been im-
plemented with phonemic-grain inputs; rather, this demon-
strates a limit of a particular simplifying assumption.

Failures (or successes) due to parameter choices (e.g., balance
of bottom-up vs. top-down gain) provide weak evidence at best
against a theory. Demonstrating poor model fit with a particular

set of parameters is virtually meaningless without some explora-
tion of the parameter space (see Pitt, Kim, Navarro, & Myung,
2006, for parameter space partitioning, a formal approach to
model comparison). Conversely, a model success that can only
be observed with a very precise set of parameters must be treated
with caution. Robust tests of parameter dependence require both
exploration of the parameter space and exploration of the attested
performance space. That is, models should be tested on a broad
set of attested phenomena in the biological domain they apply to.
It is particularly problematic whenmodel parameters are adjusted
to simulate a new aspect of performance without simulations
confirming that the model can still simulate other phenomena
to which it was applied with the previous parameter settings.

Finally, model failures due to poor linking hypotheses are not
even wrong; they are simply invalid. Magnuson et al. (2012)
reviewed examples from SWR in which simulations were
invalidated by the use of model input manipulations that were
poor analogues to the materials used with human subjects.

Exploring any of these levels requires implemented models.
Again, crucially, precise predictions that follow from a theory of
even moderate complexity can in many cases only be derived
from simulation with a model. This highlights the pressing need
for freely available, reasonably easy-to-use implementations of
models that implement competing theories.

As we have just discussed, the process of implementing
models to accompany theories pushes scientists to a higher
level of precision, requiring them to separate theoretical com-
mitments from convenient simplifications, while grappling
with details that might never have been considered if the the-
ory had not moved beyond verbal specification (Farrell &
Lewandowsky, 2010; Lewandowsky, 1993; Magnuson et al.,
2012). Ideally, new empirical findings, new theories or exten-
sions of extant theories would be accompanied by simulations
(ideally with multiple competing models corresponding to
competing theories). Replication is also an important concern,
not just with respect to confirming reported simulations, but
also with respect to scientific reasoning; that is, understanding
how and why a model makes the predictions it does (Farrell &
Lewandowsky, 2010). Observing model simulations is a cru-
cial way to gain understanding of a model, and therefore its
corresponding theory (though see the caveats discussed above
regarding levels of model success and failure). It is not rea-
sonable, however, to expect every scientist to have the skills,
time, and financial resources required to implement every (or
even any) model they wish to test or simulate on a new em-
pirical finding. Indeed, despite the complexity of our theories,
simulations are exceedingly rare throughout the brain and
cognitive sciences, and in the domain of SWR in particular.

One partial remedy to this situation is to make models
freely available in formats easy enough for programming nov-
ices to use (requiring that nonprogrammers acquire minimal
programming fundamentals to work with models). In SWR,
only a few key models are available. The original C code for
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the TRACE model (McClelland & Elman, 1986) has been
available from McClelland’s lab for decades. A GUI-based
Java reimplementation of TRACE (no programming required)
that includes facilities for graphing and batch processing was
described a decade ago in this journal (Strauss, Harris, &
Magnuson, 2007). Shortlist B (Norris and McQueen, 2008),
the Bayesian refinement of Shortlist (Norris, 1994), is freely
available on the web from the Norris lab. Other models may
be or may have been available by request to authors, but we
are aware of several models that are not available (due to
author choice [based, e.g., on reluctance to distribute
uncommented code, or even loss of code]). In this article,
we report on a refined implementation of a recent model that
we are making freely available in order to promote its use for
replication, comparison with other models, and possible the-
ory and model extension by other researchers.

The TISK model of spoken word recognition:
A brief overview

Hannagan et al. (2013) introduced the time-invariant string
kernel (TISK) model of spoken word recognition (SWR). Like
TRACE (McClelland & Elman, 1986), the gold-standard for
simulation models of SWR (cf. Magnuson et al., 2012), TISK
is an interactive activation model. One of the great challenges in

simulating SWR is representing sequences. Amodel that simply
activated phonemes as they occurred would not have a way of
representing the order in which they occurred; the phoneme
series corresponding to CAT, TACK, and ACTwould all result
in /k/, /æ/, and /t/ being activated. Other strategies include cre-
ating templates that are sensitive to order by differentially acti-
vating items in sequences based on order (e.g., Grossberg &
Kazerounian, 2011), but such schemes by themselves cannot
encode items with repeated elements (e.g., /rili/ [Breally^] could
not be distinguished from /ril/ [Breal^]). TRACE utilizes a
unique strategy for encoding sequences of arbitrary length and
with repeated elements: it reduplicates time-specific detectors
for features, phonemes, and words in a spatial memory. The
memory Btrace^ is aligned with the inputs such that at each
processing step, a new input is applied to the Bright^ of the
previous input (see Fig. 1). Phoneme detectors aligned with
the inputs become activated, as do word detectors aligned with
the appropriate phoneme nodes that have become activated.
This allows TRACE to represent sequences, including se-
quences with repeated elements (e.g., the two instances of /d/
in /dæd/ [Bdad^] would be encoded by independent /d/ detec-
tors, as would the two instances of Bdog^ in Bdog eat dog^).

The reduplication strategy has often been critiqued, begin-
ning with McClelland and Elman themselves (1986, p. 77).
Hannagan et al. (2013) review some of the arguments, and
Magnuson (2015) makes a case for TRACE as a model building

Fig. 1 TRACE’s reduplication strategy (McClelland & Elman, 1986). The
black squares at bottom indicate the input patterns (which would be features
over time in the actual model), presented in sequence (corresponding to
CAT). The nodes above are part of the Btrace,^ aligned with specific time

slices. Shading of the cells indicates their degrees of activation, with black
indicating a high level and white a low level. The inputs activate phoneme
detectors that align with them even partially, and the activated phoneme
detectors activate the word detectors aligned with them.
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on echoic memory. As Hannagan et al. (2013) concluded, no
matter one’s opinion on the plausibility of the TRACE redupli-
cation strategy, its computational cost (scaling to a realistic pho-
neme and lexical inventory would require ~1.3 million nodes
and more than 40 billion connections) raises the question of
whether a more efficient solution might be possible. Hannagan
et al. (2013) proposed a new model that replaced most of the
time-specific nodes in TRACEwith time-invariant nodes (single
instances rather than reduplicated copies). The key innovation
that allows for this (and that motivates TISK’s name) is a kind of
string kernel representation for sequences.

TISKuses a kind of Bopen-diphone^ coding. To illustrate this,
let us start with a full open, ordered diphone code. For simplicity,
we will use orthographic bigrams rather than phonemic diphone
examples. The idea is that all ordered pairs of letters that occur in
a string are part of that string’s representation, no matter the size
of the gap between two letters. So for CAT, the bigram pairs are
CA, CT, and AT. For DAD, they would be DA, DD, and AD.
For CATALOG, they would be CA × 2, CT, CL, CO, CG, AT,

AA, AL × 2, AO × 2, AG × 2, TA, TL, TO, TG, LO, LG, and
OG. The kernel aspect of this is that we can implement the
encoding as a matrix of all letters by all letters, and then represent
any string as the count of each letter–letter pair that occurs in the
string. Then the operations we wish to perform on the strings
(e.g., comparing similarity between any pair of strings) can be
performed on the string matrices, with any operation taking the
same amount of time, independent of the original string length
(see Hannagan et al., 2013, for more discussion).

Before discussing how TISK implements diphone coding, it
will be helpful to review the structure of the model. TISK has
four key sets of units that take activations and have dynamics
over time (via, e.g., decay of activation), as is schematized in
Fig. 2. (1) Phoneme inputs are time-specific, with a copy of
every phoneme at every time step. The phoneme inputs map
to appropriate (2) diphones and (3) single-phoneme nodes with-
in the n-phone layer. (4) The n-phone layer units map to appro-
priate words. There is lateral inhibition among the word units. In
the original Hannagan et al. (2013) model, which we call BTISK

Fig. 2 The structure of TISK (from Figs. 3 and 4 of Hannagan et al., 2013).
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1.0,^ word-to-n-phone feedback was not implemented. (You &
Magnuson, 2018, report that the model is stable with such feed-
back added, given minor changes to other parameters. Feedback
will allow TISK to account for top-down [lexical-on-phoneme]
influences in spoken word recognition, although the need for
feedback to account for such effects is controversial [see
Norris, Cutler, & McQueen, 2000, for arguments and demon-
strations of how models without feedback can do so]. However,
as Magnuson, Mirman, Luthra, Strauss, & Harris, 2018, have
demonstrated with the TRACE model, there are additional ad-
vantages of feedback in interactive-activation models: Feedback
preserves accuracy and processing speed as noise is added to the
inputs. You & Magnuson report similar benefits in TISK.)

There is a complication to our statement that Bphoneme
inputs map to appropriate . . . diphones^: TISK does not ac-
tually use a simple open diphone coding like the one we de-
scribed above. Instead, it is approximated by a symmetry
network (schematized in Fig. 2). The symmetry network pro-
vides graded activation of diphones, such that the strength of
activation decreases as the gap between phonemes increases.
The symmetry network, with its relation to string kernel ap-
proaches, was inspired by the analysis of a learning network
for visual word recognition, which approximated string ker-
nels through such a symmetry structure (Hannagan,
Dandurand, & Grainger, 2011; Hannagan & Grainger,
2012). Hannagan and Grainger discussed at length the plausi-
bility of string kernels as neural coding strategies.

Relative advantages of TISK and TRACE

Hannagan et al. (2013) demonstrated that the TISK model be-
haves remarkably like TRACE, despite the large differences in
their architectures. Hanngan et al. (2013) documented very sim-
ilar behavior in the two models over time as a function of pho-
nological similarity (e.g., classic differences between cohort and
rhyme competition, as in Allopenna, Magnuson, & Tanenhaus,
1998). They also compared the models at an item grain of anal-
ysis by calculating recognition times (RTs) for every word in the
original 211-word TRACE lexicon for both models. The corre-
lations of the item-specific RTs were high for the twomodels (as
high as .88 for RTs based on a time-based decision rule [target
wins if it is the most highly activated for at least ten cycles], but
still high for a rule based on either a relative threshold [target is
more active than any other word by at least .05, R = .83] or an
absolute threshold [target and no other word exceeds .75, R =
.68]). They further compared models in terms of the influences
of different Blexical dimensions^ on RT, such as the number of
cohorts (onset competitors), number of rhymes, and number of
one-phoneme neighbors (differing from the target by no more
than one phoneme deletion, addition, or substitution). The direc-
tion of the influence of each dimension was the same for both
models. Indeed, lines of best fit (or RTs for every word in the
lexicon plotted against each lexical dimension) were nearly

identical. Thus, TISK performs remarkably similarly to
TRACE in every comparison that has been conducted.

What advantages might TISK have compared to TRACE?
First, consider the practical implications of the replacement of
most time-specific units (TRACE) with time-invariant units
(TISK). Due to its use of time-invariant nodes, TISK scales
muchmore gracefully than TRACE. Hannagan et al. calculated
that to accommodate a realistic inventory of 40 phonemes and
20,000 words, TISK would require approximately 30,000
nodes and 349 million connections, whereas TRACE would
require 1.3 million nodes and 40 billion connections. This pro-
vides important practical advantages for TISK, as well as the
potential for exploring pressing theoretical issues. Although
TRACE has not been expanded beyond a lexicon approaching
1,000 words (Frauenfelder & Peeters, 1998), because it be-
comes impossible to construct many more English (or
English-like) words using only 14 phonemes, expanding
models of SWR to realistic lexicon sizes is a crucial concern,
because the dynamics of lexical activation and competition
may change in interesting ways as words gain more close and
distant neighbors (i.e., words varying in degrees of similarity).1

Expanding the TRACE phoneme inventory is possible, but
is a complex task that has not yet been tackled. However, we
can get rough estimates of how quickly the model could pro-
cess large lexicons by creating lexicons without worrying
about connections to English words. That is, we can generate
three- and four-phoneme words as random sequences of
TRACE phonemes, and then run simulations to assess how
long it takes TRACE to simulate a single word as lexicon size
increases. We did this by creating such a random-sequence
lexicon of 20,000 words that were three or four phonemes
long, and then subset lexicons of 15,000, 10,000, 5,000,
1,000, and 200 words. We would expect processing time per
word to increase with lexicon size because of the increase in
nodes and connections required as lexicon size increases.

With TISK, we can easily expand the phoneme inventory,
and so can use lexicons of real English words. We conducted
exploratory simulations using 43 phonemes and lexicons with a
range of sizes as our TRACE pseudo-lexicons, from 200 words
to 20,000 words.2 We might expect less of a processing time
cost in TISK as the lexical and phoneme inventories are

1 On the other hand, a larger lexicon can make it harder to measure the Bpure^
effects of specific influences because of the myriad interactions that will un-
derlie a word’s activation in the context of a large lexicon. It can be useful to
reduce the lexicon size in order to better understand such Bpure^ effects.
Magnuson (2015), for example, reduced the TRACE lexicon to a single word
in order to isolate the effects of feedback.
2 In these simulations, we did not try to modify the parameters to promote
accuracy. We simply ran the simulations with default parameters to test how
TISKwould scale as lexicon size increased (changes in parameters would have
negligible impact on timing) on a high-end Linux workstation. In future work
we will strive to find parameters for large lexicons that will allow a high level
of accuracy. For now, these explorations demonstrate the feasibility of scaling
TISK to much larger lexicons than are typical for connectionist models of
SWR.
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increased, because of its reliance on time-invariant rather than
time-specific units (as in TRACE). An advantage in our TISK
implementation is the possibility of generating the results of
simulating each word in the lexicon in parallel, using matrix
operations.3 Figure 3 compares the times per word required in
both models as lexicon size increases. Both model
implementations show fairly linear increases in processing time,
but the slope for TISK is much shallower: Processing time for
TISK increases from 226 ms per word with a lexicon of 200
words to 987 ms per word with a lexicon of 20,000 words (thus,
it would take 5.5 h to simulate every word in the 20,000-word
lexicon), whereas the increase is from 319 ms for a 200-word
lexicon in TRACE to 31 s per word for a lexicon of 20,000
words (requiring 172 h [a bit more than 1 week] to simulate
the entire lexicon4). Keeping in mind that TRACE would be
exponentially slowed by increasing the phoneme inventory to
a realistic level, this demonstrates a practical advantage of TISK
over TRACE: It can be scaled more easily to large lexicons.

There are other practical trade-offs between the two models.
The jTRACE implementation (Strauss et al., 2007) has a graph-
ical user interface and graphing capabilities that promote acces-
sibility without programming. TRACE also has a finer-grained
(but still abstract) input representation than TISK (acoustic–pho-
netic features rather than phonemes). However, as we will dem-
onstrate in this article, TISK is very flexible since it is imple-
mented as a Python class; with a modicum of programming
skill, a user can create arbitrarily complex simulation scripts,
and can easily generate graphs as well. The original C code
for TRACE can be similarly scripted, but requires a higher level
of programming proficiency. jTRACE also includes scripting
facilities, but these are unfortunately cumbersome.

Beyond practical considerations, there are other reasons a
researcher might prefer TISK over TRACE, or wish to

compare the models. As we discussed above, the symmetry
network in TISK that provides a form of graded open-diphone
coding is interesting not simply because it allows us to create a
model that behaves very similarly to TRACE with dramati-
cally reduced complexity, but also because of computational
(theoretical) arguments for the utility of such encoding in bi-
ological systems as well as behavioral and brain imaging re-
sults consistent with open bigram coding for visual word rec-
ognition (Hannagan & Grainger, 2012), and evidence that
similar coding may emerge in trained connectionist models
(Dandurand et al. 2013).While arguments and evidence based
on visual word recognition may not transfer to SWR, they
certainly suggest the potential for alternative coding schemes
for SWR. In addition, TISK and TRACE represent quite dif-
ferent theories at Marr’s (1982) algorithmic level. Although
the models have thus far behaved quite similarly, there may be
domains where the two algorithms may in fact make distinct
predictions. By making TISK available, we enable other re-
searchers to explore potential similarities and differences be-
tween the algorithmic theories the models implement.

The need for easy-to-use implementations
of simulating models

Magnuson et al. (2012) and Strauss et al. (2007) have
discussed the importance of testing seemingly logical predic-
tions about models with actual simulations. Magnuson et al.
(2012) reviewed cases in which plausible predictions about
TRACE turned out to be incorrect when simulations were
actually conducted. It is thus crucial that developers of com-
putational models share usable, understandable code or user-
friendly applications (e.g., jTRACE; Strauss et al., 2007) so
that others can replicate key simulations or devise their own
tests of the models.

To that end, we have completely reimplemented the origi-
nal TISKmodel with clear, commented Python code.We have
added convenient features for generating graphs online during
a Python session, saving graphs to a standard (PNG) format,
extracting data to a standard Python scientific format (numpy;
Oliphant, 2007), and saving data in simple text formats. In the
rest of this article, we describe fundamental aspects of
installing and using this new distribution of TISK.

Installing TISK

TISK 1.0 can be downloaded from its github repository:
https://github.com/maglab-uconn/TISK1.0. Those familiar
with git can use git methods to clone the repository (and
possibly contribute modifications or extensions). Novices
can just use the Bclone or download^ option to download
the code to a local computer. TISK is implemented as a

3 Although it might be possible to implement a similar batch function for
TRACE, the memory demands would be exponentially greater, so the function
might not be feasible for large lexicons on modern computers.
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Fig. 3 Processing times per word as lexicon size is increased for TISK
and TRACE.

4 Of course, the TRACE code could likely be optimized, and these speeds could be
improved. However, these results represent the standard C version of TRACE.
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single Python 3 script. Python 3 must be installed before
TISK. TISK imports some standard libraries ( ) but
also requires two additional libraries: numpy and

. Some Python environments (e.g.,
Anaconda with the Spyder Python environment) come
preinstalled with these libraries. We have confirmed that a
Python novice (with some familiarity with integrated
development environments [IDEs] such as RStudio) was able
to get TISK up and running under Spyder using only the
instructions we present here.

TISK 1.0 requires three files:

1. - This is the core Python code
for TISK.

2 . This file corresponds
to the original 211-word TRACE lexicon (McClelland &
Elman, 1986) that was used in the original TISK article
(Hannagan et al., 2013). We explain below how to specify
a different lexicon file.

3. Phoneme_Data.txt This file is actually optional. If it
is not specified, the phoneme list will become the set of
unique phonemes in the pronunciation list. If a

file is specified, the program
will first find all unique phonemes in the lexicon file
and then add any additional phonemes found in

. This allows for cases in which
one might wish for some reason to be able to present the
model with pronunciations that use phonemes not used in
any lexical item. Since the original version of TISK uses
the TRACE lexicon, we originally limited TISK to the 14
phonemes implemented for TRACE:

/p/,/b/,/t/,/d/,/k/,/g/,/s/,/S/,

/l/,/r/,/a/,/e/,/i/,/u/,/^/. Note that pho-

nemes have no internal structure but are simply localist,
all-or-none representations; /p/ is no more similar to /b/
than it is to /u/. The phoneme set can be expanded, with
phonemes being represented by any arbitrary single char-
acter. TISK is case sensitive. So, for example, to add

/æ/, /A/ would be a reasonable substitute.

Running TISK

The first step is setting up the Python environment. Perhaps the
easiest option is to install Anaconda (Continuum Analytics;
https://www.continuum.io/anaconda), a platform-independent
environment. As of September 2017, the default Anaconda in-
stallation comes with Spyder, an IDE for Python that is already
somewhat customized for scientific purposes. It comes with the

and libraries mentioned

above. Once it is installed, launch Spyder. Use the menus or
icons to open a file. Navigate to the directory with the TISK files.
Set the working directory to that location (the working directory
is shown near the top of the Spyder window; click the folder icon
next to the working directory to change it).

Alternatively, use standard Python consoles under the
Windows, Linux, or Macintosh operating systems. iPython is
the recommended environment for working from the console.

Preliminary steps

The following commands prepare TISK for simulations.5 Lines
preceded by B#^ are comments and can be skipped but can also
be pasted into the Python interpreter, since they will be ignored:

# load the TISK functions

import Basic_TISK_Class as tisk

# load the phoneme and pronunciation [word] lists and 
# prepare appropriate connections

phoneme_List, pronunciation_List = tisk.List_Generate()

# initialize the model with the the phoneme_List, 
# pronunciation_List, number of time slots, and threshold

tisk_Model = tisk.TISK_Model(phoneme_List, pronunciation_List,
time_Slots = 10,
nPhone_Threshold = 0.91)

One can load an alternative lexicon file by specifying a
filename in the generate command:

Ten time slots are enough for the words in the default Bslex^

pronunciation_List. However, if the lexicon has longer
words (longer than ten phonemes), the value of
time_Slots can be increased accordingly (or just leave this
p a r a m e t e r o u t : J u s t p u t a B) ^ a f t e r
pronunciation_List and end the command there,
and time_Slots will automatically be set to the length of
the longest word in pronunciation_List). However,
there are cases in which phoneme series longer than the longest
word are required (e.g., to present long nonwords or to present
series of words). In those cases, time_Slots must be adjust-
ed appropriately.6

5 Note that all of the code examples are collected in one Python file at the
github repository (BExample_Code.py^).
6 A reviewer noted that a previous version of TISK allowed the user to set
variables to unworkable combinations (e.g., setting time_Slots to a
value smaller than the largest word in the lexicon creates problems). We have
tried to anticipate unworkable parameter combinations and to include corre-
sponding warnings to the user, but we probably cannot anticipate all possible
problematic parameter combinations. However, if a parameter change alters
themodel’s behavior in a negative way, the user should consider the possibility
that the parameter set must be adjusted.

phoneme_List, pronunciation_List=
  tisk.List_Generate(
  pronunciation_File='other_lexicon.txt')

time, os

matplotlib.pyplot

Basic_TISK_Class.py

Pronunciation_Data.txt

Phoneme_Data.txt

Phoneme_Data.txt

numpy matplotlib.pyplot
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Initialize and/or modify parameters

Before running simulations, you must initialize the parame-
ters. To use the default parameters of TISK 1.0 (Hannagan
et al., 2013), just enter:

# initialize the model with default or current parameters

tisk_Model.Weight_Initialize()

The model does not automatically initialize, because this is
the step at which all connections are made, and so forth, and
initialization can take a long time for a large model with thou-
sands of words. To control specific categories of parameters or
specific parameters, use the following examples:

# change selected TISK parameters

tisk_Model.Decay_Parameter_Assign(
decay_Phoneme = 0.001,
decay_Diphone = 0.001,
decay_SPhone = 0.001,
decay_Word = 0.01)

tisk_Model.Weight_Parameter_Assign(
input_to_Phoneme_Weight = 1.0,
phoneme_to_Phone_Weight = 0.1,
diphone_to_Word_Weight = 0.05,
sPhone_to_Word_Weight = 0.01,
word_to_Word_Weight = -0.005)

tisk_Model.Feedback_Parameter_Assign(
word_to_Diphone_Activation = 0,
word_to_SPhone_Activation = 0,
word_to_Diphone_Inhibition = 0,
word_to_SPhone_Inhibition = 0)

tisk_Model.Weight_Initialize()

To modify a subset of parameters, just specify the
subset, and the others will retain their current values.
For example:

tisk_Model.Decay_Parameter_Assign(
decay_Phoneme = 0.002,
decay_Diphone = 0.0005)

Parameter details

To list the current parameters, enter the following command:

tisk_Model.Parameter_Display()

Note that if the parameters have not yet been initialized,
this will result in an error message. When the parameters are
initialized, this command will return a list like this:

nPhone_Threshold: 0.91
iStep: 10
time_Slots: 10
Phoneme_Decay: 0.001
Diphone_Decay: 0.001
SPhone_Decay: 0.001
Word_Decay: 0.01
Input_to_Phoneme_Weight: 1.0
Phoneme_to_Phone_Weight: 0.1
Diphone_to_Word_Weight: 0.05
SPhone_to_Word_Weight: 0.01
Word_to_Word_Weight: -0.005
Word_to_Diphone_Activation_Feedback: 0.0
Word_to_SPhone_Activation_Feedback: 0.0
Word_to_Diphone_Inhibition_Feedback: 0.0
Word_to_SPhone_Inhibition_Feedback: 0.0

Table 1 describes these parameters.

Changing parameters The example above (under BInitialize
and/or modify parameters^) shows how to change several of
these variables. Others must be modified by changing the
Basic_TISK_Class.py file directly.

Basic methods for TISK simulations, graphing,
and data export

Simulate processing of a phoneme string and graph
results for phonemes and words

Here is an example of a basic command that calls a simulation
of the word Bpat^ (technically, it is more correct to say Ba
simulation of the pronunciation ‘pat’,^ since the user can spec-
ify pronunciations that are not in the lexicon, i.e., the

pronunciation_List):

# trigger a simulation without producing output;
# this prepares a model for inspection

tisk_Model.Display_Graph(pronunciation='pat')

Specifying a pronunciation with this command triggers a
simulation with that phoneme sequence as the input. The user
can specify any arbitrary sequence of phonemes (that is, the
sequence does not have to be a word), as long as the phonemes

are in the phoneme_List, and the sequence length does
not exceed the maximum length.

On its own, this command doesn’t do anything apparent to
the user (though the simulation is in fact conducted). To create
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Table 1 TISK parameters

Parameter Default Description

nPhone_Threshold 0.91 N-phone nodes only send activation to words when 

activation exceeds this threshold.
a

iStep 10 Number of activation cycles between time slots (e.g., if 

iStep is 10, the first phoneme will be presented from 

cycles 0-9, the second from 10-19, etc.).
b

time_Slots 10 Specify the maximum length of words. Time slots will be 

spaced iStep cycles apart.
7

Phoneme_Decay 0.001 Governs how much activation from previous time step is 

retained for phoneme input nodes.

Diphone_Decay 0.001 Decay for diphone nodes.

SPhone_Decay 0.001 Decay for single phone nodes in the diphone layer.

Word_Decay 0.01 Decay for word nodes.

Input_to_Phoneme_Weight 1 Gain from input pattern to phoneme input nodes.

Phoneme_to_Phone_Weight 0.1 Gain: phoneme inputs to appropriate single-phonemes.

Diphone_to_Word_Weight 0.05 Gain from diphones to words containing them.

SPhone_to_Word_Weight 0.01 Gain from single-phonemes to words containing them.

Word_to_Word_Weight -0.005 Lateral inhibition.

Word_to_Diphone_Activation_Feedback 0 Positive weights from words to constituent diphones.
c

Word_to_SPhone_Activation_Feedback 0 Positive weights from words to constituent phonemes.
a

Word_to_Diphone_Inhibition_Feedback 0 Weights from words to non-constituent
d

diphones.

Word_to_SPhone_Inhibition_Feedback 0 Weights from words to non-constituent single phonemes.
b

Parameters were established through trial and error with the goal of obtaining robust, TRACE-like performance. The default parameters were easily
discovered, and limited exploration of the parameter space indicated that a wide range of values would be possible for all parameters, although many
parameters interact, so that changing one may require changes in one or several others in order to maintain performance.

a This threshold relates importantly to time_Slots, and changing time_Slots will lead to a warning and recommendation to adjust the

parameters to conform to the following formula: [iStep x (time_Slots - 1) + 1] / [iStep x time_Slots],

when Phoneme_to_Phone_Weight x time_Slots) ≤ nPhone_Threshold.

b Thus, a simulation will have iStep x time_Slots cycles. So if iStep is 10 and time_Slots is 8, Phone 1 would be sustained over

Cycles 0–9, Phone 2 over Cycles 10–19, and Phone 8 over Cycles 70–79.
c Note that feedback was not used in Hannagan et al. (2013). You &Magnuson, (2018) report that the model is stable with feedback, with minor changes
to other parameters.
d The Binhibition feedback^ nodes are meant for top-down inhibition (consistent, e.g., with the Cohort model). These are connections to diphones or
phones not contained in a word. If this parameter is set to a positive value, words will activate all the sublexical units they do not contain. These
parameters have not been tested, and users are warned that they may radically alter the model’s behavior.
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a graph that is displayed within an IDE, add arguments to
display specific phonemes:

# trigger a simulation and create a phoneme input graph

tisk_Model.Display_Graph(
pronunciation='pat',
display_Phoneme_List = [('p', 0), ('a', 1), ('t', 2)])

This code means Binput the pronunciation /pat/, and
export a graph with phoneme activations for /p/, /a/, and
/t/ in the first, second, and third positions, respectively.^
BPhoneme^ is the label that specifies the phonemic input
units. Since the phoneme input nodes are duplicated at
each time slot, time slots must be specified to select a
phoneme input node. The command above creates a graph
like the one shown in Fig. 4 (displayed in-line in some
IDEs, including Spyder).

We can extend this procedure to create activation graphs
for diphones, single phones, and words. The following exam-
ple creates one of each:

# trigger a simulation and make 3 graphs

tisk_Model.Display_Graph(pronunciation='pat',
display_Diphone_List = ['pa', 'pt', 'ap'],
display_Single_Phone_List = ['p', 'a', 't'],
display_Word_List = ['pat', 'tap'])

This command results in the three graphs shown in Fig. 5. The
diphone and single-phone plots correspond to the units at the n-
phone level, depicted in Fig. 2, whereas the word plot corre-
sponds to theword level. Arbitrarilymany itemsmay be specified

in such commands. To export the graphs in a standard graphics
format (PNG), simply add one more argument to the command:

# trigger a simulation, make 3 graphs, save them as PNG files

tisk_Model.Display_Graph(pronunciation='pat',
display_Diphone_List = ['pa', 'pt', 'ap'],
display_Single_Phone_List = ['p', 'a', 't'],
display_Word_List = ['pat', 'tap'],
file_Save = True)

This command wi l l save the th ree graphs as
p_a_t.Diphone.png, p_a_t.Single_Phone.png, and
p_a_t.Word.png.

The graphs that are produced are fairly basic and may not
suffice for publication. A user could tweak the code to adjust
the graphs, but a more typical procedure would be to export
the underlying data and create publication-ready graphs using
other software, such as R. Let’s next look at the methods for
extracting data.

Extract simulation data to a numpy matrix

The basic method for extracting data as a numpy matrix is as
follows:

# trigger a simulation and ready data structures
# without creating any output

tisk_Model.Extract_Data(pronunciation='pat')

The method is similar to the graphing functions. The
code above is the core command that readies appropri-
ate structures for extraction, but it does not by itself
generate any result for the user. To extract data, argu-
ments specifying the details desired are required. For
example, to get data corresponding to the word plot
above (showing the activations of /pat/ and /tap/ given
the input /pat/), the following command would put the
data in a numpy matrix called result:

# trigger a simulation and assign data structures to 'result'

result = tisk_Model.Extract_Data(pronunciation='pat',
extract_Word_List = ['pat', 'tap'])

When this command is executed, the result variable
becomes a list with length 1, consisting of a single numpy

matrix with shape (2, 100). The first and second rows are the
activation patterns of the word units for /pat/ and /tap/,
respectively.

Let’s try a slightly more complex example.

# trigger a simulation and assign data structures to 'result'

result = tisk_Model.Extract_Data(pronunciation='pat',
extract_Phoneme_List = [('p', 0), ('a', 1), ('t', 2)],
extract_Single_Phone_List = ['p', 'a', 't'])

Fig. 4 Example phoneme input plot.
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Here,result becomes a list with length 2. The first item
is a numpymatrix with the input unit activations for the three
specified phonemes across the 100 steps of the simulation.
The second is a numpy matrix with the activations of the
specified single phonemes in the n-phone layer over the 100
steps of the simulation.

Export simulation data to text files

To export the results to text files, we add a parameter:

This creates a text file called The
file has 102 columns and three lines. The first line is a header,
labeling the columns; the subsequent lines contain the data. The
first column is the input string (Bp a t^), and the second is the
specified word to track (line 2 is Bpat,^ and line 3 is Btap^).

Fig. 5 Examples of diphone, single-phone, and word graphs that can be generated in-line in an IDE.

# trigger a simulation and assign data structures to 'result'

result = tisk_Model.Extract_Data(pronunciation='pat',
extract_Word_List = ['pat', 'tap'])
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Columns 3–102 are activations for the corresponding word in
Cycles 0–99.

Batch simulation of multiple words

Of course, we often want to conduct simulations of many
words. First, here’s an easy way to assess average perfor-
mance on a specified list of items:

# get mean RT and accuracy for the specified set of words

rt_and_ACC = tisk_Model.Run_List(pronunciation_List = 
['baks','bar','bark','bat^l','bi'])

Given this command, the model will simulate the five
words and check the RT and accuracy for each. The
variable 'acc_and_RT' will be a list of six items,
with the mean RT and accuracy for the specified words
computed using three different methods ( abs = based
on an absolute threshold [target must exceed threshold],
rel = relative threshold [target must exceed next most
active item by threshold], tim = time-based threshold
[target must exceed next most active item by threshold
for at least a specified number of cycles]):

rt_and_ACC[0]: Mean of RTabs

rt_and_ACC[1]: Mean of ACCabs

rt_and_ACC[2]: Mean of RTrel

rt_and_ ACC[3]: Mean of ACCrel

rt_and_ACC[4]: Mean of RTtim

rt_and_ACC[5]: Mean of ACCtim

More commonly, one might want to evaluate the mean
accuracy and RT for every word in the current lexicon with
the current parameter settings. The following command would
do this, where we specify the pronunciation_List to
be the full pronunciation_List::

# get mean RT and accuracy for all words in pronunciation_List
rt_and_ACC = tisk_Model.Run_List(

pronunciation_List = pronunciation_List)

The parameters used for the different accuracy
methods can also be modified. The default criteria are:
abs = 0.75, rel = 0.05, tim = 10 (time steps). These
criteria refer to absolute activation values (to win, a
target’s activation must exceed .75), relative activation
values (to win, the target’s activation must exceed all
other words’ activations by at least .05), and time steps
(to win, the target must have the highest activation, and
its activation must exceed that of all other words’ acti-
vations for at least ten time steps). Here is an example
in which the criteria for each accuracy method are
specified:

# get mean RT and accuracy for specified word list with 
# specified accuracy criteria for abs, rel, and tim, respectively

rt_and_ACC = tisk_Model.Run_List(
pronunciation_List = ['baks','bar','bark','bat^l','bi'],
absolute_Acc_Criteria=0.6,
relative_Acc_Criteria=0.01,
time_Acc_Criteria=5)

Often we may want to obtain the RT values for each word in
a list, rather than the mean values. We can do this using the

reaction_Time flag with the Run_List procedure.
Currently, this requires you to specify a file to write the data to
(which could be read back in using standard Python techniques):

tisk_Model.Run_List(pronunciation_List = 
['baks','bar','bark','bat^l','bi'], 
output_File_Name = "Test", 
reaction_Time=True)

T h i s w i l l c r e a t e a n o u t p u t f i l e n a m e d
Test_Reaction_Time.txt. Its contents would be:

Target Absolute Relative Time_Dependent
baks 58 40 46
bar 84 28 33
bark 74 52 56
bat^l 60 39 46
bi nan 23 13

Accuracy is indicated by the value for each word for each
accuracy criterion. Items that were correctly recognized ac-
cording to the criterion will have integer values (cycle at
which the criterion was met). Items that were not will have
values of "nan" (not a number, a standard designation for a
missing value). In the present example, we can see that /bi/
(Bbee^) did not meet the absolute criterion.

If you wanted to obtain the RTs for every word in
your lexicon, you would replace the word list with

pronunciation_List:

tisk_Model.Run_List(pronunciation_List = pronunciation_List,
output_File_Name = "all", 
reaction_Time=True)

Extract data for multiple words in text files

To export the results for multiple words, we can use the
'Run_List' function again, as follows:

# get mean RT and accuracy for specified word list
# with specified accuracy criteria but ALSO 
# save activation histories in 'raw' and 'category' formats

rt_and_ACC = tisk_Model.Run_List(
pronunciation_List = ['baks','bar','bark','bat^l','bi'],
output_File_Name = 'Result',
raw_Data = True,
categorize=True)
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When we run this code, we get text files with what
we call Braw^ and Bcategory^ outputs. Raw files (e.g.,
for this example, Result_Word_Activation_Data.txt) contain
the activations for every word in the lexicon at every time step
for each target specified. The file format is very simple. There
is a one-line header with column labels. The first column is
Btarget,^ the second is Bword,^ and the following columns are
cycles 0–C, where C is the final cycle (which will have the
value [( time_Slots x IStep_Length) - 1]. So, in a
row that begins

baks ad 0.0 0.0 ...

the target is /baks/ (Bbox^), and this row contains the activa-
tion of /ad/ when /baks/ was the target over all time steps. To
find the actual target activations, find the row that has /baks/ in
the first two columns:

The phoneme file (e.g., Result_Phoneme_Activation.txt)
has a similar structure, but it adds the needed phoneme posi-
tion column. Here are some examples for /b/ at Positions 0–3
when the input is /baks/. This shows how the phoneme acti-
vation ramps up slightly after insertion but then begins
to decay:

The diphone file (e.g., Result_Diphone_Activation.txt)
simply contains in each row the target (word), a diphone,
and then the activation of that diphone over time steps, given
that target as input. The single phone fi le (e.g. ,
Result_Single_Phone_Activation.txt) does the same thing
for single phonemes from the n-phone layer.

C a t e g o r y f i l e s ( e . g . , f o r t h i s e x a m p l e ,
Result_Category_Activation_Data.txt) contain several cate-
gories of activations for a given target word (e.g., for /baks/
[Bbox^]):

The Target rows contain the activations of that target
word over time. In addition, for every word, this file
includes the mean activations for different categories of
items. These are:

Cohort: Words matching the target in the first two
phonemes
Embedding: Words embedded in the target (e.g., AT is
embedded in CAT)

Rhyme: Words mismatching the target only at first
position7

Other: The mean of all other words (excluding the target,
cohorts, embeddings, and rhymes)

The BOther^ category provides a rough baseline for
words unrelated to the target, even though it may still

7 In most cases, these are actually rhymes (/kæt/, /bæt/, /sæt/). In cases in
which a word begins with a vowel, they may not be true rhymes (e.g., AND
/ænd/ vs. END /ɛnd/). Rather than coining a new term or using a long descrip-
tion (Bwords mismatching only in first position^), we use Brhyme^ and ask
users to be mindful of the exceptions.

Target Phoneme Position 0 1 2 3 4 5
baks b 0 1 0.999 0.999001 0.999000999 0.999000999 0.999000999

baks b 1 0 0 0 0 0 0

baks b 2 0 0 0 0 0 0

baks b 3 0 0 0 0 0 0

baks baks 0.0 0.0 0.001 0.002557431 0.0044149027022 . . .

Target Category 0 1 2 3 4 5 6
baks Target 0 0 0.001 0.002557 0.004415 0.006421 0.008485

baks Cohort 0 0 0.001 0.002527 0.004313 0.006201 0.008103

baks Rhyme 0 0 0 0 0 0 0

baks Embedding 0 0 0 0 0 0 0

baks Other 0 0 0.000141 0.000352 0.000591 0.000837 0.00108
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contain many related words (e.g., neighbors not includ-
ed in cohorts, embeddings, and rhymes). As long as the
lexicon is large, this provides a good baseline that
should hover near 0.

You can also make graphs that correspond to the category
data. For example, let’s plot the category data for /baks/ (the
resulting graph is shown in Fig. 6).

# trigger a simulation and make a graph

tisk_Model.Average_Activation_by_Category_Graph(
pronunciation_List=['baks'])

We can also get average data and average plots for a set of
specified words. For example, suppose for some reasonwewere
interested in the average category plot for the words /pat/, /tap/,
and /art/ (Bpot,^ Btop,^ and Bart^). We could call this command,
with the result shown in Fig. 7:

# trigger a simulation and make a graph

tisk_Model.Average_Activation_by_Category_Graph(
pronunciation_List=['pat', 'tap', 'art'])

To s ave t h i s g r a ph a s a PNG f i l e , a dd t h e
file_Save=True argument:

# trigger a simulation, make a graph, save them as PNG files

tisk_Model.Average_Activation_by_Category_Graph(
pronunciation_List=['pat','tap', 'art'],
file_Save=True)

By default, the graph associated with this command will be
saved as Average_Activation_by_Category_Graph.png. To
specify a different filename (important if you wish to, e.g.,
loop through many example sets in a Python script), you can
do so as follows:

# trigger a simulation, make a graph, save them as PNG files

tisk_Model.Average_Activation_by_Category_Graph(
pronunciation_List=['pat','tap', 'art'],
output_File_Name='Result',
file_Save=True)

In this case, the exported graph file name will become
Result_Average_Activation_by_Category_Graph.png. By
setting the output_File_Name parameter, you can con-
trol the prefix of exported file name.

To save the corresponding data file in text format, use the
Run_List function:

tisk_Model.Run_List(
pronunciation_List=['pat','tap', 'art'],
output_File_Name='Result',
categorize=True)

Getting comprehensive data for every word
in the lexicon

If we combine our last few examples, we can save activations
for s imula t ions of every word by replacing our

pronunciation_List a r g u m e n t a b o v e w i t h
Fig. 6 Category plot for /baks/ (Bbox^). Because there are no rhymes
(i.e., other words ending in /aks/) or embeddings (words completely
embedded in /baks/) in the lexicon, those lines are not plotted.

Fig. 7 Category graph averaging over the words /pat/, /tap/, and /art/
(Bpot,^ Btop,^ Bart^).
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pronunciation_List (i.e., all words included in
pronunciation_List):

By extension, we can also generate a mean category plot
over every word in the lexicon (with the result shown in
Fig. 8):

One detail is very important to be aware of for category
plots: The category means are based only on cases for which
the competitor type exists. For example, if a word has no
rhyme competitors, the mean rhyme activation for that word
would be 0 at every time step. Our goal is to characterize the
time course of activation for competitor types when they exist.
Thus, we exclude items for which the value would be zero at
every time step because they do not have a certain competitor
type. However, such an itemwould still contribute to the mean
target time course and would be included for other categories
where it did have relevant competitors.

Competitor details

This points to the need, on occasion, to know more about the
details of the competitors for a specific word. TISK includes
special commands for getting this information.

# Getting the competitor information
competitor_List = tisk_Model.Category_List(

pronunciation = 'b^s')

When you use this command, the model will return four
lists. The lists contain the cohorts, rhyme, embedding, and
other words, respectively.

competitor_List[0]: cohort list

competitor_List[1]: rhyme list

competitor_List[2]: embedding list

competitor_List[3]: other list

To see the contents of competitor_List, use the fol-
lowing sorts of command:

# Display cohort list 
print(competitor_List[0])

To see the count of a competitor type, get the length of a
specific list:

# Display rhyme count 

print(len(competitor_List[1]))

You can also inspect the details of the competitors for a list
of words, rather than a single word:

# Display the mean competitor count
tisk_Model.Display_Mean_Category_Count(

pronunciation_List = pronunciation_List)

This command will display the mean number of each com-
petitor type for the specified word list. The preceding com-
mand would display the results for the full default lexicon, as
follows:

Mean cohort count: 4.33018867925
Mean rhyme count: 1.08490566038
Mean embedding count: 1.25943396226
Mean other count: 204.622641509

Batch size control

Depending on the size of your lexicon and the memory avail-
able on your computer, you may see the BMemory Error^
message when you run batch mode. Batch-mode simulation

Fig. 8 Category plot averaging over all words in the original 211-word
TRACE lexicon.

rt_and_ACC = tisk_Model.Run_List(
pronunciation_List = pronunciation_List,
output_File_Name = 'all_words',
raw_Data = True,
categorize=True)

# make a graphfor all words in pronunciation_List

tisk_Model.Average_Activation_by_Category_Graph(
pronunciation_List = pronunciation_List)
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is not possible if the memory of the machine is too small to
handle the size of the batch. To resolve this, you can use the
batch_Size parameter to reduce the size of the batch. This
parameter determines how many word simulations are con-
ducted in parallel. It only controls the batch size, and does not
affect any result. You will get the same result with any batch
size your computer’s memory can handle. The default value is
100. To see whether your computer memory can handle it, you
can test larger values.

rt_and_ACC = tisk_Model.Run_List(
pronunciation_List = pronunciation_List,
batch_Size = 10)

Reaction time and accuracy for specific words

To check specific kinds of RTs for specific words, use com-
mands like these:

result = tisk_Model.Run('pat')
abs_RT = tisk_Model.RT_Absolute_Threshold(

pronunciation = 'pat',
word_Activation_Array = result[3],
criterion = 0.75)

rel_RT = tisk_Model.RT_Relative_Threshold(
pronunciation = 'pat',
word_Activation_Array = result[3],
criterion = 0.05)

tim_RT = tisk_Model.RT_Time_Dependent(
pronunciation = 'pat',
word_Activation_Array = result[3],
criterion = 10)

If TISK has successfully recognized the inserted word,
the RT will be returned. If the model has failed to recog-
nize the word, the returned value is 'numpy.nan'. One
can change the criterion by modifying the parameter
'criterion'.

Alternatively, we could get all accuracy and RT values for a
specific word by using a command we introduced earlier:

rt_and_ACC = tisk_Model.Run_List(pronunciation_List = ['pat'])

More complex simulations

Since TISK is implemented as a Python class, the user
can do arbitrarily complex simulations by writing
Python scripts. Doing this may require the user to ac-
quire expertise in Python that is beyond the scope of
this short introductory guide. However, to illustrate how
one might do this, we include one full, realistic example
here. In this example, we will compare competitor ef-
fects as a function of word length, by comparing com-
petitor effects for words that are three phonemes long
versus words that are five phonemes long. All

explanations are embedded as comments (preceded by
B#^) in the code below. Graphical results are in Fig. 9.

# first, select all words that have length 3 in the lexicon
length3_Pronunciation_List = [x for x in pronunciation_List if
len(x) == 3]

# now do the same for words with length 5
length5_Pronunciation_List = [x for x in pronunciation_List if 

len(x) == 5]

# make a graph of average competitor effects for 3-phoneme words
tisk_Model.Average_Activation_by_Category_Graph(

pronunciation_List = length3_Pronunciation_List)

# make a graph and also save to a PNG file
tisk_Model.Average_Activation_by_Category_Graph(

pronunciation_List= length3_Pronunciation_List,
file_Save=True,
output_File_Name='length_3_category_results.png')

# make a graph and also save to a PNG file
tisk_Model.Average_Activation_by_Category_Graph(

pronunciation_List= length5_Pronunciation_List,
file_Save=True,
output_File_Name= 'length_5_category_results.png')

# save the length 3 data
tisk_Model.Run_List( pronunciation_List = 

length3_Pronunciation_List, 
output_File_Name='length3data', 
raw_Data = True, categorize = True)

Note that when you save data to text files, if you leave out
the " categorize = True " argument, the file with
word results will include the results over time for every target
in the pronunciation list. The first column will list the target,
the second will list the time step, and then there will be
one column for every word in the lexicon (i.e., with the
activation of that word given the current target at the
specified time step).

We see several interesting differences in Fig. 9.
First, three-phoneme targets activate faster (e.g., hitting
a value of .4 about ten cycles sooner than five-
phoneme words). On average, cohort effects appear to
be weaker for longer words, and rhyme effects appear
to be stronger. These results represent testable hypoth-
eses about human SWR. They may also represent test-
able differences between models (e.g., if TRACE or
some other model predicts little or no effect of word
length on the magnitude of competitor effects). We
might also consider competing explanations for the dif-
ferences we see. It could be that cohort effects tend to
be stronger for shorter words because short cohort
pairs will tend to have a greater proportion of overlap
than longer pairs (e.g., three-phoneme pairs will over-
lap minimally in two out of three phonemes, whereas
five-phoneme pairs will overlap minimally in two out
of five phonemes). Similarly, longer rhymes will have
a greater proportion of overlap (four of five phonemes
vs. two of three phonemes). Alternatively, it could be
that shorter words simply tend to have more cohorts
and fewer rhymes than longer words. We can check
this using the display command introduced above; we
leave it as an exercise for the reader to discover
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whether there is a confound of word length with the
competitor counts.

# check competitor counts of length 3 and length 5 lists
tisk_Model.Display_Mean_Category_Count(

length3_Pronunciation_List)

tisk_Model.Display_Mean_Category_Count(
length5_Pronunciation_List)

Of course, this example merely scratches the sur-
face of what is possible, since TISK is embedded
within a complete scripting language. Using standard
Python syntax, we can easily filter words by specify-
ing arbitrarily complex conditions. Here are some
examples:

# Select words with length greater than or equal to 3 with 
# phoneme /a/ in position 2
filtered_Pronunciation_List = [x for x in pronunciation_List if 

len(x) >= 3 and x[2] == 'a']

# make a graph
tisk_Model.Average_Activation_by_Category_Graph(

pronunciation_List = filtered_Pronunciation_List)

# select words with length greater than or equal to 4 with 
# phoneme /a/ in position 2 and phoneme /k/ in position 3
filtered_Pronunciation_List = [x for x in pronunciation_List if 

len(x) >= 4 and x[2] == 'a' and x[3]=='k']

Even more complex examples

These examples scratch the surface of what is possible
with TISK. It is not possible here to include examples
that encompass the full range of simulations that re-
searchers may wish to conduct. We encourage users
who are unsure of how to conduct a desired simulation

to contact us for advice, which we will provide on an
as-available basis.

Ease of use relative to other models

Note that because TISK is implemented as a Python
class, users with a modicum of programming skill can
conduct complex and comprehensive simulations with
TISK much more easily than they could with other im-
plemented models. Consider the example above of the
average competition for cohorts, rhymes, and embed-
dings for three- and five-phone words. Doing this re-
quired six lines of code (six instructions, even though
some are spread over multiple lines for ease of reading).
To do equivalent simulations with TRACE or Shortlist
B, the experimenter would first have to create scripts
outside of the model to identify the desired word sets,
then run the simulations, and then write complex anal-
ysis scripts. The analysis scripts would have to include
algorithms for finding the cohorts, rhymes, and embed-
dings and averaging the activations of those competitor
types over all words included in the simulations.
Despite the greater ease of use afforded by using
Python, which allows the user to flexibly interact with
the TISK class, there is no apparent sacrifice in speed.

Future plans

Our immediate plans for extending TISK include testing
the behavior of TISK with and without feedback, and
whether TISK with feedback continues to operate

Fig. 9 Comparing the competitor time course effects for all three-phoneme words (left) versus all five-phoneme words.
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similarly to TRACE at the item level (You &
Magnuson, 2018), as well as whether TISK exhibits
benefits of feedback similar to those shown by
TRACE (Magnuson et al., 2018). When this project is
complete, we will update the code and documentation at
the github site (https://github.com/maglab-uconn/TISK1.
0) with alternative parameter settings that optimize
TISK’s behavior with feedback. A full discussion of
the utility of a version control repository like github is
beyond the scope of this article, but note that other
researchers who wish to extend TISK may do so and
contribute either to the primary development code of
TISK or create their own Bforks^ on github for
alternative versions.

Conclusions

TISK has advantages over similar implemented models,
such as TRACE (McClelland & Elman, 1986) and
jTRACE (Strauss et al., 2007), because it can be easily
extended to realistic phoneme and word inventories (as
we discussed above). The numbers of nodes and con-
nections required for such expansion are exponentially
less in TISK than in TRACE, thanks to its approxima-
tion of open-diphone coding, which allows most of the
time-specific nodes in TRACE to be replaced with time-
invariant nodes. We hope that by releasing TISK as
open-source software, we will make using TISK possi-
ble for many researchers who might not otherwise at-
tempt to use the model (or any model), and that this
will promote comparisons of TISK and other extant or
future models. We also hope that users who extend or
improve the model will contribute to the github
repository.
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