
TRACE is arguably the most successful model of spo-
ken word recognition (SWR) to date. However, although 
it is widely discussed, it is not widely used. One obstacle 
is that the original implementation in the C programming 
language is opaque to the average psychologist. We present 
jTRACE, a user-friendly cross-platform and free software 
tool that reimplements the TRACE model in the Java pro-
gramming language. jTRACE accommodates the needs 
of both researchers and students, allowing beginners to 
ignore many details of simulation parameters, while giv-
ing powerful scripting tools to advanced users.

This article is structured as follows: This introduction 
will outline our motivations for creating jTRACE. The next 
section will give a primer on how TRACE works and also 
will introduce the graphical user interface of  jTRACE. 
The next sections will describe the principal functions 
that make jTRACE an effective and versatile tool and 
will walk through some useful examples. The final sec-
tion will review some key simulations we have replicated 
in jTRACE and will describe a validation metric used to 
verify that jTRACE simulations are virtually identical to 
simulations performed with the original TRACE imple-
mentation. Readers are encouraged to download jTRACE 

from magnuson.psy.uconn.edu/jtrace and to explore the 
software as they read.

Why jTRACE?
In their seminal article, McClelland and Elman (1986) 

introduced TRACE and described an array of simula-
tions of human-speech-processing tasks. McClelland 
and Elman started from the core principles of the Cohort 
model (Marslen-Wilson & Tyler, 1980) and the interac-
tive activation model of letter and visual word perception 
(McClelland & Rumelhart, 1981) to create an imple-
mented model of speech perception and SWR. Although 
TRACE incorporates key characteristics of spoken word 
processing first worked out in the Cohort model, it is a 
distinct theory, in that it abandoned the rule-based nature 
of the original Cohort model. Instead, there is parallel, 
graded activation of features, phonemes, and words on 
the basis of fine-grained similarity to the input. Interactive-
activation mechanisms, such as bidirectional influences 
between units on different processing levels and lateral 
inhibition between units within a layer, allow TRACE 
to activate multiple phoneme and word candidates and, 
for appropriate lengths of input, eventually select one (in 
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cases in which the input is an unambiguous phoneme or 
word), although there is no built-in moment of recogni-
tion. Instead, phoneme and word recognition emerge as 
series of activation peaks.

The fact that TRACE was fully implemented as a com-
putational model represented a significant advance in the 
specificity of speech perception and word recognition 
models. An implementation requires precise specification 
of mechanisms that correspond to elements of a theory and 
forces the implementer to grapple with difficult input, out-
put, and processing issues that might not be apparent from 
the vantage point of an unimplemented model, and an im-
plemented model generates detailed, falsifiable predictions 
about human behavior. In the original article, TRACE was 
used to account for a variety of speech perception and SWR 
phenomena, including categorical perception of phonemes, 
word segmentation, lexical effects on phoneme perception, 
and perceptual restoration given degraded input.

Although TRACE was introduced 20 years ago, it con-
tinues to be vital in current work in speech perception and 
SWR. Despite well-known limitations (acknowledged in 
the original 1986 article and discussed below), TRACE is 
still the best available model, with the broadest and deep-
est coverage of the literature and, arguably, with the most 
realistic input representation of any current model. Proto-
papas (1999) provides a detailed discussion of TRACE’s 
place in speech perception research.

TRACE has proved extremely flexible and continues 
to spur new research and provide a means for theory test-
ing. For example, it has provided remarkably good fits to 
eyetracking data from recent studies of the time course 
of lexical activation and competition (Allopenna, Mag-
nuson, & Tanenhaus, 1998; Dahan, Magnuson, & Tanen-
haus, 2001), including subtle effects of subphonemic 
stimulus manipulations (Dahan, Magnuson, Tanenhaus, 
& Hogan, 2001). As the prime example of an interactive 
model, TRACE has been of notable importance in an on-
going debate in the SWR literature between proponents 
of purely feedforward (autonomous) models (e.g., Nor-
ris, McQueen, & Cutler, 2000) and proponents of interac-
tion (Elman & McClelland, 1988; Magnuson, McMurray, 
Tanenhaus, & Aslin, 2003; Samuel & Pitt, 2003). Thus, 
TRACE continues to hold a central position in models of 
speech perception and SWR.

However, TRACE is actually used much less than one 
might expect. Instead, although many articles in speech 
perception and SWR discuss TRACE, there is a tendency 
for researchers to make inferences about what TRACE 
would predict on the basis of logical expectations about 
how TRACE should perform on a particular task. Re-
searchers then work from these predictions without con-
firming them via simulation, and in some cases, the intu-
itions turn out to be wrong (for examples in which TRACE 
behaves quite differently than previous researchers had 
expected it would,1 see Dahan, Magnuson, & Tanenhaus, 
2001; Dahan, Magnuson, Tanenhaus, & Hogan, 2001; 
Magnuson, Dahan, & Tanenhaus, 2001; Mirman, McClel-
land, & Holt, 2005).

We expect that researchers are reluctant to do actual 
TRACE simulations because TRACE is difficult to use. 
McClelland and Elman (1986) originally implemented 
TRACE as a C program (which we will call cTRACE when 
referring to implementation-specific details) that has been 
the basis of all TRACE research to date. cTRACE is run as 
a UNIX command line program; parameters and simulation 
data are saved to text files and must be analyzed separately. 
On contemporary desktop computers, cTRACE performs 
single simulations in a few seconds, is straightforward to 
use for users with a modicum of UNIX and/or program-
ming expertise, and has contributed to many publications. 
However, actively using cTRACE can be daunting, be-
cause learning to use the software and determining how to 
process its output require substantial time and effort.

Furthermore, cTRACE adheres to 1980s program-
ming standards, but standards have changed substan-
tially (including improvements in conventions to promote 
shareability and readability). The code is complex and 
somewhat difficult to extend, although extensions to the 
original model have been undertaken to fit SWR data pre-
viously unaccounted for by TRACE. For example, Dahan, 
Magnuson, and Tanenhaus (2001) tested three different 
implementations of lexical frequency in TRACE. Al-
though such extensions may consist of just a few lines of 
code, correctly placing those lines requires understanding 
many details of the original cTRACE code, which, in turn, 
requires hours of study.

These ease-of-use and extension issues were our pri-
mary motivation for reimplementing TRACE. One goal 
was to develop a platform-independent and user-friendly 
TRACE program that includes visualization tools, in order 
to encourage wider use of the model. A corollary goal was 
to develop a programmer-friendly implementation that 
would encourage researchers to extend the TRACE model 
in new ways. The result is jTRACE, a reimplementation 
of TRACE in Java, which can be run on any modern desk-
top computing platform (UNIX, Linux, Macintosh OS X, 
or Windows). jTRACE improves upon the original with 
an easy-to-use graphical user interface (GUI) that allows 
users to set up and run TRACE simulations in minutes 
without any knowledge of programming. Once set up, 
simulation parameters and results can be saved to simple 
output files (in XML format) and shared with colleagues, 
facilitating replications and follow-up studies.

How TRACE Works
The TRACE model is a connectionist network with an 

input layer and three processing layers: pseudospectra 
(feature), phoneme, and word. Figure 1 shows a schematic 
diagram of TRACE. There are three types of connectiv-
ity: (1) feedforward excitatory connections from input to 
features, features to phonemes, and phonemes to words; 
(2) lateral (i.e., within-layer) inhibitory connections at 
the feature, phoneme, and word layers; and (3) top-down 
feedback excitatory connections from words to phonemes 
and from phonemes to features (although the default set-
ting of phoneme–feature feedback is 0.0).
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An external stimulus is passed to the input layer, and 
each processing cycle sends activity along the connec-
tions, changing the activation values in the processing lay-
ers. Parameters govern the strength of the excitatory and 
inhibitory connections, as well as many other processing 
details. However, in most simulations, most or all param-
eters are left at their default values.2

Input and feature layers. The input to TRACE is a 
pseudospectral representation based on acoustic-phonetic 
features (McClelland & Elman, 1986). The input takes 
the form of a 63-dimensional vector for each time step. 
The 63-dimensional vector describes the activation of 
seven acoustic features, each consisting of nine steps in 
a continuum (e.g., from fully voiceless to fully voiced). 
TRACE includes a text-to-“speech” (pseudospectral rep-
resentation) function. The user can type in a string of pho-
nemes from TRACE’s inventory (/ /, / /, / /, / /, / /, / /, 
/ /, / /, / /, / /, / /, / /, / /, / /, and the silence phoneme, 
/-/), and TRACE generates the input representation.

The bottom left window in Figure 2 shows jTRACE’s 
representation of input activations, where the x-axis rep-
resents time, the y-axis represents the 63 acoustic feature 
values, and the darkness of the squares corresponds to 
magnitude of activation. The stimulus in this example is 
the phoneme sequence /- -/, which stands for the 
English word abrupt with a short silence at both ends. 
Each input vector in TRACE is meant to correspond to 

approximately 10 msec of real time,3 and input vectors are 
applied in succession one time slice per cycle.

Note that although an input vector is applied for just one 
time cycle, its impact persists on the feature layer, due to 
slow decay. The activation of a feature unit is the sum of 
(1) its bottom-up input, (2) its top-down input (if phoneme–
feature feedback is on), (3) negative inputs via lateral inhi-
bition from other feature units, and (4) its activation at the 
previous time step, multiplied by a constant decay param-
eter. The fact that feature units remain active after an input 
is applied until they decay back to resting levels means that 
they provide a semipersistent input to the phoneme layer.

Phoneme and word layers. The activation of a pho-
neme unit at a given time step is the sum of bottom-up 
input from features, top-down feedback from words, nega-
tive input from other phoneme units via lateral inhibitory 
connections, and the unit’s activation at the previous time 
step, attenuated by a constant proportional decay. Simi-
larly, the activation of a word unit is the sum of bottom-
up input from phonemes, negative input from other word 
units via lateral inhibitory connections, and the unit’s ac-
tivation at the previous time step, attenuated by a constant 
proportional decay.

The phoneme and word layers have a somewhat complex 
organization, vis-à-vis number and connectivity of units, due 
to TRACE’s twofold representation of time. The passage of 
real time is represented by the successive processing cycles 

Figure 1. Schematic of TRACE’s architecture. Each of TRACE’s lay-
ers is fully connected to the subsequent layer, leading to thousands of 
connections. Unidirectional arrows denote feedforward and feedback 
excitation. Lines with circles on the ends indicate within-layer inhibi-
tion (a tiny subset of connections is shown). Note that although feedback 
from phonemes to features is possible, it is typically set to 0.0.
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that cumulatively reveal more of the external stimulus. As 
a visual aid, the future input in jTRACE is completely ob-
scured at the beginning of a simulation, and its representa-
tion is revealed cycle by cycle (see Figure 2, lower left).

In addition to real time, TRACE represents the temporal 
alignment of the words and phonemes that become activated 
in memory. In the phoneme activation window of Figure 2 
(lower right), activations are plotted using the floating unit 
representation used for some figures in McClelland and 
Elman (1986). The temporal alignment of each activated 
phoneme (relative to the start of the utterance) is indicated 
by horizontal position, whereas the strength of its activa-
tion is indicated by vertical position. This representation 
provides temporal extent; that is, it permits TRACE to 
process sequences of acoustic-phonetic events, clearly a 
requirement for speech perception. The representation of 
time slices also permits multiple phonemes to become ac-
tivated at the same temporal alignment (see the middle of 
the phoneme window, where many phonemes are about 
equally activated and none are strongly activated, indicat-
ing substantial uncertainty about the signal at that point).

As with phoneme units, each word unit has a temporal 
alignment and activation strength and can be represented 
visually as floating units—horizontal alignment and verti-
cal strength. The word layer’s temporal representation per-
mits TRACE to perceive sequences of words arranged in 
time, a requirement for segmentation of continuous speech 
into words. Multiple words can be activated at overlapping 
temporal alignment, and this again is interpreted as uncer-
tainty. In the word activation window in Figure 2 (upper 
right), the word abrupt is most active, but the words agree 
and blood remain active at overlapping alignments.

When TRACE processes /- -/, it will “hear” / / 
occurring once early on and again later in the word. The 
phoneme layer has multiple / / units distributed evenly 
across the temporal alignments, allowing TRACE to 
recognize occurrences of a single phoneme at multiple 
temporal positions. The same principle holds at the word 
layer, allowing TRACE to recognize multiple instances of 
a word, as in dog chases dog.

Another consequence of TRACE’s temporal represen-
tation is that a word unit can become activated on the basis 

of partial bottom-up information. In combination with 
lexical-to-phoneme feedback and lateral inhibition, this 
capacity allows TRACE to model, for example, unique-
ness point effects (Frauenfelder, Segui, & Dijkstra, 1990; 
see Frauenfelder & Peeters, 1998, for an examination of 
uniqueness points in TRACE). As a word is heard, lexi-
cal feedback is passed to all of its constituent phonemes. 
Thus, when only the first few sounds of elephant have 
been presented, later phonemes become somewhat active 
from feedback. Because of lateral inhibition, the fewer 
competitors a word has, the more quickly it will be acti-
vated. Feedback and inhibition will conspire to generate 
faster activation for a word that has an early uniqueness 
point (with competitors overlapping only in the first cou-
ple of phonemes) than for a word that has a late unique-
ness point (with competitors overlapping almost or com-
pletely to its end).

Thus, unit reduplication lays out, in an explicit, spatial 
fashion, the contingencies between activations of units at 
feature, phoneme, and word levels in a way that keeps track 
of the temporal relationships of units within and between 
layers. This architecture is necessary if  TRACE is to rec-
ognize sequences of phonemes and words, as opposed to 
single words aligned with a slot representation (as in the 
interactive activation model of McClelland & Rumelhart, 
1981, among other models). It also allows TRACE to 
solve the segmentation problem (the fact that there are 
no invariant cues to word boundaries in real speech; see, 
e.g., Miller & Eimas, 1995). There is no explicit search 
for word boundaries in TRACE. Rather, activation and 
inhibition result in a series of phoneme and word units 
that temporarily win the competition for “recognition” at 
different points in time.

However, unit reduplication provides a somewhat in-
elegant solution to the temporal representation and seg-
mentation problems (as McClelland & Elman discussed 
in 1986) and has been the target of substantial criticism. 
Norris (1994) cites this “highly implausible architecture” 
as a failing great enough to motivate an alternative model, 
Shortlist. Although claims about the number of nodes 
needed to implement such a scheme tend to overestimate 
a bit,4 the number unit reduplication was intended as an 

Figure 2. The jTRACE simulation panel.



JTRACE    23

abstract characterization of the process, rather than as a 
proposal about its actual neural implementation, which 
is likely to involve distributed, rather than localist, repre-
sentations and a less explicit representation of units such 
as phonemes and words (McClelland, Mirman, & Holt, 
2006).

New Features in jTRACE
We have added many useful new features to TRACE, 

in addition to the GUI. This section will describe 11 of 
jTRACE’s functions that make it a powerful, versatile, 
and user-friendly program. These functions have greatly 
facilitated the replications described in Table 1 and are 
currently leading to the development of new TRACE 
modeling results.

1. Graphical user interface. One obstacle to widespread 
use of cTRACE is the user interface. Although straight-
forward for the initiated, the text-based interface can be 
daunting. The GUI in jTRACE makes the program both 
more approachable and more powerful. In jTRACE, mul-
tiple documents exist within self-contained windows, and 
a menu bar offers such functions as saving, loading, screen 
layout, and help documentation. Figure 3 is a screenshot 
showing multiple windows open in jTRACE.

Each jTRACE simulation “document” consists of three 
tabs. The parameters tab includes a tabular interface for 
modifying simulation parameters. The simulation tab, pic-
tured in Figure 2, offers a real-time visual representation 
of TRACE’s activation levels. The graphing tab permits 
the creation of graphs containing activation values or re-

Table 1 
Simulations Conducted in cTRACE and jTRACE in Order to Validate jTRACE

  Effect and Publication Source  Max SMAD  No. of Simulations

1. Lexical effect on phoneme perception (McClelland & Elman, 1986, p. 24) 0.0016     9
2. Elimination of lexical effects by time pressure (Ibid., p. 26) 0.0009     2
3. Late lexical effects (Ibid., p. 27) 0.0023     6
4. Dependence of lexical effects on phonological ambiguity (Ibid., p. 28) 0.0012     2
5. Absence of lexical effects in some reaction time studies (Ibid., p. 30) 0.0031     2
6. Lexical effects in reaction time studies (Ibid., p. 29) 0.0036     4
7. “Lexical conspiracy” effect (Ibid., p. 33) 0.0022     4
8. Time course of word recognition effects (Ibid., p. 57) 0.0022     2
9. Lexical basis for word segmentation (Ibid., p. 63) 0.0017     4

10. Recognizing words in short sentences (Ibid., p. 69) 0.0067     3
11. Recognition of all items in the SLEX lexicon (Ibid., p. 62) 0.0056   211
12. Nonwords are difficult to segment, but lexical activation facilitates 

segmentation by offering a cue to word boundaries (Ibid., p. 65)
 

0.0011
 

    2
13. Lexical basis for word segmentation, part 2: segmentation of word pairs 

(Ibid., p. 65)
 

n/a
 

  211
14. Phoneme context effects in the stochastic version of cTRACE 

(McClelland, 1991, Figure 9, p. 25)
 

n/a
 

4,500
15. Time course of frequency effects in eyetracking experiment (Dahan, 

Magnuson, & Tanenhaus, 2001, Figure 6, p. 342)
 

n/a
 

   68
16.   Evaluating the contribution of lexical feedback on word recognition 

(Frauenfelder & Peeters, 1998, Figure 4.9, p. 139) 
   

n/a
   

  900

Figure 3. Multiple windows in jTRACE.
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sponse probabilities of words and phonemes. The user can 
open multiple documents at once, each with its own tabs. 
In addition, a scripting window allows sets of simulations 
to be run in a batch mode, with the results exported to files 
for further analysis or displayed within jTRACE.

2. Visualization. The simulation and graphing tabs pro-
vide intuitive visualization tools. In the simulation tab, 
word activations and phoneme activations can be visual-
ized as floating units wherein a unit’s vertical height cor-
responds to the magnitude of its activation. This type of 
visualization is based on diagrams used in the original 
TRACE article. As the simulation progresses in real time, 
these floating units are animated, showing activation val-
ues changing over time. The most active units are auto-
matically selected for inclusion in the floating unit graph.

Input, feature, phoneme, and lexical layers can also be 
visualized with a spectrogram-like grayscale matrix for-
mat, and the input and feature layers are always displayed 
using that format. Figure 4 shows floating unit (left) and 
corresponding matrix (right) representations of word and 
phoneme units. In the feature graphs, each cell corre-
sponds to a single unit aligned with that point in time. In 
the phoneme and word matrix graphs, each cell is aligned 
with the onset of a phoneme or word unit. However, the 
cells are only one time unit wide, despite the fact that the 
units they represent have temporal extent of at least three 
time steps (see Figure 1). But by using only one cell per 
unit and aligning them with unit onsets, all the units for a 
particular phoneme or word can be displayed in a single 
row in the matrix. This provides a compact method for 
examining the activations of entire layers, as opposed 
to a subset of highly active items. In this format, the x-
axis represents the temporal alignment of the units, the 
y-axis represents the individual feature, phoneme, or word 
units being represented, and the darkness of the cells rep-
resents the strength of the activation. Using the control 
buttons (play, rewind, etc.), the matrix representation 
changes with the developing simulation. By dragging the 
mouse over individual cells, their exact numerical activa-
tions are shown in a box below.

The graphing panel, pictured in Figure 5, generates 
graphs of phoneme or word unit activations over time. 

In addition, users may plot response probabilities using 
the Luce (1959) choice rule. Several options for calculat-
ing this measure, based on earlier work (Allopenna et al., 
1998; Frauenfelder & Peeters, 1998; McClelland & Elman, 
1986), are implemented and can be adjusted on the fly. A 
process that previously required custom programming or 
hours with a spreadsheet is now done automatically.

3. Tabbing and cloning. The main window for any 
simulation has three tabs: parameters, simulation, and 
graphing. Multiple simulations may be opened simulta-
neously, since the jTRACE GUI uses a multiple docu-
ment interface approach to manage multiple simulations 
as separate “documents” (see Figure 3 for a screenshot 
illustrating multiple simultaneous simulations), which 
can be moved by hand or arranged automatically. Another 
feature this enables is the ability to “clone” a simulation 
document. Choosing “Clone” from the “File” menu cre-
ates a complete copy of the current simulation, including 
all parameter and graphing settings. This is particularly 
useful if you want to make a change to the input or some 
parameter and then compare those results with your cur-
rent results.

4. Scripting. The scripting panel (Figure 6) automates 
simulation preparation, execution, and analysis. Groups 
of simulations can be performed iteratively over lexical 
items, ranges of parameter values, input values, phoneme 
continua, or even analysis settings. A script consists of a 
hierarchical organization of the following types of expres-
sions. An iterator is an instruction on how to change a 
particular parameter value at each successive simulation. 
A query fetches some information about a simulation and 
optionally processes it (an example of a query is a deci-
sion rule, described below). An action is an instruction to 
save data, run a simulation, change a parameter value, or 
some other simple operation. A conditional asks a ques-
tion about a simulation and directs action on the basis of 
the response to that question (like an if–else statement).

jTRACE visualizes scripts as a tree of expressions. 
Branches and leaves can be added or removed, and the 
details of their processing are specified via a simple in-
terface. A number of scripting templates are included, so 
users never have to start a script from scratch. Each tem-

Figure 4. Comparison of floating unit (left panel) and corresponding 
matrix representations (right panel) of word and phoneme units. Click-
ing on the “tilde” buttons toggles between representations.
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plate takes advantage of a few of the most useful scripting 
tools to accomplish a specific modeling goal. The tem-
plates are useful both for learning about scripting func-
tions and as a resource for designing complex TRACE 
studies. Scripts can be saved to an XML format. Saved 
scripts can be run from the command line without invok-
ing the GUI, in order to speed processing. Advanced users 
may find it useful to write or modify scripts directly in 
XML using a text or XML editor, rather than the GUI. 
The jTRACE user manual contains complete instructions 
on how to use scripting.

5. Decision rules. Several decision rules for interpret-
ing the lexical and phoneme layers of TRACE are imple-
mented in the scripting panel on the basis of rules used 
by McClelland and Elman (1986), McClelland (1991), 
Frauenfelder and Peeters (1998), and recent studies com-
paring TRACE with eyetracking data (Allopenna et al., 
1998; Dahan, Magnuson, & Tanenhaus, 2001). A decision 
rule is a linking hypothesis between word and phoneme 
activations in TRACE and human data. TRACE decision 
rules must consider (1) which units to include as competi-
tors (ranging from only those units that are aligned with 
the target, as in earlier studies, or all units, as in more 
recent ones); (2) how to operationalize “recognition” in 
the case in which the model is used to account for tasks 
such as lexical decision, or how to map activations onto 
fixation proportions over time, in the case of eyetrack-
ing; and (3) whether to transform TRACE activations and 
how. The most common type of scripting used so far with 
jTRACE is one that iterates over lexical items and applies 
a decision rule to test for lexical recognition under a given 
set of simulation parameters.

6. Parameter extensions. Two important extensions to 
the original TRACE model have been implemented in 
jTRACE. The first is Gaussian noise that can be applied 
to any layer (directly to input values, or to any layer of 
processing units). Input noise (external noise) allows sim-
ulation of speech perception in noisy conditions, whereas 
noise added to processing layers (internal noise) makes 
TRACE stochastic, as per McClelland (1991).

Second, the three implementations of lexical frequency 
described by Dahan, Magnuson, and Tanenhaus (2001) 
have been implemented. These are resting level (baseline 
activations are proportional to word frequency), postacti-
vation (the computation of response probabilities includes 
frequency values, which means that frequency does not 
affect the dynamics of lexical activation and competition 
directly), and connection strengths (phoneme-to-lexical 
weights are proportional to word frequency, so that the 
connection from / / to cat would be stronger than that 
from / / to cad ).

7. Save/load features. All the details of a jTRACE sim-
ulation, including parameters, lexicons, raw activation 
values, graph data, decision rule results, and scripts, can 
be saved to external files of different formats. Choosing to 
save files to the .jt format allows them to be reloaded into 
jTRACE later on. We expect these files will be useful for 
sharing among collaborators, for archiving simulations 
in a standard format, and for educational use. Data can 
also be saved to a comma-separated text format, which 
can easily be loaded into another application for analysis. 
Finally, snapshots of graphs and simulation windows can 
be saved to graphics files.

8. Simulation gallery. Since simulations can be saved 
and reloaded, we put together a gallery of saved classic 
simulations (from the validation project described below). 
You simply choose from a list of simulations in the “Gal-
lery” menu. The simulation is loaded, complete with ap-
propriate parameter settings and even graphing windows, 
and so forth, tailored to the simulation. Users can add to 
the gallery by putting their own .jt files in the gallery di-
rectory. So if one were to use jTRACE for a course lab 
session, it would be easy to make a gallery of simulations 
for students to run or a gallery of incomplete simulation 
setups that students could be asked to complete.

9. Modernized code and data formats. jTRACE has 
been coded with contemporary programming practices 
and is thoroughly commented. This will facilitate exten-
sions and exploration of how the code works. We also 
devoted considerable effort to keeping the code flexible 

Figure 5. The graphing panel.
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and extensible, in order to allow others to modify existing 
functions or add new ones. To this end, we have written 
a programmer’s guide, which is available along with the 
source code from the jTRACE Web site. Data output is 
now marked up in XML format, making it much more 
transparent and archivable. The code and data formats 
conform to current standards (for Java and XML).

10. Platform independence. Because jTRACE was 
implemented in Java, the program is completely platform 
independent (the necessary Java virtual machine, or JVM, 
is commonly installed by default when Internet brows-
ers are installed). We have tested jTRACE on Macintosh, 
Linux, and Windows platforms.

11. Validation. jTRACE has the ability to load simulation 
data generated by cTRACE. This allows easy comparison be-
tween the two models for any simulation. A researcher with 
doubts about the accuracy of jTRACE as a reimplementation 
can perform his or her own validation comparisons. This 
function requires some technical skill, however, since one 
must install and compile an augmented version of cTRACE 
that provides output compatible with jTRACE. These tools 
(which we used for the large-scale validation project de-
scribed below) are available from our Web site.

Together, these 11 new features make jTRACE simul-
taneously useful for novice and expert modelers. Nov-
ices (whether students or researchers) can be doing their 
own simple” simulations within a few minutes of starting 
the program or complex batch simulations in less than 
an hour. The standard Java and XML practices we fol-
lowed in developing jTRACE make it ready for advanced 
users and programmers to extend. To illustrate how easy 
jTRACE is to use, the next section will walk through an 
example of running an actual simulation.

A jTRACE Example: Lexical Effects in a 
Reaction Time Study

To illustrate some of the functions discussed so far, we 
offer a walk-through of two simulations from Replica-
tion 7 (see Table 1). McClelland and Elman (1986, p. 33) 
suggested that phonotactic effects on phoneme perception 
may be the result of a “conspiracy” of lexical feedback 

activation acting upon an ambiguous phoneme unit, thus 
causing perception to be biased in favor of the lexical evi-
dence. To investigate the role of lexical feedback in pho-
neme perception, McClelland and Elman created an am-
biguous phoneme, /?/, halfway between / / and / /. They 
placed this phoneme within a lexical context that favors 
the / / interpretation (/ ? /) and another that favors the / /  
interpretation (/ ? /). These contexts are biased in the 
sense that in the TRACE lexicon, as in English, / / and 
/ / occur word initially, but / / and / / do not. Given 
these items, TRACE produces the expected phonotactic 
effect, restoring /?/ as / / in one case and as / / in the other. 
The researchers point out that the context effect in TRACE 
is instantiated by lexical feedback connections; phoneme 
representations do not explicitly encode any positional 
probability values.

To replicate this result in jTRACE, follow these steps.

1. Start jTRACE.
2. From the menu bar, choose File:New model.
3. In the upper right section of the parameters tab of the 

new document:
a. Check “enable continuum.”
b. Set from to l and to to r.
c. Set steps to 3.
d. Set the input string to: -s?i-.

4. Click on the simulation tab.
5. Click “play” at the bottom right, let the simulation 

run for about 60 cycles, and then click “stop.”
6. Click on the graphing tab.
7. Select the analysis tab within the graphing tab, and 

select the following settings:
a. Analyze: phonemes
b. Content: activations
c. Items: specified items
d. Select l and r from the unselected list and move them 

to the selected list by clicking the arrowbutton.
e. Alignment: Either select “specified” and enter 6,or 

choose “Max post-hoc,” which will automatically 
determine that 6 is the best alignment.

Figure 6. An example of the scripting interface.
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 8. Click “update graph.” Note that the / / and / / acti-
vations are identical for about 25 cycles, and then 
begin to diverge as lexical feedback begins to have 
a significant impact.

 9. From the menu bar, choose File:Clone model.
10. In the parameters tab of the new simulation docu-

ment, set the input string to “-t?l-.”
11. Click on the simulation tab.
12. Click “play” at the bottom right, let the simulation 

run for about 60 cycles, and then click “stop.”
13. Click on the graphing tab. All the analysis settings 

done in Step 7 are already in place. The results are 
very similar, except that in this case, the lexical feed 
back was stronger and / / diverges from / / a couple  
cycles earlier than / / diverged from / / in the previ-
ous  simulation.

14. To compare the two simulations, from the menu bar 
choose Window:Tile, so that the two graphing win-
dows may be examined side by side.

Following the steps in this example demonstrates some 
of the features of jTRACE. To learn about other features, 
please see the jTRACE user manual (from the Help menu), 
or just explore the application.

Applications of jTRACE
Research. jTRACE can, of course, be put to all the same 

uses as cTRACE. The visualization tools allow greater in-
sight into the workings of the model online, as simulations 
are carried out. Scripting facilitates conducting complex 
batches of simulations. Although one could run batches 
with cTRACE (simply by creating a text file containing 
every command needed—e.g., to repeat a simulation with 
every word in the lexicon), changing certain parameters re-
quired recompiling the software;5 jTRACE allows you to 
iterate over any parameter in specified step sizes, greatly 
facilitating explorations of parameters spaces and so forth.

Education. Although the new features of jTRACE 
make it extremely powerful for research, it is also easy 
enough to use for inclusion in course labs. Students can 
run the “canned” examples from the gallery and report on 
them. Instructors might, instead, create a simulation and 
save it in the gallery but leave a few crucial steps (param-
eter settings, etc.) for students to complete. In a compu-
tational modeling course or a psycholinguistics course, 
 students could use jTRACE to design their own simula-
tions to explore aspects of speech perception, word recog-
nition, or the model itself (e.g., the role of feedback).

Validating jTRACE
This section will summarize a number of TRACE simu-

lation replications that we have performed using jTRACE. 
Each of these simulations was originally done using 
cTRACE. We selected simulations for replication with the 
goal of assembling a set of simulation replications that 
are representative of the types of effects TRACE has been 
used to study previously. These effects include phoneme 
and lexical tasks, fitting time course data from eyetrack-

ing studies, and McClelland’s (1991) stochastic version of 
cTRACE. Table 1 presents the list of simulations chosen 
for validating jTRACE.

Simulations 1–13 were drawn from the original TRACE 
article and represent the core evidence used by McClelland 
and Elman (1986) to argue for the interactive activation 
framework. The parameter and stimulus sets for each of 
these simulations are bundled with the jTRACE download 
file and can be loaded from the “Gallery” menu. Simulations 
14–16 were based on three studies that extended a particular 
aspect of the TRACE model in order to evaluate complex 
phenomena in speech perception and word recognition.

Simulation 14 was from McClelland (1991). Massaro 
(1989) criticized interactive models because they fail 
to account for evidence of independent combination of 
 bottom-up and top-down information sources. McClelland 
hypothesized that this was due to the absence of any di-
rect analogue to variability in interactive models such as 
TRACE (rather, deterministic interactive models can be 
viewed as models of central tendencies). He therefore 
developed a stochastic version of TRACE (one in which 
noise can be applied to the input and/or processing units, 
allowing its response to the same stimulus to vary from 
simulation to simulation). By running a series of simu-
lations with the stochastic TRACE model, McClelland 
found that it correctly predicted independent stimulus and 
context effects. Simulation 14 replicated the stochastic 
simulations in jTRACE to arrive at the same result.

Simulation 15 was based on three lexical frequency ex-
tensions explored by Dahan, Magnuson and Tanenhaus 
(2001), who conducted eyetracking experiments to assess 
the contribution of lexical frequency to word recognition 
throughout the time course of lexical activation. After ob-
taining data supporting the claim that frequency affects 
lexical access from the earliest moments of processing, 
they compared TRACE fits with three different implemen-
tations of frequency: (1) phoneme-to-word connection 
strengths proportional to word frequency, (2) word-resting 
levels proportional to word frequency, and (3) frequency 
incorporated into a postactivation decision rule. All three 
are implemented in jTRACE.

The final simulation listed in Table 1 is not an exact 
replication. Simulation 16 comes from a recent proj-
ect in which we reexamined Frauenfelder and Peeters’s 
(1998) investigation of lexical feedback. Frauenfelder 
and Peeters (Simulation 6, p. 139) reported that for half 
of the 21 words they examined, turning off lexical feed-
back speeded recognition time. This finding has been 
used to bolster the case against interactive models, since 
it implies that lexical feedback serves no useful function 
(Norris et al., 2000).

We replicated the main finding of that simulation. With a 
similar lexicon (the original was unavailable), about half of 
the items with characteristics like those used in the original 
simulation were recognized more quickly without feedback. 
However, when we tested all the words in the 900-word 
lexicon, we found that the majority (73%) were recognized 
more quickly with feedback than without. Furthermore, 
when we tested recognition of every lexical item with in-
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ure 7 shows that the maximum error between jTRACE and 
cTRACE simulations is indistinguishable from zero when 
compared to the differences between distinct simulations.

The second method for validating replications was to rep-
licate the published figures, or published results, that summa-
rize groups of cTRACE simulations.6 This method applies 
to simulations for which direct comparison is impossible 
and/or to modeling efforts that involve very large batches of 
simulations. This method was used for Replications 13–16. 
We will briefly review the results for each here.

Replication 13. McClelland and Elman (1986) ran-
domly generated 211 word pairs. This created inputs such 
as /- -/ (loose treaty) and /- -/ (trouble 
rock). Each of these pairs was simulated in TRACE. A 
successful parse occurred only if the two most active word 
units during the simulation were the same words as those 
used to create the pair. TRACE successfully parsed 189 
of 211 pairs (90%), and most errors were due to multiple 
possible parses or coarticulatory effects. Although the 
original stimuli were not available, we generated a new 
set of 211 pairs. In our simulations, 194 of 211 (94%) 
pairs were successfully segmented, and errors fell into the 
same categories as in the original simulation.

Replication 14. Although McClelland (1991) deter-
mined that multiple variants of stochastic interactive mod-
els could generate independent integrations of stimulus and 
context, we focused on the intrinsic noise version he used to 
generate his Figure 9. McClelland originally ran 4,500 sim-
ulations (using a case like McClelland & Elman’s [1986] 
lexical conspiracy simulations [Simulation 7 in Table 1 
in this article]) with the stochastic version of TRACE 
and found that it correctly predicted independent stimu-
lus and context effects (as evidenced by parallel effects for 
each context when the results are transformed to z scores; 
McClelland, 1991, Figure 9; see Movellan & McClelland, 
2001, for further discussion). We followed McClelland’s 
report to change various parameters7 and some phoneme 

creasing levels of noise added to inputs, feedback promoted 
greater accuracy and faster recognition. For details about 
this work, see Magnuson, Strauss, and Harris (2005).

Validating replications against the originals. We 
used two methods to validate jTRACE simulations against 
their cTRACE equivalents. The first method applies to 
Simulations 1–12. In these cases, identical simulation pa-
rameters were loaded into both cTRACE and jTRACE, 
and the activation values of the two simulations were com-
pared directly, using a difference metric we call scaled 
mean absolute difference (SMAD). This value between 0 
and 100 summarizes the amount of difference between the 
two simulations; 0 means the two simulations are identi-
cal, and 100 means they are maximally different (e.g., for 
a unit that can have activation ranging from 0.3 to 1.0, 
maximally different would mean the unit had a value of 

0.3 in one implementation but 1.0 in the other).
The SMAD metric is computed as follows:

 SMAD c j100
|| ||

| |

max min
,

v

v v
 (1)

where ||v|| is the number of elements in the four-dimensional 
simulation arrays, vc and vj refer to the iteration over every 
corresponding cell pair in the cTRACE and jTRACE simu-
lation arrays, and max and min are the maximum and mini-
mum unit activation, consistently set to 1.0 and 0.3. The 
metric can thus be interpreted as a percentage of possible 
error.

The SMAD metric was applied to all of the simulations in 
Replications 1–12, amounting to more than 250 individual 
simulations. The SMAD never exceeded 0.007% for any of 
those simulations; the average SMAD score was 0.0018%. 
Table 1 states the largest SMAD score obtained for each 
replication. The largest individual unit difference (the abso-
lute difference between a particular pair of unit activations 
from jTRACE and cTRACE) was below 3%, although the 
majority of the simulation comparisons had maximum unit 
differences below 1%. We conclude that the difference be-
tween each simulation pair—less than 0.007%—is small 
enough to claim that a replication has been performed. 
These minor differences stem from some unavoidable al-
gorithmic changes (e.g., cTRACE relies heavily on pointer 
arithmetic, which is not available in Java), as well as on 
numerical precision and rounding differences.

Figure 7 illustrates how we validated SMAD as a com-
parison metric. One might worry that SMAD scores would 
generally be low, because many units’ activations will be low 
at every time step in a simulation. To provide an indication 
of how meaningful our low SMAD scores are, we sought to 
establish the range of meaningful SMAD scores by compar-
ing simulations using different words—which should result 
in substantially higher SMAD scores than would cTRACE/
jTRACE comparisons. We ran simulations with every word 
in the 213-word SLEX lexicon (the original TRACE lexicon 
used by McClelland & Elman, 1986) and computed SMAD 
scores for all word pairs (a total of 45,369 scores). Compar-
ing a word with itself always resulted in a score of zero. The 
SMAD scores computed from the remaining comparisons 
were enumerated, and the distribution was plotted. Fig-

Figure 7. The distribution of scaled mean absolute difference 
(SMAD) scores (see the text) for comparisons of every word in a 
213-word lexicon to every other word in the lexicon. The maxi-
mum difference between cTRACE and jTRACE (0.007) is much 
closer to zero than is the lower end of the SMAD distribution.
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definitions, and reran all of the simulations in jTRACE. 
We replicated the crucial independence of context and 
stimulus, although our lexical effects were slightly larger 
than those of McClelland. The average root-mean square 
(RMS) error between jTRACE and the original McClelland 
simulation was about 0.16. This is a relatively large differ-
ence (repeated replications with the original code yield 
an average RMS error of about 0.08). Some of the differ-
ence can be attributed to precision differences, but not all 
of it. A closer replication would require line-by-line com-
parison of jTRACE and the modified version of cTRACE 
McClelland developed specifically for this project. Since 
the current version of jTRACE provides a close fit to every 
other cTRACE simulation we replicated, and it provides the 
correct qualitative behavior when tested on the McClelland 
(1991) simulations and, arguably, a reasonably close quan-
titative fit, we did not pursue this further.

Replication 15. Following the methods of Dahan, 
Magnuson, and Tanenhaus (2001), we implemented their 
three frequency mechanisms in jTRACE (resting levels, 
bottom-up connection strengths, and postperceptual bias). 
Using the same lexicon and items, we ran the 68 simula-
tions required for replication of the results shown in their 
Figure 6. jTRACE provided a very close replication, with 
RMS error averaging approximately 0.01 for the three 
mechanisms.

Replication 16. As was mentioned above, an exact rep-
lication of Frauenfelder and Peeters’s (1998) result was not 
possible, because the original lexicon and input set were 
unavailable. When we restricted our analysis to words in 
our large lexicon with the same properties as Frauenfelder 
and Peeters’s (seven phonemes long, uniqueness point at 
position four), we found that there was no general advan-
tage for feedback (see Magnuson et al., 2005). When we 
went beyond their simulations and tested all the words 
in the lexicon, we found that feedback in TRACE speeds 
processing and makes the model robust in noise.

Summary. Strict validation methods were used to ensure 
that replications of previous results were accurate quantita-
tively, as well as qualitatively. Furthermore, the number and 
type of replications performed provides a broad coverage of 
the effects TRACE has been used to model. Thus, jTRACE 
is a faithful reimplementation of cTRACE.

Conclusions
The platform-independent tool jTRACE should be of 

great use to researchers in speech perception and word rec-
ognition. The command line user interface of the original 
cTRACE has deterred its widespread use for basic modeling 
tasks. Several features of the cTRACE implementation have 
deterred extensions to the model. jTRACE resolves these 
two issues by focusing attention on usability and up-to-date 
programming conventions. Concerns about the precision of 
jTRACE as a reimplementation of the original model have 
been addressed by an extensive validation effort.

As TRACE continues to stimulate healthy debate in the 
field, the need for an easy-to-use, platform-independent 
tool that can be used for education, replications, and full-
scale modeling tasks is apparent. Furthermore, as new 
experimental results challenge the modeling capabilities 

of the original TRACE model, increasingly complex ex-
tensions to the model are being proposed. jTRACE offers 
a framework wherein diverse types of extensions to the 
original model can be implemented and combined with 
one another, using simple parameters.
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NOTES

1. Magnuson et al. (2001; see also Dahan, Magnuson, & Tanenhaus, 
2001) and Mirman et al. (2005) will be of particular interest to readers fa-
miliar with previously reported failures of TRACE that included TRACE 
simulations (Marslen-Wilson & Warren, 1994, and Frauenfelder, Segui, 
& Dijkstra, 1990, respectively), since these studies reexamined those 

previous results and demonstrated that these cases were not true failures 
of TRACE.

2. As Frauenfelder once put it in a conference presentation (Frauenfelder 
& Content, 2000), the large number of parameters in TRACE are in “deli-
cate equilibrium.” Caution must be exercised when changing any param-
eters, since a small change in one parameter may result in large changes in 
the model’s behavior, and one cannot be sure that the model will success-
fully perform simulations conducted with other parameter settings.

3. See Dahan, Magnuson, and Tanenhaus (2001) and Dahan, 
Magnuson, Tanenhaus, and Hogan (2001) for examples in which TRACE 
time slices were fit to real time by measuring the number of milliseconds 
per phoneme in stimuli presented to human subjects and relating this to 
the number of TRACE time slices per analogous TRACE stimulus. This 
crude adjustment to experiment-specific speaking rates has thus far al-
lowed very close TRACE fits to time course data.

4. If we assume that the length of the TRACE should be roughly equiv-
alent to echoic memory (2 sec), this requires about 33 reduplications of 
each word. Assuming a lexicon of 100,000 words, this translates into 
millions of word units and dozens of millions of connections. Although 
all parties, including McClelland and Elman (1986), agree that redupli-
cation is not an ideal solution, arguments that the additional units and 
connections required are too great are weak, given a brain with 100 bil-
lion neurons and 100 trillion connections.

5. Primary parameters such as alpha, gamma, decay rate, and so forth 
could be loaded with a file, but changes to other useful parameters, such 
as fslices, which constrains the length of the maximum input string, re-
quire recompiling in cTRACE.

6. Each of the replicated figures is posted on the jTRACE Web site.
7. Note that the reported changes in word–phoneme and phoneme–

word gain generate larger lexical effects than do those reported by 
McClelland (1991), although with the appropriate independent effects 
of bottom-up stimulus and context. The values required for a full quan-
titative replication are word-to-phoneme alpha  .015 and phoneme-to-
word alpha  .03 (as specified in the code provided by J. McClelland).
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