
6
Talker Normalization

Phonetic Constancy as a
Cognitive Process

HOWARD NUSBAUM
JAMES MAGNUSON

6.1 LACK OF IN VARIANCE AND THE PROBLEM OF
PHONETIC CONSTANCY

Human listeners recognize and understand spoken language quite effectively
regardless of the vocal characteristics of the talker, or how quickly the speech is
produced, or what the talker has said previously. Even at the most basic level of
recognizing spoken consonants and vowels, most humans have little difficulty
maintaining phonetic constancy—stable recognition of the phonetic structure of
utterances (Shankweiler, Strange, & Verbrugge, 1977) in spite of variation in the
relationship between the acoustic patterns of speech and phonetic categories that
results from these sources of variability (e.g., Liberman, Cooper, Shankweiler, &
Studdert!Kennedy, 1967). Indeed, the perceptual ability of human listeners has still
not been matched in engineering efforts to develop computer speech!recognition
systems.

Furthermore, even after more than 30 years of scientific endeavor, there are
no theories of speech perception that can adequately explain how humans recog!
nize spoken consonants and vowels (see Nusbaum & Henly, in press). Although
the theoretical problem posed by the lack of invariance in the relationship between
linguistic categories and their acoustic manifestations in the speech signal has
been attacked from a number of different perspectives, such as the use of articu!
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latory knowledge (see Liberman, Cooper, Harris, & MacNeilage, 1962; Liberman
& Mattingly, 1985; Stevens & Halle, 1967) or linguistic knowledge (G.A. Miller,
1962; Newell, 1975) or biologically plausible mechanisms such as feature detec!
tors (Abbs & Sussman, 1971; McClelland & Elman, 1986), none of these ap!
proaches has credibly accounted for phonetic constancy. In theoretical terms,
perhaps the most critical feature of the lack of invariance problem is that it makes
speech recognition an inherentlynondeterministic process.

In order to understand the significance of this, we need to consider briefly the
definition of a finite state automaton (Gross, 1972; Hopcroft & Ullman, 1969). A
finite state automaton is an abstract computational mechanism that can represent
(in terms of computational theory) abroad class of different "real" computational
processes. A finite state automaton (FSA) consists of a set of states (that differ
from each other), a vocabulary of symbols representing inputs, a mapping process
that denotes how to change to a new state given an old state and an input symbol,
a starting state, and a set of ending states. Finite state automata have been used to
represent and analyze grammars (e.g.. Gross, 1972) and other formal computa!
tional problems (Hopcroft & Ullman, 1969). For our purposes, the states in an
FSA representing speech perception can be regarded as denoting internal linguis!
tic states, such as phonetic features or categories, and the input symbols can be
thought of as acoustic properties present in an utterance. The possible orderings
of sequences of permissible states in the processing carried out by the automaton
can be thought of as the phonotactic constraints inherent in language. The transi!
tion from one state to another, which determines those orderings, is based on
acoustic input with acoustic cues serving as the input symbols to the system. This
is a relatively uncontroversial conceptualization of speech recognition (e.g., Klatt,
1979; Levinson, Rabiner, & Sondhi, 1983; Lowerre & Reddy, 1980) and is similar
to the use of finite state automata in other areas of language processing, such as
syntactic analysis (e.g., Chamiak, 1993; Woods, 1973).

A deterministic finite state automaton changes from one state to another such
that the new state is uniquely determined by the information (i.e., next symbol)
that is processed. In speech this means that if there were a one!to!one relationship
between acoustic information and the phonetic classification of that information
(i.e., each acoustic cue denotes one and only one phonetic category or feature), a
wide variety of relatively simple deterministic computational mechanisms (e.g.,
some simple context!free grammars, Chomsky, 1957; feature detectors. Abbs &
Sussman, 1971) could be invoked to explain the apparent ease with which we
recognize speech. Unfortunately, as researchers know all too well by now, this
relationship is much more complex. Instead, there is a many!to!many mapping
between acoustic patterns and phonetic categories, which is referred to as the lack
of invariance problem.

Any particular phonetic category (or feature) may be instantiated acoustically
by a variety of different acoustic patterns. Conversely, any particular acoustic
pattern may be interpreted as a variety of different phonetic categories (or fea!
tures). Although a many!to!one mapping can still be processed by a deterministic
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finite state automaton, because each new category or state is still uniquely deter!
mined, albeit by different symbols or information (e.g., the set of different cues
any one of which could denote a particular feature), the one!to!many mapping
represents a nondeterministic computational problem. Given the current state of
an FSA and the input acoustic information, there are often multiple possible states
to which the system could change. There is nothing inherent in the input symbol
or acoustic information, or in the system itself, that uniquely determines the clas!
sification of that information (i.e., the next state of the system). In other words,
there is a computational ambiguity that is unresolvable given just the information
that describes the system.

The classic empirical demonstrations of the lack of invariance problem come
from early research on perception of synthetic speech (Liberman, Cooper, Harris,
MacNeilage, & Studdert!Kennedy, 1967). Two different second formant (F2)
transitions are heard as /d/ in the context of different vowels (Delattre, Liberman,
& Cooper, 1955) demonstrating that very different acoustic patterns may be inter!
preted as signaling a single phonetic category. As already noted, this kind of
many!to!one mapping between acoustic patterns and phonetic categories can be
processed easily by a deterministic FSA mechanism, whereas the converse case
of a one!to!many mapping has different computational!theoretic implications in!
herent in a nondeterministic mechanism. It is the demonstration that a single
consonant release burst cue may be interpreted as either of two different phonetic
categories /p/ or /k/ depending on the vowel context (Liberman, Delattre, &
Cooper, 1952) which indicates that recognition of phonetic structure is inherently
nondeterministic.

The problem for theories of speech perception is to explain how a listener
can recover the phonetic structure of an utterance given the acoustic properties
present in the speech signal. The real computational problem underlying this,
which must be addressed by theories, is presented by those cases in which one
acoustic cue can be interpreted as more than one phonetic feature or category.
Because this is inherently a nondeterministic problem, it may require a different
kind of computational solution than would be required by a deterministic problem.

6.2 COMPUTATIONAL CONSTRAINTS ON THEORIES OF
SPEECH PERCEPTION

If the one!to!many mapping in speech specifically determines the class of
computational mechanisms that can produce phonetic constancy, this should con!
strain the form of theories that are appropriate to explaining speech perception.
Thus it is important to consider whether or not we need to be concerned about
this kind of computational constraint. If this computational constraint is important
(i.e., it cannot be dismissed or resolved by some trivial solution), it follows that it
is important to consider how well extant theories of speech perception conform to
this constraint.



112 Howard Nusbaum and James Magnuson

Let us start by considering for a moment how we might distinguish between
classes of computational mechanisms (Nusbaum & Schwab, 1986) and how this
distinction relates to the issue of deterministic versus nondeterministic compu!
tational problems. Computational mechanisms can be thought of generally as
consisting of three classes of elements: representations of information, transfor!
mations of the representations, and control structures. Control structures deter!
mine the sequencing of transformations that are applied to representations. When
denned this way, computational mechanisms can be sorted into two types based
on the nature of the control structure. In passive systems the sequence of transfor!
mations is carried out according to an open!loop control structure (MacKay, 1951,
1956). This means that given the same input at two different points in time, the
same sequence of transformations will be carried out so that there is an invariant
mapping from source to domain (in functional terms). For example, in motor
control, a ballistic movement is considered to be controlled as an open!loop sys!
tem. Also, feature detectors can be thought of as operating as passive mechanisms
at least in the overly simplified form that is generally used in psychological mod!
els (Barlow, 1972). Passive systems constitute relatively simple and generally
easily understood computational mechanisms. If speech perception could be car!
ried out by a passive system, such as represented in a deterministic finite!state
automaton, theories of speech perception would be relatively easy to specify and
analyze.

By contrast, in an active system the sequence of transformations is adapdvely
controlled by a closed!loop control structure (Nusbaum & Schwab, 1986). This

"">! means that the flow of computation is contingent on the outcome of certain com!
parisons or tests in a feedback loop. This kind of system is generally used when
there is a need for an error!correcting mechanism that allows systematic adjust!
ment of processing based on the outcome of the transformations and can be used
to address nondeterministic computational problems. Nusbaum and Schwab
(1986) described two different types of active systems. These types of systems
can be thought of as hypothesize!test!adjust or approximate!test!adjust systems.
In the former, higher level knowledge!based processes propose hypotheses that
are tested against bottom!up transformations of input. In the latter, an approximate
classification or target is proposed from the bottom!up, and derived implications
of this approximation are compared with other analyses from either top!down or
bottom!up processing. Both types of active systems have been proposed as im!
portant in various cognitive processes (e.g., Grossberg, 1986; Minsky, 1975;
Neisser, 1967). In an active system, the sequence of transformations may differ

!<^ given the same input in different contexts.
Because the relation between input and output is formally a mathematical

function or computationally deterministic in passive systems, this class of systems
cannot generally address nondeterministic computational problems, where one
input may lead to either of two different states. (This is similar to the constraint
that a mathematical function must produce one and only one value for each input.)
Typically, an active system would be required to address these nondeterministic
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problems. Of course there are some exceptions, such as Hidden Markov Models
(HMM) (Chamiak, 1993; Levinson et al., 1983, for reviews and discussion).
HMMs are nondeterministic finite state automata that handle nondeterministic
computational problems without a closed!loop control structure. Instead they se!
lect one of the alternative states based on statistics estimated from a set of "obser!
vations" made during a "training" process. An HMM resolves nondeterministic
choices by estimating the distributional statistics for those choices and basing the
decision on those statistics.

In general, HMMs have provided the most successful engineering solutions
to the development of speech recognition systems because they explicitly recog!
nize the inherent nondeterministic nature of the recognition problem. The most
accurate and robust commercially available recognition systems are based on
HMMs (e.g., Nusbaum & Pisoni, 1987). However, even though HMM!based
systems are the most successful recognition systems, they do not perform as well
as human listeners (e.g., Klatt, 1977; Nusbaum & Pisoni, 1987). These systems
cannot recognize words in fluent, continuous speech as well as human listeners
can, nor do they handle the effects of background noise or changes in speaking
rate as well as human listeners do. In part, this may reflect the fact that the states
and units of acoustic analysis are more rigid than are employed by human listeners
(e.g., Nusbaum & Henly, 1992). This may also be partly due to the use of statistics
to resolve the nondeterministic nature of the recognition problem; this kind of
statistical approach may really only be a statistical approximation of the kind of
mechanism used in human speech perception.

Rather than approximate a nondeterministic solution statistically, an alterna!
tive is to find a way of restructuring a nondeterministic problem (such as the lack
of invariance problem) that eliminates the nondeterminism. This would make it
possible to use a deterministic mechanism as the basis for phonetic constancy in
speech perception. In computational theory of formal languages, there is a theo!
rem that states that for any nondeterministic system there exists an equivalent !>̂
deterministic system (Hopcroft & Ullman, 1969). Another way to say this is if
there is a nondeterministic systenrsucfiTas the relationship between acoustic cues
and phonetic categories, there exists a deterministic system that can account for
this relationship. On the face of it, this suggests that although there are aspects of
spoken language that might be characterized as requiring nondeterministic pro!
cessing, it is possible to construct a deterministic mechanism to account for pro!
cessing this information. Some deterministic automaton can be constructed that
can provide a complete description of the nondeterministic problem represented
by the mapping of acoustic cues onto phonetic structure. If such a deterministic
description is possible, then this may describe the processing mechanism used in
human speech perception and would allow the use of simpler computational de!
vices such as passive mechanisms.

However, the proof of the theorem regarding the equivalence of a determin!
istic and nondeterministic system places certain constraints on the form of the
deterministic system (Hopcroft & Ullman, 1969). The proof requires the construc!
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tion of a deterministic system that contains states that are different from the
nondeterministic system. Specifically, the new deterministic version of a nonde!
terministic system requires states that represent the disjunction of the set of states
that would have been alternatives in the nondeterministic system. Thus these new
states in the deterministic machine are actually compounds of the old states in the
nondeterministic system. In other words, this does not deterministically resolve
the ambiguity as to which of the states the machine should be in given an input.
Rather it represents and recognizes the ambiguity explicitly as ambiguous states.
So in the /pi/!/ka/!/pu/ example, when given the burst information, a nondeter!
ministic machine could go to either the /p/ state or the /k/ state. A deterministic
machine would have a single state called /p/!or!/k/. Clearly this does not resolve
the lack of invariance problem in a satisfactory way because moving to the /p/!
or!/k/ state would leave ambiguous the phonetic interpretation of the burst cue.
Moreover, because phonetic segments are categorically perceived (Studdert!
Kennedy, Liberman, Harris, & Cooper, 1970), this kind of phonetic perceptual
ambiguity is never found in human listeners.

Another possible way of addressing the problem of a nondeterministic com!
putational problem (or the lack of invariance) may be to change the definition of
the states and the assumed form of the input. In a nondeterministic machine, there
must be at least one state from which there are several alternative states that may
be entered given exactly the same input information. By restructuring either the
states or the input patterns, it might be possible to change a nondeterministic
problem into a deterministic one, without retaining the ambiguity noted above.
(However, I am unaware of any proof of this conjecture.)

For example, take the basic case in which one acoustic cue could lead to
either of two states. If we consider the sequence of states that follow from each
of those two possibilities given subsequent inputs, and the different sequences of
inputs that would give rise to those sequences of states, it may be possible to
convert the nondeterministic system into a deterministic system. Thus, rather than
create compound states from the alternative states as described above, it is possi!
ble to create compound states that represent the alternative sequences of states
that would be entered given a particular sequence of input symbols. This might
require changing the definition of the states to be sequentially constituted and the
definition of the next input to allow different lengths of sequences of acoustic
cues depending on the current state. By the example from the /pi/!/ka/!/pu/
experiment, this would mean that to construct a deterministic system, we would
need states /pi/, /ka/, and /pu/ (i.e., combining the consonant state with the
subsequent vowel state to form a single sequentially defined state). To distinguish
among these states, the input would then need to include information about the
vowel in addition to the burst. In other words, we would be converting a sys!
tem that is nondeterministic in phonetic terms to one that is deterministic in
syllabic terms.

Of course, some speech researchers have proposed just this kind of approach
by redefining the basic units of speech perception (see Pisoni, 1978, for a discus!
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sion) from phonemes to syllables (e.g., Massaro, 1972), or other context!sensitive
units (e.g., Wickelgren, 1969) or to entire linguistic phrases (G. A. Miller, 1962).
Unfortunately, this does not actually solve the problem because the coarticulatory
processes that encode linguistic structure into sound do not respect any particular
unit boundaries (e.g., for syllables, Ohman, 1966) so that the same problem of
lack ofinvariance arises regardless of the size of the unit of analysis. Furthermore,
empirical evidence suggests that listeners do not have a fixed size unit of analysis
for recognizing speech (Nusbaum & Henly, 1992). The listener does not process .'
a fixed amount of speech signal in order to recognize a particular unit. Nusbaum •^!
and Henly (1992) have argued that listeners dynamically adapt the analysis of the
acoustic structure of speech as a result of available linguistic and informational
constraints and the immediate linguistic!perceptual goals.

An alternative approach to restructuring the states and analysis of input is to
change the definition of what is being recognized. For example, the ecological
perspective on speech perception asserts that the states that are being recognized
are phonetic gestures (because these are the distal objects of perception) and the
input is considered to be gestural rather than acoustic (see Best, 1994; Fowler,
1989). Indeed, if we consider theories of speech perception generally, there has
been a tendency to approach the problem of phonetic constancy by redefining the
type of knowledge that is used in perception, often without considering the role
or nature of the computational mechanism that is required. For example, articula!
tory theories (e.g., different forms of motor theory, Liberman et al., 1962; Liber!
man & Mattingly, 1985; and analysis!by!synthesis, Stevens & Halle, 1967) argue
that knowledge of the process of speech production by which linguistic units are
encoded into sound would resolve the lack of invariance problem. By contrast,
Newell (1975) claimed that the acoustic signal underdetermines the linguistic
structure that must be recovered, and so broader linguistic knowledge about lexi!
cal structure, syntax, and semantics must be used to constrain the recognition
process (also see Klatt, 1977; G. A. Miller, 1962). From yet another perspective
Stevens and Blumstein (1978, 1981) have argued, in essence, that the lack of
invariance problem is a result of selecting the wrong acoustic properties for map!
ping onto phonetic features. Thus, their claim is that it is important to carefully
define which acoustic properties are selected as the input tokens. In the Lexical
Access From Spectra (LAFS) model, Klatt (1979) essentially combined this claim
with a redefinition of which linguistic categories were actually being recognized.

However, none of these approaches has been entirely successful or convinc!
ing in explaining phonetic constancy. All depend on the assumption that the
appropriate kind of knowledge or representation will be sufficient to restructure
the nondeterministic relationship between the acoustic patterns of speech and the
linguistic interpretation into a deterministic relationship, but empirical studies are
not encouraging. Measures of speech production show as much lack ofinvariance
in the motor system as there is in the relationship between acoustics and phonetics
(e.g., MacNeilage, 1970). Similarly, there is as much lack of invariance between
sound patterns and larger linguistic units (e.g., syllables, words, etc.) as there is
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with phonemes or phonetic features. And the perspective that better acoustic
knowledge or the right acoustic analysis would provide an invariant mapping has
failed as well. For the paradigm case of place of articulation perception, it turns
out that listeners do not make use of the information that Stevens and Blumstein
(1978, 1981) claimed was the invariant cue. Walley and Carrell (1983) demon!
strated that listeners carry out phonetic classification by using the noninvariant
portions of the signal rather than the invariant portions.

Perhaps theories of speech perception have largely failed to explain phonetic
constancy given the problem of lack of invariance because they have taken the
wrong tack on analyzing the problem. By focusing on a content analysis of the
lack of invariance problem, these theories have tried to specify the type of infor!
mation or knowledge that would permit accurate recovery of phonetic structure
from acoustic patterns. As we have argued, this is an attempt to change the com!
putational structure of the lack of invariance problem from a nondetenninistic
problem to a deterministic problem. Perhaps the failure of these theories to yield
convincing and completely explanatory accounts of phonetic constancy is a con!
sequence of focusing on trying to find a kind of knowledge, information, or
representation that resolves the lack of invariance problem. Instead, a more suc!
cessful approach may depend on acknowledging and analyzing the computational
considerations inherent in a nondeterministic system. The point of this section has
been to argue that it is important to shift the focus of theories from a consideration
of the problem of lack of invariance as a matter of determining the correct repre!
sentation of the information in speech to a definition of the problem in computa!
tional terms. We claim speech perception is a nondeterministic computational
problem. Furthermore, we claim that deterministic mechanisms and passive sys!
tems are incapable of accounting for phonetic constancy. Human speech percep!
tion requires an active control system in order to carry out processing. By focusing
on an analysis of the specific nature of the active system used in speech perception
it will be possible to develop theories that provide better explanations of phonetic
constancy.

Active systems have been proposed as explanations of speech perception in
the past (see Nusbaum & Schwab, 1986), including analysis!by!synthesis (Ste!
vens & Halle, 1967) and Trace (McClelland & Elman, 1986). These theories have
indeed acknowledged the importance of complex control systems in accounting
for phonetic constancy. However, even in these theories, the focus has been
on the nature of the information (e.g., articulatory in analysis!by!synthesis and
acoustic!phonetic, phonological, and lexical in Trace); the active control system
has subserved the role of delivering the specific information at the appropriate
time or in the appropriate manner. Unfortunately, from our perspective, these
earlier theories took relatively restricted views of the problem of lack of invari!
ance (see Nusbaum & Henly, in press, for a discussion). Although all theories of
speech perception have generally acknowledged that lack of invariance arises
from variation in phonetic context speaking rate, and the vocal characteristics of
talkers, most theories have focused on the problem of variation in phonetic context
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alone. By focusing on the specific knowledge or representations needed to main!
tain phonetic constancy over variability in context, these theories developed
highly specific approaches that do not generalize to problems of talker variability
or variability in speaking rate (e.g., see Klatt, 1986, for a discussion of this prob!
lem in Trace; Nusbaum & Henly, in press). For these theories, there is no clear
set of principles for dealing with nondetenninism in speech that would indicate
how to generalize these theories to other sources of variability, such as talker
variability.

Our goal is to specify a general set of computational principles that can i
address the nondeterministic problem posed to the listener by the lack of invari! \
ance between acoustic patterns and linguistic categories (see Nusbaum & Henly, } ̂
in press). If these principles are sufficiently general, they may constitute the basic
framework for a theory of speech perception that can account for phonetic con!
stancy regardless of the source of acoustic!phonetic variability.

6.3 TALKER VARIABILITY AND TALKER NORMALIZATION

Two talkers can produce the same phonetic segment with different acoustic
patterns and different segments with the same acoustic pattern (Peterson & Bar!
ney, 1952). As a result, there is the same many!to!many relationship between
acoustic patterns and linguistic categories as a result of differences in the vocal
characteristics of talkers. Nonetheless, human listeners are usually quite accurate
in recognizing speech regardless of who produces it.

Engineers would love to build a speech recognition system that would accu!
rately recognize speech regardless of who produced it, but this has yet to be done.
Most speech recognition systems require some amount of training on the voice of
the person who will be using the system in order to achieve accurate levels of
performance (Nusbaum, DeGroot, & Lee, 1995; Nusbaum & Pisoni, 1987).
Speech recognition systems would be much more useful if they did not require
this kind of training on a talker's voice. Nonetheless, in spite of two decades of
intense engineering effort directed at building speaker!independent speech recog!
nition systems, this goal has been realized in only the most restricted sense: There
are recognition systems that are relatively accurate for a very small vocabulary
and there are systems that are relatively inaccurate (compared to humans) for
larger vocabularies. In all cases, there are limitations to the set of talkers whose
speech can be recognized. For example, one system that used statistical modeling
techniques achieved a relatively high level of accuracy for speech produced by
talkers from New Jersey, but performance was terrible when the same system was
tested on speech produced by talkers from another dialect of American English
(Wilpon. 1985). Thus from the engineering perspective, it is clear that speaker!
independent speech recognition is an extremely difficult computational task, albeit
one that we, as human listeners, solve all the time, such as whenever we answer
the phone. The correct solution to this problem is probably not based solely on
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the perceptual experience listeners have with a wide range of talkers' vocal char!
acteristics because unlike computer speech recognition systems, we can quickly
generalize to an accent we have never heard before.

There is no deep mystery about why speaker!independent speech recognition
is computationally challenging. Talkers differ in the structure of their vocal tracts
and in the way they produce speech (e.g., Fant, 1973). This results in a nondeter!
ministic relationship between acoustic properties and phonetic categories, which
means that if given a particular acoustic pattern, there is uncertainty about how to
classify it. In order to classify a pattern correctly (i.e., as the talker intended it), it
is necessary to know something about the vocal characteristics of the talker who
produced the speech. This is the crux of the purported solution to phonetic con!
stancy given talker variability, and this is what distinguishes the problem of talker
variability from the problem of variability in phonetic context.

When we consider the problem of talker variability and the theoretical ap!
proaches to speech recognition across talkers, we see very different kinds of
theories than the more general theories described above such as motor theory or
Trace (see Nusbaum & Henly, in press, for a discussion). First, whereas general
theories of speech perception focus on the problem of consonant recognition,
models of talker normalization address the problem of vowel perception. Thus,
different classes of segments are generally targeted by these theories. This is
probably because consonants are most greatly affected by changes in phonetic
context (e.g., Liberman, Cooper, Shankweiler et al., 1967), whereas the effects of
talker differences on vowel spaces are much better understood (e.g., Fant, 1973;
Peterson & Bamey, 1952) than differences in the way talkers produce consonants.
Second, theories of talker normalization fall into two categories depending on the
kind of information used in normalizing talker differences (Ainsworth, 1975;
Nearey, 1989). Some theories use extrinsic information (information from preced!
ing context) to estimate or calibrate the talker's vowel space (e.g., Gerstman,
1968); other theories use intrinsic information, meaning that information within
the acoustic pattern of the segment being recognized is used to achieve phonetic
constancy (e.g., Shankweiler et al., 1977; Syrdal & Gopal, 1986).

Talker normalization is the purported process by which listeners compensate
for differences among talkers in order to maintain phonetic constancy regardless
of the vocal characteristics of the talker. Is this truly a different process from the
process that characterizes the recognition of phonemes in spite of the variability
in acoustic patterns produced by different phonetic contexts? From the term nor!
malization, one might think so. For example, the term normalization has been
used in computational vision to describe a set of passive and simple transforma!
tions that render an input pattern into a canonical form for pattern matching. In
Roberts' (1965) early object recognition system, a set of prototypes or object
templates were used as the basis for determining the identity of an input pattern.
However, it was important to modify the input pattern by appropriate rotation,
size expansion or compaction, and translation across spatial position, to optimally
register the input pattern against the set of templates. If the size of the input and
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templates were different, or their major axes were not in registration, the contours
or other visual features of the input and template set would mismatch for reasons
unrelated to the basic level differences among the pattern properties of the objects
to be recognized. Simple pattern differences due to orientation, distance, or loca!
tion of an object should not affect the recognition of the object, so normalization
processes were proposed, based on relatively simple criteria, that would eliminate
these effects prior to pattern matching.

From this kind of work on computational vision and pattern matching, pattern
normalization has been viewed as a distinct process from the process of recogni!
tion (e.g., see Uhr, 1973). First, normalization processes are typically viewed as
preceding pattern recognition for the purpose of eliminating variation that is not
intrinsic to the definition of a pattern. Second, normalization processes have been
viewed as linear (simple) transformations of the input such as rotation, translation,
and magnification. Finally, these processes have been viewed as passive filtering
mechanisms.

In speech perception, some researchers have assumed that talker normaliza!
tion operates in much the same way, although it is not clear why this should
necessarily be the case. For example, Palmeri, Goldinger, and Pisoni (1993) have
argued from recent data that talker information is retained within the episodic
trace that is encoded during the perception of spoken words. They suggest that if
normalization transforms an input pattern into some canonical form, thereby strip!
ping out talker vocal characteristics, this kind of normalization cannot be carried
out (see also Nygaard, Sommers, & Pisoni, 1994). (We can ignore for present
purposes the fact that there exist parallel multiple representations of any stimulus
pattern in the auditory system such that some may represent transforms of one
kind and others may be relatively untransformed, rendering this logic question!
able.) This assumption is largely based on the structure of many models of talker
normalization: As in computational vision, these may take the form of a passive
filtering process that transforms an input stimulus into some canonical or talker!
independent form for subsequent matching to phonetic categories. The model
proposed by Syrdal and Gopal (1986) is just this kind of system. Bark scaling by
FO and F3 is used to modify the pattern of Fl and F2 of vowels in order to be
compared to a set of prototype vowels. In this regard then, talker normalization is
simply a passive filtering process that precedes the "real" computational work of
recognizing phonetic structure.

Furthermore, the kind of knowledge and information that is used during
talker normalization is thought to be different from the knowledge used to account
for phoneme recognition. In order to carry out talker normalization, it is necessary
to derive information about the talker's vocal characteristics. For example, in
Gerstman's (1968) model, the point vowels are used to scale the location of the
F1!F2 space of all the other vowels produced by a given talker. Because the point
vowels represent the extremes of a talker's vowel space, they can be used to
characterize the talker's vocal tract extremes and therefore bound the recognition
space. Similarly, Syrdal and Copal's model scales Fl and F2 using the talker's
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fundamental frequency and F3 because these are considered to be more character!
istic of the talker's vocal characteristics rather than of vowel quality (e.g., Fant,
1973; Peterson & Bamey, 1952). Thus, talker normalization models use infor!
mation about the talker's vocal characteristics rather than information about
the specific message or phonetic context, as in models of phoneme perception
such as Trace (McClelland & Elman, 1986) or Motor Theory (Libennan, Cooper,
Hams, & MacNeilage, 1962) or analysis!by!synthesis (Stevens & Halle, 1967)
or the Fuzzy Logical Model of Perception (Massaro, 1987; Massaro & Oden,
1980).

From all these considerations it appears that there is a belief among speech
researchers that coping with talker variability is a different kind of process from
coping with variability due to phonetic context. Thus in spite of the traditional
acknowledgment that the lack of invariance problem in speech is manifest due to
variability in context, speaking rate, and talker, this really means that there are
different variability problems that require different theoretical solutions. Even in
more recent models such as Trace, Elman and McClelland (1986) made the argu!
ment that speech perception requires a general approach to coping with "sources
of lawful variability" in speech. However, Trace itself is highly specialized to
address the specific problem of coping with variability due to phonetic context,
and there is no set of general principles presented that would permit extension of
this model to address talker variability or speaking rate variability (see Klatt,
1986, for a discussion). In spite of the general claims, and although seldom ex!
plicitly presented this way, the modal theoretical view of speech perception is that
there are a set of specialized normalizing processes that act as passive filters (e.g.,
one for speaking rate, cf. J. L. Miller & Dexter, 1988; one for talker vocal char!
acteristics, Syrdal & Gopal, 1986) that transform the input signal into some ca!
nonical form for comparison to a set of linguistic category prototypes. This final
prototype!matching operation is the focus and concern of most theories of speech
perception (e.g., Liberman et al., 1962; Massaro, 1987; McClelland & Elman,
1986).

Although this is the modal view, we claim that this balkanization of speech
perception is part of the reason that adequate theories of speech perception have
not emerged (see Nusbaum & Henly, in press). This kind of dissociation of spoken
language understanding into separate perceptual problems may be a result of the
fundamental approach that most theories have taken to speech perception. As we
noted in the previous discussion of the general problem of lack of invariance,
most theories have focused on an analysis of the kinds of knowledge or informa!
tion representations needed by a perceiver to achieve phonetic constancy, even
though this kind of content analysis or informational analysis cannot be expected
to yield an effective account of phonetic constancy over variability in phonetic
context without a consideration of the required computational control mecha!
nisms. If a theory focuses only on the information that is relevant to determining
a talker's vocal characteristics or relative speaking rate or identifying phonetic
context, this will definitely make the effects of talker variability, context variabil!
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ity, and rate variability look like different kinds of perceptual problems. But a f| \.
consideration of the computational structure of the problem leads to a different IJ v\

conclusion.
Because talker variability results in a one!to!many mapping between acoustic

cues and phonetic categories, talker variability presents the same kind of nonde!
terministic computational problem that arises because of variation in phonetic
context. This has two immediate implications. First, it is possible that a common
computational architecture may mediate phonetic constancy resulting from either
of these sources of variability. Indeed, it seems plausible to look for a general
computational mechanism that could account for phonetic constancy as a general
approach to coping with all forms of lawful variability (Elman & McClelland,
1986). Second, if talker variability results in a nondeterministic computational
problem, as noted earlier, normalization cannot be accounted for by passive trans!
formations, even if it may appear that way from some of the simple computational
models and restricted analyses carried out (e.g., Gerstman, 1968; Syrdal & Gopal,
1986). These models take the simplest case possible and, because they are re!
stricted to steady state vowels, may not be reflective of the entire scope of the
talker normalization problem. Steady state vowels are seldom found in fluent
speech where vowels are coarticulated into consonant contexts. However, even
when constraining the problem of talker normalization to vowel space differences,
these models are still not as accurate as human listeners (e.g., Syrdal & Gopal,
1986). By addressing only the problem of vocal tract scaling (Fant, 1973), these
models cannot really address the problem of consonant perception. Vocal tract
size differences will definitely affect the acoustic patterns of consonants but prob!
ably not in the simple way it does for steady state vowels. However, the speech of
talkers differs in more than just the effects of differences in vocal tract size. Two
talkers may use different cues, cue combinations, and coarticulation functions to
express consonants (e.g., Dorman, Studdert!Kennedy, & Raphael, 1977). These
kinds of effects are compensated for by the listener (e.g., Johnson, 1991; Nusbaum
& Morin, 1992; but see Rand, 1971), and the vocal tract scaling models give no
indication about how this is accomplished.

At this point, the concept of "lawful variability," introduced by Elman and
McClelland (1986) becomes germane. They argued that speech is restructured in
speech production to present a lack of invariance (cf. Liberman, Cooper, Shank!
weiler et al., 1967) not through capricious or random processes, but through
structurally regular processes that impose this variability in systematic ways. To
recognize speech, it is important to deconvolve these sources of lawful variability.
At this level of description, this is also similar to claims made by Fowler and
Smith (1986) regarding a "vector analysis" of speech. The moment!by!moment
output acoustic signal is the instantaneous result of the convolution (or by their
terminology, vector sum) of a set of sources of variability, including the phonetic
context, the talker's vocal characteristics, and the speaking rate. In order to recover
the phonetic structure, it is necessary to undo all these effects, although there is
no explicit statement of how to accomplish that.
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Both of these descriptions of speech perception share something in common,
although neither provides a clear description of this commonality nor a clear
theoretical solution. Both seem to acknowledge that there is a basic structural
similarity to the recognition problem posed by variability in phonetic context and
vocal characteristics but do not articulate its nature. Our claim is that this struc!
tural similarity is a consequence of the basic nondeterministic nature of the rela!
tionship between acoustic cues and linguistic categories that is imposed by these
sources of variability. Furthermore, if it is the case that these sources of variability
impose a nondeterministic computational structure on the problem of perception,
then it must follow that we can reject all theories that have an inherently passive
control structure. In other words, it is our contention that phonetic constancy must
be achieved by an active computational system (e.g., Nusbaum & Henly, in press;
Nusbaum & Morin, 1992; Nusbaum & Schwab, 1986).

6.4 EMPIRICAL EVIDENCE FOR ACTIVE PROCESSING IN
TALKER NORMALIZATION

Active control systems employ a feedback loop structure to systematically
modify computation in order to converge on a single, stable interpretation
(MacKay, 1951, 1956). By comparison, passive control structures represent in!
variant computational mappings between inputs and outputs. In consideration of
this distinction, there are two general patterns of behavioral performance that can
be taken as empirical evidence for the operation of an active control system (see
Nusbaum & Henly, in press; Nusbaum & Schwab, 1986, for a discussion). First,
evidence of load sensitivity in processing should provide an argument for active
processing. There are several ways to justify this claim. For example, automatized
processing in perception occurs when there is an invariant mapping between
targets and responses, whereas controlled—load!sensitive—processing occurs
when there is uncertainty regarding the identity of targets and distractors over
trials or when there is no simple single feature difference to distinguish targets
and distractors (e.g., Shiffrin & Schneider, 1977; Treisman & Gelade, 1980). In
other words, when there are multiple possible interpretations of a stimulus pattern,
processing shows load sensitivity, which may be manifest as an increase in pro!
cessing time, a decrease in recognition accuracy, or an interaction with an inde!
pendent manipulation of cognitive load (Navon & Gopher, 1979) such as a digit
preload task (e.g., Baddeley, 1986; Logan, 1979). Logically, if there are multiple
interpretations for a particular pattern, these alternatives must be stored and pro!
cessed simultaneously increasing possible memory load or processed in some
serial fashion leading to an average increase in response time compared to condi!
tions without this uncertainty.

Second, active processing is indicated by the appearance of processing flexi!
bility as demonstrated by the effects of listener expectations, context effects,
learning, or other forms of on!line strategic processing. Although an active pro!
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cess need not demonstrate this kind of flexibility, a passive process by virtue of
its invariant computational mapping certainly cannot. This means, for example,
that evidence for the effects of higher order linguistic knowledge on a lower level
perceptual task, such as lexical influence on phonetic recognition (e.g., Ganong,
1980; Nusbaum & Henly, in press; Samuel, 1986), should implicate an active
control system in processing.

There is definitely a great deal of evidence arguing that speech perception is
load sensitive under conditions of talker variability. For example, the accuracy of
word recognition in noise and word recall is reduced when there is talker variabil!
ity (speech produced by several talkers) compared to a condition in which a single
talker produced the speech (Creelman, 1957; Martin, Mullennix, Pisoni, & Sum!
mers, 1989; Mullennix, Pisoni, & Martin, 1989). Talker variability also slows
recognition time for vowels, consonants, and spoken words in a number of differ!
ent experiments using a range of different paradigms (Mullennix & Pisoni, 1990;
Nusbaum & Morin, 1992; Summerfield & Haggard, 1975). This provides some
basic evidence that perception of speech is sensitive to talker variability, but does
not really indicate why this occurs.

One possibility is that the increase in recognition time could reflect the addi!
tion of a separate talker normalization process to the recognition process (e.g.,
Nusbaum & Morin, 1992; Summerfield & Haggard, 1975). This hypothesis of
inserting a passive normalizing mechanism is consistent with the general perspec!
tive of this research area as we outlined earlier. However, Nusbaum and Morin
(1992) demonstrated that an independent manipulation of load, using the digit
preload method (Baddeley, 1986; Logan, 1979) produces an interaction with
talker variability. When listeners hear speech produced by a single talker, recog!
nition time is unaffected by increases in the size of this visually presented digit
memory load. Talker variability by itself does slow recognition time (Nusbaum &
Morin, 1992). However, when there is uncertainty about which talker could have
produced the speech, increasing the memory load slows recognition time even
more. There is no reason why adding a passive normalization stage would interact
with the memory load. But if increasing talker variability increases the number of
alternative interpretations that must be tested in order to recognize an utterance,
we would expect this to interact with memory load (see Nusbaum & Morin, 1992).

These studies all indicate that talker variability increases the cognitive load
of the listener and increases the difficulty of recognizing speech. On the one hand,
as we argue above, this provides one kind of evidence supporting the idea that
listeners recognize speech using an active computational mechanism to resolve
the inherent nondeterminism presented by talker variability. On the other hand,
there has been some research that implies that listeners may not engage in talker
normalization during speech perception (Nygaard et al., 1994; Palmeri et al.,
1993) based on two kinds of evidence: the first claim is that increasing the amount
of talker variability (in terms of number of talkers) beyond simply having two
talkers does not affect performance in a memory task (Palmeri et al., 1993). The
second claim is that information about the talker is encoded into the episodic trace
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representing a spoken item in memory. This is considered critical because Ny!
gaard et al. (1994) and Palmeri et al. (1993) assume that talker normalization must
strip talker!specific information out of an utterance prior to—indeed as a precon!
dition to—its recognition. Therefore, this information could not be present in an
episodic trace of the item in a memory study.

Neither of these arguments presents a strong challenge to the claim that
listeners engage in talker normalization, as Palmeri et al. acknowledge. The first
issue is only significant if somehow the normalization process keeps track of how
many talkers there are or somehow depends on variability defined over a very
broad span of speech (i.e., many utterances). If talker normalization just uses
information from the preceding talker to set a context of interpretation for a
subsequent utterance or simply uses the presence of any talker variability to
change the strategies used in recognition, the first part of this argument will not
hold. Furthermore, the second argument depends on an overly simplistic view of
normalization and of the human auditory system. If talker normalization is needed
to address a nondeterministic mapping between acoustic properties and linguistic
categories, it cannot operate as a passive filtering mechanism, as implied by Pal!
meri et al. and Nygaard et al. Instead, it must actively test hypotheses about the
identity of an utterance using various sources of information about the talker's
vocal characteristics. These could be derived from context or from the utterance
itself (Ainsworth, 1975). But this information does not need to modify the audi!
tory representation of an utterance as a precursor to recognition of that informa!
tion. Furthermore, there is sufficient neurophysiological evidence about parallel
representations in the human auditory system (Pickles, 1982) that there is no
reason to assume that there is only one representation available to the listener. But
of even greater theoretical concern is the fact that if, as suggested by this view,
there is no talker normalization, how does the listener recognize speech given
talker variability? Although there is a claim about storing auditory traces of spo!
ken words, if recognition is conceived of as only based on a comparison of a
stimulus utterance to these traces (as implied by Nygaard et al., 1994), this is
exactly the approach that is used by many computer speech recognition systems
and is quite possibly the reason that they fail to provide human levels of recogni!
tion performance.

Our view is that the evidence regarding the load sensitivity of the human
listener when there is talker variability provides strong evidence that speech per!
ception is carried out by an active process. Furthermore, evidence of the flexibility
of human listeners in processing speech given talker variability provides addi!
tional support. For example, we have found that listeners shift attention to differ!
ent acoustic cues when there is a single talker and when there is talker variability
(Nusbaum & Morin, 1992). In one condition, subjects monitored a sequence of
spoken vowels for a specified target vowel and all the vowels were produced by
one talker. In a second condition, a mix of different talkers produced the vowels.
Both of these conditions were given with four different sets of vowels that were
produced by linear predictive coding (LPC) resynthesis of natural vowels used in
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our other experiments (Nusbaum & Morin, 1992). One set consisted of intact,
four!formant voiced vowels. A second set consisted of the same vowels with
voicing turned off to produce whispered counterparts. A third set was produced
by filtering all information above F2 using hand!tuned digital niters. The final set
combined whispering with filtering to eliminate FO and formant information
above F2.

If listeners recognize vowels using a mechanism similar to the one described
by Syrdal and Gopal (1986), fundamental frequency and F3 information (although
see Johnson, 1989, 1990a) should be necessary for recognition under all cir!
cumstances, because in their view this information provides a talker!independent
specification of vowel identity. This predicts that in both the single!talker and
mixed!talker conditions, the intact voiced vowels should be recognized most ac!
curately, with whispering or filtering reducing performance somewhat, and the
combination reducing performance the most, because these modifications elimi!
nate critical information for vowel recognition. Our results showed that in the
single!talker condition, recognition performance was uniformly high across all
four sets of stimuli. In the mixed!talker condition, however, accuracy dropped
systematically as a function of the modifications of the stimuli, with the voiced,
intact vowels recognized most accurately and the whispered, filtered vowels rec!
ognized least accurately (Nusbaum & Morin, 1992). If vowel recognition were
carried out by a passive, talker!independent mechanism (e.g., Syrdal & Gopal,
1986), the same pattern of results should have been obtained in both the single!
talker and mixed!talker conditions. The results we obtained suggest that listeners
only direct attention to FO and F3 when there is talker variability (cf. Johnson,
1989, 1990b). This kind of strategic flexibility in recognition is strong evidence
of an active mechanism. Furthermore, it suggests that the reason for the increase
in cognitive load given talker variability may be that the listener must distribute
attention over more cues in the signal than when there is a single talker.

More recently, we have found that listener expectations affect talker normal!
ization processes as well. In an earlier study, we found that not all talker differ!
ences increase recognition time in a mixed!talker condition (Nusbaum & Morin,
1992; also see Johnson, 1990b). When the vowel spaces of talkers are sufficiently
similar and their fundamental frequencies are similar, there may be no difference
in recognizing targets when speech from these talkers is presented in separate
blocks or in the same block of trials. Magnuson and Nusbaum (1993, 1994)
carried out a study designed to investigate more specifically under what conditions
talker variability increases recognition time. In this study, two sets of monosyl!
labic words were synthesized with two different mean FOs differing by 10 Hz. In
one condition, a small passage was played to subjects in which two synthetic
talkers, differing in FO by 10 Hz, have a short dialogue. In a second condition,
another group of subjects heard a passage in which one synthetic talker used a 10!
Hz pitch increment to accent certain words. Both groups then listened to exactly
the same set of single!pitch and mixed!pitch recognition trials using the mono!
syllabic stimuli. The subjects who listened to the dialogue between two



126 Howard Nusbaum and James Magnuson

talkers showed longer recognition times when there was a mix of the two different
FOs in a trial compared to trials that consisted of words produced at a single FO.
By comparison, subjects who expected that the 10!Hz pitch difference was not a
talker difference showed no difference in recognition times or accuracy between
the single!pitch and mixed!pitch trials. This demonstrates two things: First, the
effect of increased recognition time in trials with a mix of FOs cannot be attributed
to a simple contrast effect (see Johnson, 1990a) because both groups received
exactly the same stimuli. Instead, the increased recognition times in the mixed!
pitch trials seem to reflect processing specific to the attribution of the pitch differ!
ence to a talker difference and not something about the pitches themselves.
Second, and perhaps more important for the present argument, the listeners' ex!
pectations affected whether or not they showed any processing sensitivity to pitch
variability. This kind of processing flexibility cannot be accounted for by a simple
passive computational system and argues strongly for an active perceptual mech!
anism (Nusbaum & Schwab, 1986).

Thus there are two different kinds of evidence regarding the nature of the
mechanism that mediates perception when there is talker variability. It is difficult
to see how to link the observed load sensitivity under talker variability and the
processing flexibility unless it is through a single computational architecture.
When there is talker variability, recognition appears to be carried out by a com!
putational system with an active control mechanism. One implication of this is
that it rules out simple filtering models of talker normalization. It seems unlikely
that there is some passive transformation of the signal that is carried out to render
acoustic pattern information into some normalized or talker!independent form
(e.g., Syrdal & Gopal, 1986). A second implication is that if talker normalization
is accomplished by an active control system, perhaps this may provide a more
general solution to the problem imposed by lawful variation. If we consider briefly
how such an active system might operate, it could suggest whether such a gener!
alization is possible. To do this it is important to consider some of operating
principles that constrain this system.

6.5 TOWARD AN ACTIVE THEORY OF TALKER NORMALIZATION

First and foremost, our view is that talker normalization is carried out as a
consequence of the normative process of speech perception. In other words, talker
normalization is not carried out by a separate module or computational system,
but is a consequence of the basic computational structure of the normal operations
of speech perception. This stands in sharp contrast to most previous approaches
to talker normalization, which emphasized the problem of computing talker vocal
tract limits and scaling vowel spaces. It may be more productive to treat the
processing of lawful variation as a single perceptual problem and focus on the
commonalties rather than separate these problems based on the specific sources
of information and knowledge needed to support normalization and recognition.
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Second, the effects of talker variability on perceptual processing directly
reflect the computational operations needed to achieve phonetic constancy. In!
creased recognition times and interactions of varying cognitive load with recog!
nition reflect the increased processing demands on capacity that are incurred by
talker variability. Talker variability increases the number of possible alternative
interpretations of the signal, thereby increasing the processing demands on the
listener. As a corollary of our first point, we predict that the same kinds of pro!
cessing demands will be observed whenever there is any nondeterministic rela!
tionship between acoustic cues and linguistic categories during perceptual
processing. Furthermore, even though there may be some relationship between
the information used in talker identification and talker normalization, we claim
that the perceptual effects of talker variability are not a consequence of talker
identification processes competing with speech understanding.

Third, in order to achieve phonetic constancy, given a nondeterministic rela!
tionship between acoustic cues and perceptual categories, different sources of
information and knowledge, beyond the immediate acoustic pattern to be recog!
nized, must be brought to bear on the recognition problem. For example, if the Fl
and F2 extracted from an utterance could have been intended as either of two
different vowels given talker variability, information about the vocal tract that
produced the vowels (e.g., from FO and F3) will be used to provide the context
for interpretation. Whenever there is a one!to!many mapping between a particular
acoustic pattern and linguistic categories, listeners will have to use information
outside the specific pattern to resolve the uncertainty. This information could
come from other parts of the signal, previous utterances, linguistic knowledge, or
subsequent parts of the utterance.

In order to realize the kind of computational flexibility required for this ap!
proach, it is important to reconceptualize the basic process of speech perception.
The standard view of speech perception is that phoneme recognition or auditory
word recognition is a process of comparing auditory patterns extracted from an
utterance with stored mental representations of pattern information associated
with linguistic categories. Our view is that speech perception, as an active process,
is basically a cognitive process as described by Neisser (1967) and is more akin
to hypothesis testing than pattern matching (cf. Nusbaum & Schwab, 1986). Nus!
baum and Henly (1992) have argued that linguistic categories need to be repre!
sented by structures that are much more flexible than have been previously
proposed. They claimed that a particular linguistic category such as the phoneme
Pal might be better represented by a theory of what a /b/ is. This view is an
extension of Murphy and Medin's (1985) argument regarding more consciously
processed, higher order categories. From this perspective, a theory is a set of
statements that provide an explanation that accounts for membership in a cate!
gory. Rather than view a theory as a set of explicit verbal statements, our view is
that a theory representation of a linguistic category is an abstract, general specifi!
cation regarding the identity and function of that linguistic category. Although
this could be couched as a set of features, it is more reasonable to think of a theory
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as something that would generate a set of features given particular contextual
constraints.

Recognizing a particular phoneme or word is a process of generating a set of
candidate hypotheses regarding the classification of the pattern structure of an
utterance. Conjectures about possible categories that could account for a section
of utterance are proposed based on the prior context, listener expectations, and
information in the signal. Given a set of alternative classifications for a stretch of
signal information, the perceptual system may then carry out tests that are in!
tended to diagnose the specific differences among the alternative classifications.
Cognitive load increases as a function of the number of alternatives to be consid!
ered and the number of diagnostic tests that must be carried out.

By this view, phonetic constancy is the result of a process of testing hypoth!
eses that have been tailored to distinguish between alternative linguistic interpre!
tations of an utterance. An active control system mediates this process of
hypothesis formation and testing. An abstract representation of linguistic catego!
ries in terms of theories provides the flexibility to apply diverse forms of evidence
to this classification process, allowing the perceptual system to resolve the non!
deterministic structure produced by talker variability. These components taken
together form a complex inferential system that has much in common with con!
ceptual classification (Murphy & Medin, 1985) and other cognitive processes.

6.6 SUMMARY AND CONCLUSION

Rather than view talker normalization as a separate process that is added onto
the front end of speech perception when there is talker variability, we propose that
talker normalization is a consequence of normal recognition operations carried
out by an active control system. Although the sets of knowledge or the cues
listeners attend to may differ for different forms of lawful variability, it is entirely
possible that the same kind of processing is carried out for rate normalization and
talker normalization and coping with the effects ofcoarticulation. An active com!
putational architecture provides both a means of resolving the nondeterministic
relationship between acoustic cues and linguistic categories and an account of the
behavior data showing load sensitivity and strategic flexibility in recognition un!
der conditions of talker variability.

Moreover, Nusbaum and Henly (in press) have argued that the problem of
lack of invariance is not special to phoneme perception. Even above the level of
acoustic!phonetic mapping, there is a lack of invariance at all levels of pattern!
interpretation mappings. Within the realm of talker differences, for example, there
are phonological differences in different talkers idiolects and dialects that must be
normalized during word recognition. Specialized filtering mechanisms cannot be!
gin to account for the way listeners resolve this aspect of the spoken language
comprehension problem. However, the kind of active, hypothesis!testing approach
we have outlined here makes clear predictions that under conditions of increased
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variability there will be increased cognitive load during comprehension. By taking
a cognitive approach to the problem of talker normalization and speech percep!
tion, this framework offers the prospect of providing a general account for aspects
of spoken language understanding that share the same kind of nondeterministic
computational structure.
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