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Grossberg and Kazerounian [(2011). J. Acoust. Soc. Am. 130, 440-460] present a model of
sequence representation for spoken word recognition, the cCARTWORD model, which simulates
essential aspects of phoneme restoration. Grossberg and Kazerounian also include simulations with
the TRACE model presented by McClelland and Elman [(1986). Cognit. Psychol. 18, 1-86] that
seem to indicate that TRACE cannot simulate phoneme restoration. Grossberg and Kazerounian
also claim cARTWORD should be preferred to TRACE because of TRACE’s implausible approach
to sequence representation (reduplication of time-specific units) and use of non-modulatory
feedback (i.e., without position-specific bottom-up support). This paper responds to Grossberg
and Kazerounian first with TRACE simulations that account for phoneme restoration when
appropriately constructed noise is used (and with minor changes to TRACE phoneme definitions),
then reviews the case for reduplicated units and feedback as implemented in TRACE, as well as
TRACE’s broad and deep coverage of empirical data. Finally, it is argued that cARTWORD is not
comparable to TRACE because cARTWORD cannot represent sequences with repeated elements,
has only been implemented with small phoneme and lexical inventories, and has been applied
to only one phenomenon (phoneme restoration). Without evidence that cARTWORD captures a
similar range and detail of human spoken language processing as alternative models, it is premature

to prefer CARTWORD to TRACE. © 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4904543]
[ADP]

I. INTRODUCTION

Grossberg and Kazerounian (2011) present a computa-
tional model of word recognition, the cARTWORD model,
and claim that it solves the problem of representing temporal
order for speech-like inputs. They demonstrate that it can
account for the basic phenomenon of phoneme restoration
(reviewed in some detail below), and present simulations
appearing to demonstrate that TRACE, an interactive activa-
tion model of speech and word recognition (McClelland and
Elman, 1986), cannot. In this paper, I review the problem of
representing temporal order, rebut criticisms Grossberg and
Kazerounian (2011) make of the TRACE architecture, point
out fundamental aspects of spoken word recognition that
cARTWORD appears not to account for, and demonstrate
that when proper noise stimuli are used (along with minor
changes to TRACE phoneme definitions), the TRACE model
provides a robust basis for phoneme restoration, and that
TRACE accounts for additional aspects of phoneme restora-
tion cARTWORD was not tested on.

Il. REPRESENTING TEMPORAL ORDER FOR SPEECH
AND THE PLAUSIBILITY OF TRACE

Representing ordered sequences is a fundamental prob-
lem in neuroscience, and is particularly salient in the case of
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speech. Some orderings of the phonemes /k/, /&/, /t/ result in
words—/ket/, /tek/, /ekt/ (CAT, TACK, and ACT)—while
others do not (/kte/, /tke/, /etk/). The same is true at the
word level; DOG CHASES CAT is different from CAT
CHASES DOG or *CHASES DOG CAT. Thus, models of
speech processing must distinguish temporal orderings.
Models must also distinguish repetitions of elements; the
second /d/ in /ded/ must be encoded as a second /d/ event,
not just further evidence that /d/ has occurred. The same is
true for word sequences, such as DOG EATS DOG.

Some computational approaches to speech processing in
the psychological literature ignore temporal order (Luce and
Pisoni, 1998; Norris et al., 2000), or have not been tested in
detail with (simplifications of) speech [such as simple recur-
rent networks (SRNs) (Elman, 1990, 1991, though see
Gaskell and Marslen-Wilson, 1997 and Magnuson et al.,
2003)]. Only one model provides truly deep and broad cov-
erage of phenomena in human speech perception and spoken
word recognition while providing a basis for representing
temporal order including repeated elements: the TRACE
model (Elman and McClelland, 1986; McClelland, 1991;
McClelland and Elman, 1986; Strauss et al., 2007).

TRACE employs a specialized mechanism to represent
serial order: a memory where units at each of its representa-
tional levels—features, phonemes, words—are reduplicated
at successive time slices, providing a spatial medium for rep-
resenting temporal sequences. Thus, there is a /d/ detector
aligned with memory onset, and another every three time sli-
ces, to the end of the memory bank. Feature and word units
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are similarly reduplicated. These independent detectors rep-
resent repetitions as independent events, allowing TRACE to
represent complex words with phoneme repetitions, and to
parse and recognize word sequences, including sequences
with repeated words. McClelland and Elman (1986) them-
selves pointed out weaknesses of reduplication (pp. 76—78),
but demonstrated that it allowed TRACE to achieve broad,
deep coverage of phenomena in human speech perception
and spoken word recognition.

Grossberg and Kazerounian critique several aspects of
TRACE. First, they deride TRACE as “embody[ing] ... gen-
eral properties in a way that is inconsistent with basic prop-
erties of human speech perception, or indeed of any real-
time physical model” (Grossberg and Kazerounian, 2011, p.
456). They also argue that TRACE is “not a real time model”
and “does not include a plausible representation of time that
can be used in any physical process,” and that it is not clear
how TRACE'’s representations could emerge in a learning
system. McClelland et al. (2014) remind us that TRACE is
not meant to provide a neural-level solution: “The structure
of the TRACE model should not be viewed as a literal claim
about the neural mechanism. Instead it provides as a way of
capturing the relative rather than absolute constraints
between phoneme and word level information: If there is a
/k/ at a particular time, it supports the word ‘cat’ starting in
the same time, and the word ‘ticket’ starting two phonemes
earlier (among many other possibilities), and these con-
straints are captured in the connections between units for the
corresponding items in the corresponding positions.
Activation in this array of units formed a dynamic memory
trace of the results of a spoken input, hence the name of the
model.”

That said, there are at least two ways that the seemingly
implausible reduplication scheme of TRACE could be
addressed. The first is with the programmable blackboard
model, which McClelland (1986) designed explicitly to dem-
onstrate how TRACE-like (interactive activation) computa-
tions could be achieved without reduplicated units. Second,
consider a model of echoic memory based on a frequency-
by-time matrix (1 to 4 s in duration, the approximate dura-
tion of echoic memory for speech; Connine et al., 1991;
Watkins and Watkins, 1980), with the simplifying assump-
tion that time is discretized into steps. Now as auditory input
is encountered at time 0, the time = 0 frequency vector
would encode the input on position 0. At time = 1, the time
= 0 vector would shift to position 1, and the new input
would be encoded at slot 0 (and at some point, the system
would have to “wrap,” recycling position 0, etc.). It is a
small step to imagine a similar memory where frequency
vectors would be replaced or augmented by phonemic vec-
tors, or some other phonetic or phonemic recoding. As each
phoneme is processed,' the matrix corresponding to the pre-
vious phonological state could be shifted on the memory ma-
trix, replaced with the current one aligned at slot 0. Thus,
while TRACE can be fairly criticized for its reduplication
mechanism,? it is not wildly implausible.

It is crucial to note that no other model comes close to
simulating the breadth and depth of results that TRACE does
with high accuracy. In addition to the more than one dozen
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diverse, central phenomena of speech perception and spoken
word recognition simulated in the original paper
(McClelland and Elman, 1986), TRACE simulates the time
course of lexical activation and competition at a very fine
grain (e.g., eye tracking data from a paradigm developed a
decade after TRACE; Allopenna et al., 1998; Dahan et al.,
2001a; Dahan et al., 2001b; see Strauss et al., 2007, for a
summary of the phenomena TRACE simulated in the origi-
nal paper, as well as later, fine-grained time course simula-
tions conducted with TRACE).

Grossberg and Kazerounian (2011) also contend that
TRACE’s “silence” phoneme unit is problematic. What
seems intuitively odd about the silence phoneme is that it is
activated by a special input pattern. TRACE’s feature level
consists of vectors of 63 elements, comprised of seven
acoustic-phonetic dimensions each with nine levels, eight of
which represent different aspects of each dimension. The
ninth level of each feature is reserved for representing
silence. To activate the silence phoneme, the input consists
of activations for the ninth level of each feature and zeros on
the first eight levels of all features. The silence “phoneme”
at the phonological level can inhibit all other phonemes
when the silence pattern is encountered in the input, provid-
ing a qualitatively different model state when silence input is
encountered. Because the silence phoneme activates the
silence “word,” similar inhibition can occur at the lexical
level. The rationale of having silence lead to inhibition is not
laid out explicitly in the original TRACE paper, but is con-
sistent with the inclusion in interactive activation models in
general of detectors that code absence of features, not just
detectors that code presence of features (e.g., McClelland,
2013; McClelland and Rumelhart, 1981). The rationale fol-
lows from the hypothesis that relatively extended absence of
input should lead to “recognition” of silence—that is, the
system should arrive in a qualitatively different state reflect-
ing absence of input, analogous to subjective experience
when portions of edges are absent in a visual stimulus
(McClelland, 2013; Warren, 1970).”

The special silence pattern in TRACE is not as artificial
or ad hoc as it might seem. TRACE silence units code for
the absence of input, like off-cells. This function might be
achieved more realistically. For example, one could imple-
ment a bias node with a positive connection to an off/silence
detector, with that input cancelled via inhibition whenever
feature detectors receive sufficient activation. The off/silence
unit would dominate in the absence of robust featural input
(due to its constant input from the bias node), but otherwise
would be inhibited; the silence phoneme in TRACE is sim-
ply a computational shortcut for achieving such a function.
As we shall see in Sec. IV, whether one considers the silence
phoneme or “true” silence (i.e., actual absence of input) as
the appropriate baseline for evaluating phoneme restoration
is immaterial, and so resolving this issue is not crucial here.

Grossberg and Kazerounian (2011) also take issue with
TRACE’s lack of absolute constraints on top-down feedback
(specifically, they argue that top-down feedback must not be
allowed in the absence of any bottom-up support). They cite
a passage from McClelland and Elman (1986) (p. 75) where
those authors speculated about how feedback might be used
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in a learning variant of TRACE. Grossberg and Kazerounian
(2011) argue that the mechanism outlined there would lead
to unstable learning. This is tangentially pertinent; such a
learning mechanism was not implemented, and someone
developing a learning variant of TRACE could certainly
take into account the issues Grossberg and Kazerounian
(2011) raise and avoid unstable learning, if such instability
were demonstrated to occur, and if the developer imple-
mented a mechanism akin to the one McClelland and Elman
proposed. But the real crux of the critique by Grossberg and
Kazerounian (2011) on this issue is that they claim that the
reason TRACE fails (in their simulations) to provide a basis
for simulating human phoneme restoration is that it permits
non-modulatory feedback (feedback in the absence of
bottom-up support). In their view, non-modulatory feedback
in TRACE allows greater restoration when a phone is
replaced by “true” silence (rather than the silence phoneme)
than when it is replaced by noise. As I demonstrate in Sec.
IV, absence of modulatory control on feedback in TRACE
has nothing to do with their simulation results; their results
follow instead from a flawed approach to creating TRACE
analogs of stimuli used with human subjects.

Finally, it is useful to review why McClelland and
Elman adopted the reduplication approach despite noting the
challenges to linking it to known neural mechanisms: it
allowed the model to simultaneously (a) represent serial
order of features, phonemes, and words, (b) represent/decode
sequences including multiple instances of one phoneme
(/ded/) or word (DOG EATS DOG) including embeddings,
and (c) account for a wide and broad range of phenomena in
human speech perception and spoken word recognition. No
other model comes close to the depth and breadth of
TRACE’s coverage (Magnuson et al., 2012).

lll. THE PLAUSIBILITY OF cARTWORD

Grossberg and Kazerounian (2011) present an alterna-
tive mechanism for sequence encoding: chunk-mediated gat-
ing. With this organization, a list chunk representation for a
sequence of inputs such as ABC can be hard-wired so that
the chunk is more strongly activated by that ordering of ele-
ments than another (e.g., CBA). A stipulated wiring scheme
leads an ABC chunk to “expect” stronger input from earlier
elements: A > B > C. A chunk for CBA would similarly
expect (respond maximally to) C > B > A. Earlier elements
achieve greater activation due to their ability to inhibit units
responding to later arriving inputs. Grossberg and
Kazerounian (2011) show that in combination with the
adaptive resonance theory matching rule (which prevents a
unit from receiving top-down support in the absence of
bottom-up support; Carpenter and Grossberg, 1987), their
model successfully simulates phoneme restoration when a
phoneme is replaced with noise, and restoration failure when
the phoneme is replaced with silence (the crucial pattern of
results in human listeners; e.g., Samuel, 1981a,b, 1996,
1997). However, there are serious problems with this
mechanism.

First and most crucially, cARTWORD can represent
sequences, but cannot represent sequences that contain
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repeated elements; the framework cannot distinguish ABA
from AB—the second A in ABA would just be more evi-
dence for A having occurred. Additional evidence for B in
an input pattern like ABCB might lead to equivalent activa-
tion of A and B, creating ambiguity as to the identity of the
first element in the sequence. Were cARTWORD extended
beyond its very small two-word “lexicon,” it would not be
able to tell /tu/ (too) from /tut/ (toot), or /IlIsIt/ (illicit) from
the nonword /IIsItl/ (“ihl-sih-tih”). This rules out
cARTWORD as a plausible model of sequence encoding for
word recognition, as it cannot represent vast numbers of
words [29% of lemmas in the Brown corpus (Kucera and
Francis, 1967) include at least one repeated phoneme].

Grossberg and Kazerounian might counter that
cARTWORD could be combined with the item-order-rank
(IOR) model of working memory proposed in other domains
(Silver et al., 2012). The framework is laid out in Fig. 2 of
Silver et al.; outputs from a bank of time-invariant nodes
(one per element, not one per element per time slice) for
each possible element (e.g., each phoneme, if extended to
this domain) combine with outputs from counting (clock)
cells to activate relative time-specific representations in the
IOR memory. As shown in their figure, there is another IOR
node for each possible element, but divided like pie slices
for different relative temporal positions. For example, if only
four time steps were tracked, there would be a /p/ IOR node
with four slots; if /p/ occurs when the clock is in position 3,
the /p/ IOR node would be activated at slice 3. This is an in-
triguing approach, but it is not clear how to extend it suffi-
ciently for speech, where each IOR node might need to be
capable of coding dozens of time steps (again, reflecting per-
haps the duration of echoic memory). Furthermore, to handle
noisy inputs and provide a basis for recovering from mis-
parsings, substantial, time-specific inhibitory connectivity
between IOR nodes would likely be required, as in TRACE.
Indeed, extending the IOR approach in these ways would
result in a mechanism for encoding temporal sequences not
terribly different from that employed by TRACE, since each
“pie slice” in an IOR phoneme node becomes a time-specific
representation of that phoneme—exactly the reduplication
problem cARTWORD claims to avoid. Similar problems
necessarily arise at supra-phonemic levels of encoding
(cARTWORD?’s list chunks and lexical nodes); repeated
words will be as problematic as repeated phonemes, and the
IOR framework must again be extended to include many
time-specific representations for words.

Another concern with cARTWORD is that a very sim-
ple model (with five abstract “acoustic” detectors, and just
two “words”) has been applied to only one phenomenon:
phoneme restoration. While Grossberg and Kazerounian
(2011) provide a demonstration proof that cARTWORD
handles the basic details of phoneme restoration, we have no
idea whether the behavior of the model will remain robust if
the model is extended with a larger phoneme inventory,
more phonetically detailed representations, varied word
length, a larger lexicon, etc. Whether the model’s behavior
will remain stable with expansion of several orders of mag-
nitude is an empirical question. Furthermore, until such a
scaled-up cCARTWORD has been tested with the phenomena
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from the original TRACE paper and the more recent time-
course data TRACE accounts for, there is no basis for a valid
comparison of the models. Demonstration proofs are insuffi-
cient; like other literatures, the speech literature is rife with
examples of very plausible modeling predictions that do not
hold up when simulations are actually conducted (Magnuson
et al., 2012). Grossberg and Kazerounian would do a tremen-
dous service to the field by carrying out such simulations
with a scaled-up version of cARTWORD incorporating any
computational mechanisms they claim are necessary to
account for spoken word recognition. In the meantime,
TRACE simply provides vastly superior coverage of the em-
pirical literature. I next consider the claims of Grossberg and
Kazerounian that TRACE fails to provide a basis for pho-
neme restoration.

IV. COMPARING TRACE AND cARTWORD
EMPIRICALLY

In their Sec. VI A, Grossberg and Kazerounian (2011)
present TRACE simulations communicated to them by a
reviewer, as well as their own follow-up simulations (all
conducted with the jTRACE java reimplementation of
TRACE, the source for which is not cited: Strauss et al.,
2007). Their reviewer’s simulations compared activations of
an /1/-unit aligned with the onset of “luxury” when /l/ was ei-
ther intact, replaced by TRACE’s “silence” phoneme, or
replaced by a “noise phoneme,” defined as all 63 feature val-
ues (including those meant to signal silence) replaced by a
value of 0.4. As shown in Grossberg and Kazerounian
(2011) Fig. 8, /1/ became more active when replaced by the
noise phoneme than when replaced by the silence phoneme.
Grossberg and Kazerounian (2011) argued that the silence
phoneme is an implausible way to simulate silence (since it
expects a special input pattern orthogonal to all other phone-
mic inputs, rather than absence of input). They replaced the
silence phoneme with what they called a “true silence
phoneme” (one with all features set to 0.0), and found that /1/
became more active given the true silence phoneme than
given their noise phoneme (Grossberg and Kazerounian,
2011, Fig. 9a).

Grossberg and Kazerounian (2011) conclude that
TRACE is falsified with respect to the phenomenon of pho-
neme restoration. However, any apparent model failure must
be inspected to determine what type of failure it represents
(Magnuson et al., 2012). The least interesting possibility is a
failure to construct a valid linking hypothesis between stimu-
lus and task constraints imposed on human subjects and the
model. Unfortunately, the Grossberg and Kazerounian
(2011) failed TRACE simulations are of this sort. These
problems can be remedied by better linking of TRACE noise
to stimulus noise.

First, note that Grossberg and Kazerounian (2011) used
a single level of “noise” in their TRACE simulations, but
that noise was implemented as an actual phoneme—the 0.4
noise phoneme described above, added using the phoneme
editor in jTRACE. This is a poor analog for noise inserted
into a real sound file. Creating a new phoneme in jTRACE
makes it a “full member” of the phonological level, with
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inhibitory links to all other phonemes. Thus, it is not at all
surprising that such noise would lead to extremely low /I/
activation, since the noise input would very strongly activate
the 0.4 noise phoneme and simultaneously drive other pho-
neme activations to very low levels via inhibition.
Furthermore, this noise is not constant, but ramps on and off,
like any TRACE phoneme. Consider the TRACE inputs
used by Grossberg and Kazerounian (2011), plotted in Fig.
1. The top left panel shows “intact” luxury, with the initial /1/
in place. The top right panel shows -uxury, that is, /1/
replaced by the TRACE silence phoneme. The bottom left
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"True' Silence Phoneme
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FIG. 1. Stimuli used in the TRACE simulations of “luxury” reported by
Grossberg and Kazerounian (2011). The top left panel shows the original.
The x axis is TRACE feature slices, with dashed horizontal lines indicating
phoneme centers (occurring every six slices), and phoneme labels added for
clarity. The y axis consists of the 63 rows of the TRACE input matrix; there
are seven features [power, vocalic, diffuse, acute, gradual (labeled
“consonantal” in the original paper, but labeled this way in the code), voic-
ing, and burst], each of which has nine levels; horizontal dashed lines indi-
cate boundaries between features. The two inputs on the top row are normal
TRACE inputs: luxury with all phonemes intact, and luxury with the silence
phoneme (/-/) substituted for /lI/. The bottom two inputs were created by
Grossberg and Kazerounian (2011) using the jTRACE phoneme editor.
They created a “true silence” phoneme with all feature values set to 0. Note
that this true silence does not disrupt the second phoneme; it just removes /1/
features. They also created a “noise phoneme”, with a target pattern of 0.4
on all features. As can be seen in the figure, because this is a phoneme, it
ramps on and off, and summates where it overlaps with the second pho-
neme. Problems with these true silence and noise phonemes are discussed in
the text.
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panel shows luxury with the first phoneme replaced with
their true silence phoneme, and the bottom right panel shows
/1/ replaced with their noise phoneme. Note that the TRACE
silence phoneme pattern ramps on and off, as do the noise
inputs in the bottom right panel. In the true silence phoneme
(bottom left) used by Grossberg and Kazerounian (2011),
there is nothing to ramp on and off, but note that the full /*/
phoneme in second position is intact. The key point is that
the stimuli in Fig. 1 are extremely different from phoneme
restoration stimuli used with human subjects, in which
stretches of the speech waveform are excised (silence
replacement) or replaced with noise. The ramping on and off
of the noise phoneme in particular is radically different from
real noise replacement stimuli.

We can create better analogs by actually replacing
stretches of TRACE input with Gaussian noise or zeroes
[true silence, but spliced in so that not just the /I/ is replaced,
but so are temporally overlapping (“‘coarticulated”) slices of
adjacent phonemes]. Such materials are shown in Fig. 2.
These materials were created by editing “feature files”

Noise = 0.0 Noise = 0.2
POW - Eg——
VOC
DIF
wo| e =
vol I —— [
BUR e i

* X & -
Noise = 0.6 :

T T T T T
ks * ri
FIG. 2. Stimuli used in the current simulations; see Fig. 1 for axis details.
The true silence input at top right (noise = 0.0), unlike the Grossberg and
Kazerounian (2011) true silence phoneme, actually sets all bottom-up input
values to 0 over the entire region previously spanned by /1/, including values
corresponding to the first few slices of the first vowel. In the other panels,
the /l/ region is replaced by Gaussian noise of increasing magnitude.
Splicing in silence (zeroes) or noise results in TRACE stimuli that are
appropriately analogous to materials used in human phoneme restoration
experiments.
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exported from TRACE; they cannot be created using the
phoneme editor in jJTRACE. Noise portions were created as
matrices of appropriate dimensions with Gaussian noise with
mean set to the noise level and standard deviation set to 25%
of the noise level (serving to constrain the noise values to be
greater than zero; virtually identical results are observed if
instead noise values are shifted positively to avoid negative
values, or even when every feature is set to a constant
value).

I conducted simulations with TRACE with each of these
inputs (in the context of the original 212-word TRACE lexi-
con) for the word luxury with its initial (/I/), medial (/S/), or
final (/i/) segment replaced. In each case, the word “luxury”
was recognized. Activations of /I/ aligned at word onset
given each of these stimuli are shown in the left panel of
Fig. 3. Maximal activation is observed with intact /l/, less
with true silence, and even less with the silence phoneme
(indeed, inhibition from the silence phoneme drives /1/’s
activation well below it is —0.10 resting level), as Grossberg
and Kazerounian (2011) found. However, the results with
noise-replaced stimuli are dramatically different. Grossberg
and Kazerounian (2011) found that /I/ became more active
given their noise phoneme than the silence phoneme
(because the silence phoneme is orthogonal to all other core
TRACE phonemes, but their noise phoneme overlapped in
several features with /I/), but not more active than when /1/
was replaced with their true silence phoneme (again, because
the noise phoneme would actively inhibit /l/), and, further-
more, the differences in their simulations mainly showed up
in the very late time course.

One can see in Fig. 3 that /I/ exhibits a burst of transient
activation in the early time course given noise replacement
(rather than noise phoneme substitution). Activation given
noise (noise > (.0) is greater than activation given true
silence (noise = 0.0). Noise levels of 0.6 or greater also lead
to greater activation of /l/ in the later time course than do
true silence or the silence phoneme. At all levels of non-zero
noise shown, /I/ becomes robustly more active in the early
time window (prior to cycle 25) than when /l/ is replaced
with true silence.* The middle and right panels plot results
when the medial (/S/) and final (/i/) segments of luxury are
replaced, and we also see a substantial advantage for the
noise-replaced phoneme early on (~30 cycles after replace-
ment onset). The early time window is the critical region for
restoration; what matters is whether there is a basis for dif-
ferential behavior as the word is being experienced, rather
than many time steps after the noise (e.g., approximately 30
slices after replacement onset, where the 0.0 noise case
catches up to the noise replacements).

However, a reviewer pointed out the need for additional
checks that Grossberg and Kazerounian (2011) did not
include in their jTRACE simulations. One must check
whether replaced phonemes become more activated than
other phonemes; that is, the early jump in activity as noise is
presented might reflect uniform transient activation of all
phonemes in response to noise. Similarly, one must also
check whether activation in the early time window is guided
by lexical feedback (the reviewer noted that the early win-
dow might be too early for lexical feedback to have had time
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Replaced phoneme activation

Replacement type
4 Intact

v Silence phoneme
© 0.0 Noise

+ 0.2 Noise

© 0.6 Noise

4 1.0 Noise

25
Time (TRACE processing cycles)

FIG. 3. Replaced phoneme activations for initial, medial, and final phonemes in “luxury” when replaced by the silence phoneme, true silence (0.0 noise), and

varying levels of noise.

to impact phoneme activation). Figure 4 plots activations for
position-specific phonemes for initial (/1/), medial (/S/) and
final (/i/) phoneme replacements in luxury with noise set to
0.0 or 1.0. It is clear that there is a problem for initial and
medial positions with 1.0 noise; /k/ and /g/ are most acti-
vated in the early time window, and the replaced phoneme
only catches up later. For final position, we see a clear top-
down effect, with /i/ pre-activated and most active through-
out the simulation, although /k/ and /g/ become nearly as
activated when the noise comes on. To determine whether
the problematic results for initial and medial position were
specific to luxury, I conducted additional simulations with
all three-phoneme (n = 73), five-phoneme (n = 31), and
seven-phoneme (n = 8) words in the TRACE lexicon. The
results are shown in Fig. 5. Although the average responses
in Fig. 5 appear to show greater restoration given noise than
silence, in approximately 75% of simulations with 1.0 noise,
the replaced phoneme was not the most active in the early
time window (for nearly all initial and medial cases). In the
majority of these cases, /k/ or /g/ was most active.

The top panel of Fig. 6 displays the original feature defi-
nitions of each phoneme in TRACE and provides a clue as
to what is going on. Phonemes use different numbers of fea-
tures, ranging from 7 to 12 of the 63 possible feature units.
The more feature units that are “on” for a phoneme, the
more similar it will be to broadband noise; and indeed, /k/

and /g/ have more features on than other phonemes. There is
no theoretical commitment to the phoneme definitions in
TRACE; the aim is for them to reflect similarity among
actual phonemes. We can preserve phoneme similarity while
equalizing similarity to noise with slight revisions, displayed
in the lower panel of Fig. 6. Now each phoneme takes just
one value for each feature, such that each has exactly seven
features on. Hierarchical clustering solutions for original and
modified phoneme definitions are virtually indistinguishable.
I tested TRACE with these new features on the 12 core simu-
lations from McClelland and Elman (1986), which are
included in the “gallery” of simulations with jTRACE; there
were negligible quantitative differences, but critical details
of all simulations remained intact with the slightly revised
phoneme definitions.

Next, I checked luxury again with the new feature defi-
nitions; the results are shown in Fig. 7 (replaced phoneme
activations by position and noise level) and Fig. 8 (all
position-specific phoneme activations for 0.0 and 1.0 noise
for initial, medial, and final phoneme replacements). For ini-
tial and medial replacements, the replaced phoneme does not
dominate initially in the early window, but the result for final
position is very clear; /i/ is preactivated by top-down feed-
back, and when noise comes on, it is boosted more than other
phonemes (which have virtually identical activations). Why
does the replaced phoneme not similarly dominate in initial
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and medial positions? Obviously, the lexical node for luxury
is less activated at word onset or word medially than at word
offset. But we can also see that at initial position, /1/ has to
overcome greater activation of /r/, and this raises an impor-
tant point: the replaced phoneme is not necessarily the most
probable (e.g., given /#®t/, where # indicates noise, the
obscured word could be bat, cat, fat, hat, lat, mat, gnat, pat,
rat, etc.), nor is it necessarily likely to receive more top-
down activation than other words. Indeed, given /#7/ at
word onset, /r/ is more likely than /l/, as four words in the
TRACE lexicon begin with /r "/ vs three that begin with /1°/.
Feedback is also passed down by words that partially match
the input after word onset (e.g., /pl g/ or /kr *S/); in fact, the
bigram /r”/ is more likely than /1"/ (occurring in 17 vs 10
words, respectively). A similar situation holds for medial
position, where /S/ has to overcome activation of /i/, which
is activated strongly by the word /1°ki/ (lucky); /i/ has an
advantage both because /ki/ is more frequent in the TRACE
lexicon than /kS/ (three vs one occurrences) and because of
the short-word advantage that emerges naturally in TRACE
[benefiting lucky vs the longer word luxury; TRACE exhib-
its an early short-word activation advantage (short words
activate more quickly than long words), and a late long-word
advantage (long words become more active than short
words); both effects were documented in human perceivers
by Pitt and Samuel, 2006; see Magnuson et al., 2013, for
analysis].

Figure 9 shows replaced phoneme activations by word
length and noise level, while Fig. 10 shows mean activation

J. Acoust. Soc. Am., Vol. 137, No. 3, March 2015

of replaced phonemes across word lengths and replacement
positions, as well as the next-most activated phoneme (with
revised feature definitions). Figure 9 looks much like Fig. 5.
Figure 10 shows that in initial position, the most activated
phoneme aside from the replaced phoneme (labeled “next” in
the figure) has greater activation in the early time window
than the replaced phoneme. However, an analysis of phono-
tactic probabilities based on the TRACE lexicon revealed that
the next-most activated phoneme in these cases was more
(usually) or equally probable compared to the replaced pho-
neme based on the frequency of the first bigram in the word.
Thus, the behavior of TRACE mirrors lexical probabilities,
demonstrating robust top-down lexical restoration effects.
The same is true for medial position, where the next-most
activated phoneme tends to be consistent with bigrams that
are slightly to substantially more likely than bigrams in the
target word.

Note that this means that a pure test of lexical restora-
tion in TRACE is virtually impossible in a lexicon with even
200 words, if we take a pure example of restoration to mean
that the replaced phoneme is the most active as soon as top-
down feedback is available; if we conduct tests where we
replace the initial phoneme in all three-phoneme words, the
majority of the time, there will be phonemes with greater
phonotactic probability than the replaced phoneme. We can
conduct a pure test by reducing the lexicon to a single word.
The results for luxury when it is the sole lexical item are
shown in Fig. 11, replicating greater activation for replaced
phonemes given noise than given silence, and Fig. 12,
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demonstrating that the replaced phonemes now receive
selective benefits of top-down feedback (with clear pre-
activation from top-down feedback for medial and final
positions).”

Consider again Fig. 9, showing how the results general-
ize across words in the standard TRACE lexicon with revised

phoneme feature definitions. Although there is little variation
across length and position, Fig. 13 reveals an interesting dif-
ference (using the revised feature values shown in Fig. 6).
Figure 13 plots the average early peak (prior to cycle 50) of
replaced phonemes as a function of word length and replace-
ment position. There are clear effects of word length, repli-
cating larger effects with longer words with human subjects
(Samuel, 1981a,b, 1996, although the trend is carried primar-
ily by final position replacements. There are also clearly
stronger effects for later replacement positions, although
there is no trend for initial position and a weaker trend for
medial position. While increased restoration with increased
word length is attested in the psychological literature
(Samuel, 1981a,b, 1996), effects of replacement position
have been more mixed, sometimes with progressively stron-
ger effects for later positions (Samuel, 1981b) and sometimes
progressively weaker effects for later positions (Samuel,
1996, experiment 1.1), but perhaps most often, with a pattern
where restoration is roughly equally strong for initial and
final position, and somewhat weaker for medial position
(e.g., Samuel, 1981a; Samuel, 1996, experiment 1.2). These
discrepant patterns could be the result of interactions with
word length. However, the studies that have manipulated
both length and position present summary data only at the
level of main effects, precluding examination of interaction
patterns. Furthermore, as Samuel (1981b, 1996) points out,
participants may well employ a strategy where they are bi-
ased to respond “intact” (restored). Thus, the unbiased/non-
strategic predictions from TRACE might require modulation
by a decision process [with appropriate linking hypotheses
(Tanenhaus et al., 2000)]. It is difficult to intuit what
cARTWORD would predict, but comparable simulations
would provide a basis for comparing the models empirically.
To summarize, noise replacements lead to greater pho-
neme activation than (true) silence or silence phoneme
replacements in TRACE (Figs. 3-5, 7-12). However, with
the original TRACE feature definitions (Fig. 6, top), some
phonemes are more similar to broadband noise than others,
and the bottom-up activations of these phonemes mask top-
down effects, which emerge later. Replacing the original fea-
ture definitions with new ones (Fig. 6, bottom) that preserve
phonemic similarity structure but equalize similarity to noise
does not change the behavior of the TRACE model in gen-
eral, but makes clear that noise-replacements selectively
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v Silence phoneme
© 0.0 Noise

+ 0.2 Noise

© 0.6 Noise
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Time (TRACE processing cycles)

FIG. 7. Luxury with replacements at multiple positions, with revised feature values from Fig. 6 and original TRACE parameters.
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activate phonemes that are consistent with lexical feedback
(though not necessarily just the intended word; lexical feed-
back operates quickly enough to boost phonemes consistent
with high frequency biphones in the lexicon; Figs. 7 and 9). A
purer test of lexical feedback can be obtained by constructing
a lexicon with just one word; in this case, clear, early effects
of top-down activation are observed (Fig. 11; see also foot-
note 5). Thus, TRACE does in fact provide a basis for predict-
ing phoneme restoration given noise replacement vs (true)
silence—or silence phoneme—replacement. Furthermore, its
predictions are consistent with reports of greater restoration
with increasing word length, and possibly could provide new
insight into mixed results of replacement position in the

Length 3, Initial

Length 3, Medial

perceptual literature. Thus, the empirical case Grossberg and
Kazerounian (2011) make against TRACE evaporates with
these results. With appropriately constructed input patterns,
TRACE exhibits patterns found with human listeners.

V. COVERAGE VS IN-PRINCIPLE ARGUMENTS

TRACE stands out as the model of spoken word recog-
nition with the broadest and deepest coverage, and it is cru-
cial that any competing model be tested on a similar range of
phenomena. Like cARTWORD, Shortlist/Merge (Norris
et al., 2000) relies on in principle arguments, rather than
comprehensive coverage demonstrated by simulation. After
presenting simulations of a small subset of phenomena the
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TRACE model handles, Norris et al. asserted, “It should be
clear without report of further simulations, however, that
Merge can also explain the other basic lexical effects
observed in the literature” (p. 318). The set of unsimulated
effects included phonemic restoration. But the fact that a
framework logically could account for phenomena A, B, and
C separately does not guarantee that parameter combinations
exist that would allow the model to account for all three
simultaneously. TRACE stands alone in its demonstrated
ability to account for phoneme restoration across a range of
word lengths and replacement positions, using the same
parameters that have already been used to account for many
phenomena in speech perception and word recognition
[although demonstrating clear phoneme restoration effects in
TRACE required minor revisions to phoneme definitions
(Fig. 6), which do not alter TRACE’s ability to account for
the phenomena simulated in the original TRACE paper
(McClelland and Elman, 1986)]. Challenging TRACE
requires competing models to provide similar coverage with-
out resorting to unique parameters for different phenomena.

VI. CONCLUSIONS

The plausibility and generality of cARTWORD is
limited by its inability to represent sequences with repeated
elements, while the fact that it has been implemented with
only five abstract inputs and two words and has not been
tested on a similar range of phenomena as models such as
TRACE precludes comprehensive comparison. Simulations
with TRACE following the methods of Grossberg and
Kazerounian (2011)—but with better analogs to noise-
replacement stimuli used in experiments with human
subjects—demonstrated greater activation of noise-replaced
phonemes than (true) silence—or silence phoneme—
replaced phonemes. These results were replicated with the
original TRACE phoneme definitions as well as slight modi-
fications that made all TRACE phonemes equally similar to
broadband noise. These successful TRACE simulations of
phoneme restoration demonstrate that the failures Grossberg
and Kazerounian (2011) to simulate those phenomena with
TRACE were the result of a flawed approach to simulating
noise replacement, not a failure of the model. As I discussed
above, their critiques of reduplicated units and non-
modulatory feedback in TRACE are not compelling: redupli-
cated units provide a plausible means for constructing an

J. Acoust. Soc. Am., Vol. 137, No. 3, March 2015

echoic memory [possibly quite similar to what IOR memory
(Silver et al., 2012) would be like were it scaled up to handle
many phonemes and words] or could be eliminated with a
programmable blackboard approach (McClelland, 1986),
and non-modulatory feedback in TRACE was not the basis
for the apparent failure of TRACE to correctly simulate pho-
neme restoration; rather, that failure was due to poor analogs
of noise- and silence-replaced stimuli. I hope that these argu-
ments and simulations will lead to the further elaboration of
the cARTWORD model needed before valid comparisons to
other models can be made.
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'In the absence of a solution to the lack-of-invariance problem in speech
perception, models and theories of spoken word recognition commonly
simplify the input to unrealistically simple analogs of acoustic-phonetic
patterns (as in TRACE) or even abstract and discrete analogs of phonemes
(Grossberg and Kazerounian, 2011; Norris et al., 2000).

See Magnuson et al. (2012) for discussion; also see Hannagan et al.
(2013) for an estimate of the number of nodes and connections needed to
scale TRACE to a realistic English lexicon, as well as a novel string kernel
approach to sequence encoding in the interactive activation framework
that replaces TRACE’s reduplication strategy and allows massive reduc-
tions in numbers of nodes and connections.

3I thank Jay McClelland for bringing to my attention this quote from the
initial report of phoneme restoration by Warren (1970): “Silent intervals
have functions akin to phonemes, requiring their accurate identification
and localization for speech comprehension.”

“I also conducted simulations with a large range of other noise values not
displayed in Fig. 3 (0.1, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.1, 1.2,...). The trends
for early activation given noise seen in Fig. 3 were observed for all these
values (albeit weakly for 0.1). Increasing noise beyond 1.0 has no further
impact, as TRACE treats values greater than 1.0 as 1.0.

5To assess whether the single-word lexicon results would generalize to
other items, I constructed four-word lexicons where all words were three-,
five-, or seven-phonemes long, designed such that the initial, medial, and
final phonemes of all words would be the most likely given the small lexi-
con. The results are similar to those for luxury when it is the one word in
the lexicon; effects of top-down feedback are made very clear by immedi-
ate, selective activation of the replaced phoneme when noise is encoun-
tered. As in Fig. 9, some late advantages for 0.0 noise vs 1.0 noise are
observed for final position replacements. I assume this is due to phoneme
inhibition effects; noise activates phonemes other than the replaced pho-
neme, of course, and there is a period after the initial top-down boost
where the replaced phoneme’s activation lags due to lateral inhibition. To
test this hypothesis, I reduced phoneme lateral inhibition from its default
level of 0.4 to 0.3. This resulted in virtually identical early time window
results, but wiped out the late, small advantage for 0.0 noise, both for the
small lexicons and the full lexicon. I also confirmed that with phoneme in-
hibition reduced in this way, the core 12 simulation results from the origi-
nal TRACE paper are replicated. Presenting these results would require
several more figures, but there is little point; again, what is crucial is what
happens at the time of replacement, not the late, post-word offset time
course. However, I describe these results for readers concerned about the
slight, late advantage for 0.0 noise for some conditions.
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