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Plan
• Module 1: Introduction, About TRACE
• Module 2: Tour of jTRACE
• Module 3: Classic simulations
• Module 4: Scripting
• Module 5: Linking hypotheses
• Module 6: Lab time, Q&A, one-on-one



An aside
• Why did we develop jTRACE?

– To facilitate large-scale modeling
– To promote active testing of TRACE predictions and

wider use of modeling
– To facilitate replication and sharing of simulations

• How did we develop jTRACE?
– With a budget supplement to an NIDCD R01 and a

couple Ted years

• Why are we doing this tutorial?



Module 5: Advanced topics
• How do you decide whether a model has

succeeded or failed?
– Connecting model to human behavior

• Pitfalls: simulations can fail at multiple levels
– Theory -- most interesting/informative
– Implementational details/parameters
– Linking hypotheses -- not a model failure --

equivalent to flawed operational definitions in
an experiment!

• Before assuming a failure has theoretical
implications, other levels must be excluded



Linking hypotheses
• Informal: does model capture basic trends?
• Formal: linking hypothesis
• Link model to data by constructing task

constraints for the model analogous to those
faced by human subjects

• Model: Activations over time
• Data:  Reaction times/accuracy for specific decisions

or behaviors (lexical decision, eye tracking, ERP)



Simple example 1: Threshold
• Recognition =

word unit
activation exceeds
threshold

• RT ≈ number of
processing cycles
from word onset

• Activation ~
internal state; what
about choice
behavior?
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Simple example 2: Response probability
• RT ≈ number of

processing cycles from
word onset

• Additional competition
analogous to human choice
behavior in many domains

• Formalization of overt
choice based on internal
states

• When to use: many choice
situations, but especially
AFC
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Pitfalls in modeling
1. Material selection
2. Material manipulation
3. Linking hypotheses
4. Logic



Pitfall 1: Material selection
• Frauenfelder & Peeters (1998)
• Feedback doesn’t help

– Half their items were recognized
more quickly with feedback off

– Feedback only allows TRACE to
account for top-down effects?

• 21 items: 7 phones long, UP at
phone 4

• Magnuson, Strauss, & Harris
(2005)

• Tested 900 words
• With/without feedback
• Increasing levels of noise
• 73% of words recognized

more quickly w/feedback

   



Pitfall 2: Material manipulation
• Model materials must be held to same standard as
behavioral materials

• Material manipulations should have analogous effects
• Marslen-Wilson & Warren, 1994 (subcategorical mismatch)
• Hypothesis:

• If there is lateral inhibition between words,
• Then, if we provide misleading coarticulation consistent
with a

•Word: substantial lexical competition
•Nonword: less competition



nett
net spliced with net

nekt
neck spliced with net

nept
nep* spliced with net

RT = 487

RT = 609

RT = 610



Pitfall 2: Material manipulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19

Cycle / 4

R
e
s
p

o
n

s
e
 p

ro
b

a
b

il
it

y
 (

W
1
)

W1W1

W2W1

N3W1

Words

Lexical
decision
nett 487
nept 609
neckt 610

• Marslen-Wilson & Warren (1994): TRACE simulations

nett
neckt
nept





Pitfall 2: Material
manipulation
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slice where “net” was still
ultimately recognized



From TRACE activations
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Pitfall 3: Linking hypotheses
• How can we reconcile TRACE activations and human LD RTs?
• Lexical decision need not be based on target
• What if we set threshold so that W2’s activation sometimes passes?
Lexical decision
nett 487
nept 609
neckt 610
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The “visual world” paradigm
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Linking hypothesis
• Link fixation data to TRACE word activations
• Luce Choice rule: Activations and strengths based on

entire lexicon; choice only includes the 4 onscreen
items -- analogous to choice faced by subjects

Starget

(Starget + Scomp + Sd1 + Sd2)
Ltarget =

• Provides clear and testable predictions about number
and nature of the items in the display

• See Dahan et al. (2001) for examples where this
simple linking hypothesis accurately predicts
changes in fixation proportions depending on display



Fixation data
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Advantages of linking hypotheses

• Formalizes model of both internal state and overt
behavior for specific tasks

• Also links cognitive systems -- e.g., visual
attention and lexical activation

• Facilitates the interpretation of behavioral data
from complex experimental paradigms

• Without careful, explicit modeling of task
constraints via linking hypotheses, simple model
activations can be misleading



Pitfall 4: Logic
• Sometimes, the most reasonable predictions turn

out to be wrong when you test them by
simulation

• Case in point: word frequency
• Assumptions about modeling: resting activation ≈

bottom-up connection strength
• Assumptions about empirical results:

– Absence of frequency effects in early responses
– Therefore, frequency is a late, top-down bias



Proposed loci of frequency
• HF words recognized more quickly than LF words

• Early sampling (e.g., fast reactions) sometimes fails to
detect frequency effects (Connine, Titone, & Wang, 1993)

• Conclusion: frequency is a late/2nd stage bias?
Bottom-up dependent
(connection strengths)
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Time course implications
• Is a late frequency effect evidence for 2nd stage?
• No; consistent with bottom-up dependency

Constant bias
(resting levels)

Bottom-up dependent
(connection strengths)

Late bias
(???)



Cohort frequency
Sample critical display
• LF target (bell)
• LF cohort (bench)
• HF cohort (bed)
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Model-data comparisons
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            T    H    L     D
   r2    .97  .96  .94  .80
RMS .09  .03  .03  .06



Gauging success and failure
• Given an apparent mismatch between model and data, you must

avoid the pitfalls -- you must exclude:
– Poor analogs to materials (representativeness, manipulations)
– Insufficient linking hypothesis
– Worst case: mismatch between expectations and data --

jTRACE was created to encourage more testing of logical
expectations

• Then, if you still have a mismatch between model and data, you
must determine the level of the failure
– Parameter value?
– Specific aspects of model mechanisms
– Theoretical assumptions



Gauging success and failure
• Model flexibility, model fit

– Fit measures: r2, RMS error
– Debates over whether fit is sufficiently

constraining
– Parameter space partitioning (Pitt et al., 2005)

• Comparing two models
– Occam’s razor

• More important?
– Breadth



Using jTRACE
• Now what?

– Work through the examples in the gallery (see
documentation in ‘help’)

– Make a plan for doing your own simulations
– Email us if you need help (or find bugs, or have

feature requests*)
– Save your simulations! This is a great way to save

yourself work and facilitate replication

• Right now: ‘lab time’


