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 Module 1: Introduction, About TRACE
* Module 2: Tour of JTRACE

e Modu]

e 3: Classic simulations

e Modul
e Modul

e 4: Scripting
e 5: Linking hypotheses

e Modu]
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An aside
 Why did we develop jJTRACE?

— To facilitate large-scale modeling

— To promote active testing of TRACE predictions and
wider use of modeling

— To facilitate replication and sharing of simulations

 How did we develop jJTRACE?

— With a budget supplement to an NIDCD RO1 and a
couple Ted years

 Why are we doing this tutorial?



Module 5: Advanced topics

* How do you decide whether a model has
succeeded or failed?

— Connecting model to human behavior

e Pitfalls: stmulations can fail at multiple levels
— Theory -- most interesting/informative
— Implementational details/parameters

— Linking hypotheses -- not a model failure --
equivalent to flawed operational definitions in
an experiment!

* Before assuming a failure has theoretical
implications, other levels must be excluded
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Linking hypotheses

* Informal: does model capture basic trends?

* Formal: linking hypothesis

* Link model to data by constructing task
constraints for the model analogous to those
faced by human subjects

e Model: Activations over time

* Data: Reaction times/accuracy for specific decisions
or behaviors (lexical decision, eye tracking, ERP)
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Simple example 1: Threshold
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Simple example 2: Response probability

* RT = number of
processing cycles from 5.~ A b or oA p/t -

word onset -

e Additional competition
analogous to human choice
behavior in many domains
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¥ Pitfalls in modeling

1. Material selection
2. Material manipulation

3. Linking hypotheses
4. Logic



Pitfall 1;: Material selection

* Frauenfelder & Peeters (1998) « Magnuson, Strauss, & Harris

* Feedback doesn’t help (2005)

— Half their items were recognized ~ ° Tested 900 words

more quickly with feedback off o With/without feedback
— Feedback only allows TRACE to
account for top-down effects?

o 21 items: 7 phones long, UPat * 73% of words recognized
phone 4 more quickly w/feedback

* Increasing levels of noise
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Pitfall 2: Material manipulation

 Model materials must be held to same standard as
behavioral materials

e Material manipulations should have analogous effects
* Marslen-Wilson & Warren, 1994 (subcategorical mismatch)
* Hypothesis:

o [f there 1s lateral inhibition between words,

* Then, 1f we provide misleading coarticulation consistent
with a

*Word: substantial lexical competition

*Nonword: less competition
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Pitfall 2: Material manipulation

* Marslen-Wilson & Warren (1994): TRACE simulations

Lexical
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Pitfall 2: Material

manipulation
 Original splicing was so late
that “neck” was recognized
instead of “net™!

* We cross-spliced at the latest
slice where “net” was still
ultimately recognized
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Pitfall 3: Linking hypotheses

 How can we reconcile TRACE activations and human LD RTs?
» Lexical decision need not be based on target

 What if we set threshold so that W2’s activation sometimes passes?
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Eye tracking

N
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Linking hypothesis
e Link fixation data to TRACE word activations

* Luce Choice rule: Activations and strengths based on
entire lexicon; choice only includes the 4 onscreen
items -- analogous to choice faced by subjects

S i . Starget

S; = ekaf Li = — Ltar et
l l ZSJ : (Starget+ Scomp T Sd] T SdZ)

* Provides clear and testable predictions about number
and nature of the items in the display

e See Dahan et al. (2001) for examples where this
simple linking hypothesis accurately predicts
changes in fixation proportions depending on d1sp1ay
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Fixation data GI\/Iodel predictions
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® -
Advantages of linking hypotheses

e Formalizes model of both internal state and overt
behavior for specific tasks

e Also links cognitive systems -- e.g., visual
attention and lexical activation

» Facilitates the interpretation of behavioral data
from complex experimental paradigms

e Without careful, explicit modeling of task
constraints via linking hypotheses, simple model
activations can be misleading



Pitfall 4: Logic

Sometimes, the most reasonable predictions turn
out to be wrong when you test them by
simulation

Case 1n point: word frequency

Assumptions about modeling: resting activation =
bottom-up connection strength

Assumptions about empirical results:

— Absence of frequency effects 1n early responses

— Therefore, frequency is a late, top-down bias
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Proposed loci of frequency

* HF words recognized more quickly than LF words

* Early sampling (e.g., fast reactions) sometimes fails to
detect frequency effects (Connine, Titone, & Wang, 1993)

« Conclusion: frequency is a late/2"d stage bias?

Constant bias Late bias Bottom-up dependent
(resting levels) (??7?) (connection strengths)
Late
xterna
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Time course implications

« Is a late frequency effect evidence for 2" stage?

* No; consistent with bottom-up dependency
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Cohort frequency
Sample critical display

* LF target (bell)

* LF cohort (bench)
 HF cohort (bed)




- Target = HF Cohort - LF Cohort - Unrelated
R'=R + s(log[f + 1])
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Model-data comparisons

Data Model (weight version)
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Gauging success and failure

Given an apparent mismatch between model and data, you must
avoid the pitfalls -- you must exclude:

— Poor analogs to materials (representativeness, manipulations)
— Insufficient linking hypothesis

— Worst case: mismatch between expectations and data --
JTRACE was created to encourage more testing of logical
expectations

Then, 1f you still have a mismatch between model and data, you
must determine the /evel of the failure
— Parameter value?

— Specific aspects of model mechanisms

— Theoretical assumptions



U Gauging success and failure

* Model flexibility, model fit

— Fit measures: r°, RMS error

— Debates over whether fit 1s sufficiently
constraining

— Parameter space partitioning (Pitt et al., 2005)
» Comparing two models

—Occam’s razor
* More important?

— Breadth



Using j7TRACE

e Now what?

— Work through the examples in the gallery (see
documentation 1n ‘help’)

— Make a plan for doing your own simulations

— Email us 1f you need help (or find bugs, or have
feature requests™)

— Save your simulations! This 1s a great way to save
yourself work and facilitate replication

* Right now: ‘lab time’



