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Participants’ eye movements were monitored as they followed spoken
instructions to click on a pictured object with a computer mouse (e.g., ‘‘click
on the net’’). Participants were slower to �xate the target picture when the
onset of the target word came from a competitor word (e.g., ne(ck)t) than
from a nonword (e.g., ne(p)t), as predicted by models of spoken-word
recognition that incorporate lexical competition. This was found whether the
picture of the competitor word (e.g., the picture of a neck) was present on the
display or not. Simulations with the TRACE model captured the major
trends of �xations to the target and its competitor over time. We argue that
eye movements provide a �ne-grained measure of lexical activation over
time, and thus reveal effects of lexical competition that are masked by
response measures such as lexical decisions.

It is now generally accepted that as listeners attend to a spoken word, they
simultaneously entertain multiple lexical candidates, which compete for
recognition (see Frauenfelder & Floccia, 1998, for a review). However, the
mechanism by which competition among active candidates is realised and
resolved remains controversial. In some localist connectionist models, such
as TRACE (McClelland & Elman, 1986) and Shortlist (Norris, 1994), word
candidates compete with each other via inhibitory lateral connections.
Thus, the activation of a lexical candidate at a given point in time in the
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recognition process is determined both by its �t with the input and by the
activation of other candidates. In contrast, the Cohort model (Marslen-
Wilson, 1987, 1990) does not assume lateral inhibition. The activation of a
lexical candidate is affected only by its goodness of �t with the input and
not by the activation levels of competitors; lexical competition takes place
only at the decision stage of recognition. More recently, Gaskell and
Marslen-Wilson (1997, 1999) have proposed a distributed model in which
word recognition is viewed as the activation of a set of features that encode
information about the form and meaning of this word. Because the same
set of features encodes patterns associated with all the words, the pattern
of activation that is generated by the network as partial input is processed
is a blend of the patterns associated with each lexical candidate that is
consistent with that input. Given larger numbers of candidates consistent
with a partial input, the distributed pattern generated by the network will
become more and more distant from the pattern associated with the target
word. This, in effect, is a form of lexical competition, best described in
terms of interference between fully distributed patterns of lexical
representation.

Marslen-Wilson and Warren (1994) presented evidence that, they
argued, was inconsistent with competition operating via lateral inhibition.
They created cross-spliced word sequences whose initial portion had been
excised from another token of the same word (e.g., jo(b) ‡ (jo)b, W1W1
sequence), from another existing word (e.g., jo(g) ‡ (jo)b, W2W1
sequence), or from a nonword (e.g., jo(d) ‡ (jo)b, N3W1 sequence). For
the W2W1 (jo(g)b) and N3W1 (jo(d)b) sequences, formant transitions in
the vowel provided misleading information about the place of articulation
of the following consonant. Thus, these stimuli contained subcategorical
phonetic mismatches (Streeter & Nigro, 1979; Whalen, 1984, 1991). They
reasoned that if lexical candidates inhibit one another as predicted by
TRACE, lexical decisions to words with subcategorical mismatches cross-
spliced from words should be slower than lexical decisions to the words
cross-spliced from nonwords. In TRACE, for W2W1 sequences, the
initially activated competitor W2 (e.g., jog) inhibits the target W1 (e.g.,
job); in N3W1 sequences, this inhibition is substantially weaker because
the nonword N3 (e.g., jod) only weakly supports both W2 and W1.
Inhibition modi�es the activation of words throughout processing. Thus,
the degree to which the competitor W2 is activated affects the activation of
the target W1 throughout the recognition process. Simulations with
TRACE con�rmed these predictions. The response probability for the
target W1, calculated with a form of Luce’s (1959) choice rule (roughly, a
transformation of the activation of the target divided by the sum of all the
other words’ transformed activation), was substantially lower in W2W1
than in N3W1.
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However, Marslen-Wilson and Warren (1994) found that the mean
lexical-decision latencies to the W2W1 and N3W1 sequences did not differ
from one another, whereas both were signi�cantly longer than responses to
the W1W1 sequences. This result was subsequently replicated by
McQueen, Norris, and Cutler (1999). Marslen-Wilson and Warren argued
that the absence of a difference between the W2W1 and N3W1 conditions
provided strong evidence against models that incorporate lexical competi-
tion via lateral inhibition throughout the activation process.

More recently, Norris, McQueen, and Cutler (2000) have simulated the
pattern of lexical decisions for stimuli with subcategorical mismatches
using a small competition-activation model with lateral inhibition between
active lexical candidates (the Merge model). They conducted simulations
in which the word level was allowed to cycle through 15 iterations on each
time slice, followed by a reset of lexical-activation levels, before the next
slice was processed. Despite early and substantial differences in the
activation of W1 given W2W1 and N3W1 (with W1’s activation initially
signi�cantly depressed in the former case), the competition between W2
and W1 in W2W1 was resolved very quickly (in terms of input slices) in
this network. Norris et al. showed that, with an appropriate decision
threshold, lexical competition would be resolved before lexical decisions
are initiated, yielding the observed latency pattern (W1W1 < N3W1 º
W2W1). They argued that TRACE’s failure in the Marslen-Wilson and
Warren simulations was not due to lateral inhibition, but rather to lexical
competition being resolved too slowly in TRACE. These con�icting
simulations illustrate how dif�cult it is to distinguish among competing
models without detailed information about the time course of activation of
lexical competitors. The different patterns of activation predicted by
models with and without lateral inhibition might occur too early in
processing to be detected using lexical decisions.

Recently, a growing number of researchers, building upon work by
Cooper (1974) and Tanenhaus, Spivey-Knowlton, Eberhard, and Sedivy
(1995), have begun to use eye movements to explore questions about the
time course of spoken-language comprehension, including the time course
of spoken-word recognition in continuous speech. For example, Allo-
penna, Magnuson, and Tanenhaus (1998) had participants follow spoken
instructions to pick up and move pictures using a computer mouse. On
critical trials, participants saw displays containing items with similar names
(e.g., beaker, beetle, and speaker, as well as an unrelated item). The
probability of �xating each object as the target word unfolded over time
was hypothesised to be closely linked to the activation of the lexical
representation of this object (i.e., its name), under the assumption that the
activation of the name of a picture in�uences the probability that a
participant shifts attention to that picture and makes a saccadic eye
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movement to �xate it. The minimum latency to plan and launch a saccade
is estimated to be between 150 and 180 ms in simple tasks (e.g., Fischer,
1992; Saslow, 1967), whereas intersaccadic intervals in tasks such as visual
search fall in the range of 200 to 300 ms (e.g., Viviani, 1990). Allopenna
et al. found that the proportion of �xations to referents and competitors
began to increase 200 to 300 ms after word onset, demonstrating that eye
movements were sensitive to changes in lexical activation within the �rst
100 ms of the spoken word. Moreover, the probability of �xating each item
over time as the target word was heard mapped closely onto predicted
response probabilities from the TRACE model. Dahan, Magnuson, and
Tanenhaus (2001) provided further support for the linking hypothesis
between lexical activation and �xations in a set of experiments examining
the time course of frequency effects on lexical activation. In conjunction
with simulations using TRACE, these data provided strong support for
models in which frequency has continuous, immediate effects on
activation.

The Allopenna et al. and Dahan et al. studies demonstrate that the eye-
tracking paradigm can provide detailed time-course information about
lexical activation in continuous speech. It can provide a measure of
competitors’ activation over time when these competitors, along with the
target, are visually displayed. Moreover, it can capture subtle time-course
effects such as effects of frequency. Furthermore, the task (i.e., identifying
the referent picture) requires participants to map the target word’s
auditory form onto semantic and visual information: This ensures that the
task is speci�cally tapping into the process of word recognition. Thus, the
paradigm appears well suited to measuring the target’s activation over
time in the three cross-splicing conditions studied by Marslen-Wilson and
Warren (1994).

The present study had two goals. First, we used the eye-tracking
paradigm to track the time course of lexical activation and hence to
examine the time course of lexical competition. Eye movements to the
picture associated with the target W1 were monitored in all three cross-
splicing conditions, with the picture associated with the competitor W2
absent from the display (Experiment 1) or present (Experiment 2). Results
from both experiments provided clear evidence for lexical competition.
Second, we evaluated whether �xation patterns mapped onto predictions
generated by TRACE.

EXPERIMENT 1

The goal of this experiment was to track the time course of lexical
activation for cross-spliced target words. We monitored participants’ eye
movements to pictured objects as they heard a referent’s name in each of
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three splicing conditions: W1W1, W2W1, and N3W1. We hypothesised
that the latency with which participants would make an eye movement to
�xate the target picture (associated with W1) would re�ect the target W1’s
lexical activation. In order to minimise the proportion of trials where
participants were already �xating the target picture at the onset of the
target word, participants were �rst instructed to point with the mouse
cursor to one of the displayed distractor pictures (e.g., ‘‘Point to the bass’’).
As soon as the mouse cursor reached the picture, the critical instruction
containing the target word was played (e.g., ‘‘now the net’’). The purpose
of this procedure was to draw participants’ attention toward the distractor
picture, thus away from the target picture, just before the target word was
heard.

Method

Participants. Thirty students at the University of Rochester partici-
pated in this experiment and were paid $7.50. All were native speakers of
English.

Materials. Fifteen triplets composed of two real words and a nonword
were selected (e.g., net, neck, *nep). These items are listed in Appendix A.
All the items were monosyllabic and ended with a stop consonant (labial
/b/ or /p/, coronal /d/ or /t/, or velar /g/ or /k/). Within the triplet, one word
was assigned the role of target (W1), and the other, the role of competitor
(W2). The nonwords (N3) were constructed by changing the place of
articulation of W2’s �nal consonant. A number of constraints applied in
the selection of these triplets. The primary constraint was that, by changing
the place of articulation of the �nal stop consonant of a word, both a word
and a nonword were generated. For the purposes of Experiment 1, the
targets, and, for Experiment 2, both the targets and competitors, had to be
picturable nouns (e.g., net, neck). The �nal constraint imposed on the
nonwords was that they not correspond to the initial sequence of many real
words, to minimise lexical activation that the nonword sequence could
generate (e.g., the triplet bat/back/*bap was excluded because *bap
corresponds to the initial sequence of many words, such as baptism and
baptise). To reach a reasonable number of experimental triplets, we had to
relax these criteria for some items. In particular, we used the sequences tat
and hark as nonwords, even though they are words but of extremely rare
use. If participants were to treat them as words, this would cause the
W2W1 and N3W1 conditions to become more similar, and hence go
against our hypothesis that performance in these conditions should differ.
Moreover, some nonword sequences matched the beginning of some other
words, but only rare words (e.g., *nep matches Neptune and nepotism).
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Finally, the voicing feature of the stop consonant was kept constant for all
three items for seven triplets (e.g., net, neck, *nep), while the voicing
feature of the target differed from that of the competitor and the nonword
for the other eight triplets (e.g., pit, pig, *pib). Because the crucial
comparison was between the W2W1 and N3W1 conditions, both W2 and
N3 shared the same voicing. As the results will show, these two sets of
triplets yielded similar patterns of results.

In order to generate cross-spliced stimuli, each item of the 15 triplets was
recorded by a male native speaker of American English in a sound-proof
room, sampling at 22050 Hz with 16-bit resolution. Each item was
embedded in the sentence used as the critical instruction in the experiment
(e.g., ‘‘now the net/neck/*nep’’). Each sentence was then edited. The �nal
stop consonants of the W1 items were spliced onto the initial portion (up
to the end of the vowel) of another token of W1 (e.g., now the ne(t) ‡ t), or
of a token of W2 (e.g., now the ne(ck) ‡ t), or of a token of N3 (e.g., now
the ne(p) ‡ t). This procedure generated three versions for each of the 15
experimental target words. On average, the duration of the now the part of
the instruction was 461 ms for the W1W1 stimuli, 468 ms for the W2W1
stimuli, and 452 ms for the N3W1 stimuli; the duration of the target word
up to the end of the vowel (i.e., before the splicing point) was 376 ms, 378
ms, and 383 ms for the W1W1, W2W1, and N3W1 stimuli, respectively.
The average duration of the last consonant was 206 ms.1

1 To test that coarticulatory cues in W2W1 sequences were not stronger than those in
N3W1 sequences, we conducted a forced-choice phonetic decision experiment (see McQueen
et al., 1999, Experiment 6). Listeners heard only the vowels excised from the 45 experimental
items (e.g., [e] from net, neck, and *nep), and had to indicate, for each vowel, what the
following segment had been by choosing among two response alternatives. The vowel plus the
correct following consonant formed an existing word in 11 items (5 for W1, 2 for W2, and 4 for
N3). McQueen et al. controlled for possible lexical biases in the consonant choice by having
both consonant alternatives (the target and the distractor) forming either a word or a
nonword. However, this procedure had the disadvantage of including consonant distractors
that were never targets on other trials. We neutralised lexical bias by equating the number of
(correct and incorrect) lexical alternatives between the W2 and N3 items. Only stop
consonants were used as response alternatives, and six different pairings were used, with the
following frequency: K-P (14), K-T (7), T-P (7), B-G (10), B-D (5), D-T (2). Each of the 45
vowels was presented three times; the 135 trials were presented in random order. Twelve
participants were tested. On average, the percentage of correct responses was 78%, 69%, and
71%, for W1, W2, and N3 items, respectively, and did not vary signi�cantly (F1(2,22) ˆ 3.09,
F2(2,28) ˆ 1.08). Crucially, W2 items did not yield more correct responses than N3 items
(F1(1,11) ˆ 0.43; F2(1,14) ˆ 0.09), indicating that coarticulatory cues to the following
consonant in the vowel were equally strong in both sets of items. Any difference in
performance when the items are fully presented cannot be attributed to differences in amount
of coarticulatory information in the W2W1 and N3W1 sequences.
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For each of the 15 experimental target words, three distractor words
were selected. They were all picturable monosyllabic words. One of them
began with the same consonant as the target word (e.g., for the target word
net, the distractor was nurse). This was done to prevent participants from
identifying the target picture on the basis of the initial consonant alone,
before hearing the crucial subcategorical mismatch carried by the vowel.
The other two distractor words were selected so that their names were
phonologically highly dissimilar from the target. Items used in the
experimental trials are listed in Appendix B.

In addition to the 15 experimental trials, 15 �ller trials were
constructed. For each trial, four picturable monosyllabic words were
selected. For ten �llers, two picture names overlapped at onset (e.g., bed
and bell) and neither of them was the target. This aspect of the �llers was
especially designed for Experiment 2, where both W1 and W2 were
visually present in the display, to prevent participants from developing
expectations that pictures with phonologically similar names were likely
to be targets. For the �ve other �llers, the four pictures’ names were
phonologically dissimilar. For eight of the 15 �llers, the trial structure
was identical to that of the experimental trials: Participants were �rst
instructed to point to a picture, then to another picture (e.g., ‘‘Point to
the star. Now the goat. Click on it and put it below the diamond.’’). For
seven of the �llers, participants were instructed to click on the picture
they initially pointed to (e.g., ‘‘Point to the frog. Click on it and put it
above the triangle.’’).

The spoken instructions for the �ller trials were recorded by the same
speaker as those for the experimental trials, during the same session.
Subcategorical mismatches on ten instructions of the �ller trials were
created to prevent critical trials from being identi�ed as those with cross-
spliced stimuli (e.g., the onset and nucleus of the target word cup was
cross-spliced with the �nal consonant of its counterpart cut).

The 120 pictures ([15 experimental ‡ 15 �ller] trials £ 4 pictures) were
all black and white line-drawings. They were selected from the Snodgrass
and Vanderwart (1980) and the Cycowicz, Friedman, Rothstein, and
Snodgrass (1997) picture sets, as well as from children’s picture
dictionaries and a commercially available clip-art database.

Procedure. Prior to the eye-tracking experiment itself, participants
were �rst exposed to each of the 120 pictures and familiarised with each
intended name. This pre-exposure ensured that each picture was clearly
identi�ed and labelled as intended. Each picture was presented on a
computer screen along with its printed name. Participants were free to
inspect the picture as long as necessary, and moved to the next picture by
pressing the keyboard’s space bar.
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The eye-tracking part of the study immediately followed. Participants
were seated at a comfortable distance from the computer screen. Eye gaze
was monitored using an Applied Scienti�c Laboratories head-mounted
eye-tracker (model E 5000). A scene camera was aligned with the
participant’s line of sight. A calibration procedure allowed software to
superimpose crosshairs showing the point of gaze on a HI-8 video tape
record of the scene camera. The scene camera sampled at a rate of 30
frames per second, and each frame was stamped with a time code.
Auditory stimuli were played to the participant through headphones and
simultaneously to the HI-8 VCR, providing an audio record of each trial.

The structure of each trial was as follows: First, a 5 £ 5 grid with a
centred cross appeared on the screen, and participants were told to click on
the cross. This allowed the experimenter to check that calibration accuracy
was acceptable, as participants brie�y �xated the cross before clicking on
it. Then four line-drawings and four coloured geometric shapes appeared
on speci�c cells of the grid. As the pictures appeared on the screen, the �rst
spoken instruction started, asking participants to point to one of the
distractor pictures using the computer-mouse cursor (e.g., ‘‘Point to the
bass’’). As soon as the cursor reached the distractor picture, the second and
critical instruction was played, instructing participants to point to the
target picture (e.g., ‘‘now the net’’). Participants were then told to move
the target picture above or below one of the geometric shapes (e.g., ‘‘Click
on it and put it above the circle’’). Once this was accomplished, the next
trial began. On some �ller trials, participants were instructed to click on
and move the �rst picture they pointed to (e.g., ‘‘Point to the key. Click on
it, and put it below the square’’). This was intended to ensure that people
directed their attention to the �rst picture. The positions of the geometric
shapes were �xed from one trial to the other. The position of each picture
was randomised for each participant and each trial. Five �llers were
presented at the beginning of the session, to familiarise participants with
the task.

Three lists were constructed by varying which of the three versions of
each target word was presented (W1W1, W2W1, or N3W1). Within each
list, �ve critical items were assigned to each condition. Ten participants
were randomly assigned to each list. For each list, three random orders
were created; approximately the same number of participants were
assigned to each random order.

The data were collected from the videotape records using an editing
VCR with frame-by-frame controls and synchronised video and audio
channels. Coders used the crosshairs generated by the eye tracker to
establish, for each experimental trial, which of the four pictures or the
cross was �xated at each time frame (see Dahan, Swingley, Tanenhaus, &
Magnuson [2000], for full details on the coding procedure).
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Results

Analysis of latency. We measured, for each participant and each trial,
the latency (from target onset) with which the participants �xated the
target picture immediately before clicking on it with the mouse. This
mouse-cursor movement was taken as an indication that participants had
recognised the target word. Despite our efforts to draw participants’
attention away from the target picture, participants �xated this picture at
target onset on 18.1% of the trials (the non-mentioned distractor pictures
were �xated on 17% of the trials). However, on most such trials,
participants �xated another picture before returning to the target; on only
a few trials did they keep �xating the target (21 out of 450, 4.7%). These
trials were excluded from subsequent analyses. For seven participants, one
additional trial was missing because of technical failures.

Table 1 presents the mean latency for each splicing condition, as a
function of the voicing status within the triplet (same voicing, as in net/
neck/*nep, or different voicing, as in pit/pig/*pib). The mean latency to
�xate the target picture was 638 ms in W1W1, 851 ms in W2W1, and 673
ms in N3W1. A two-way ANOVA (splicing condition £ voicing status)
revealed a signi�cant effect of splicing condition (F1(2, 58) ˆ 13.7, p <
.001, MSE ˆ 57092.5; F2(2, 26) ˆ 12.5, p < .001, MSE ˆ 14154.3), no effect
of voicing, and no interaction with splicing condition. Newman–Keuls tests
indicated that the latency was signi�cantly slower in W2W1 than in the
W1W1 and N3W1 conditions, with no signi�cant difference between
W1W1 and N3W1 (with a ˆ .05). The mean latency in W1W1 is similar to
that found for non-cross-spliced targets of similar lexical frequency (Dahan
et al., 2001).2

The latency analysis revealed a signi�cant difference between W2W1
and N3W1, as well as between W1W1 and W2W1. By contrast, N3W1 and
W1W1 did not differ signi�cantly, although latencies were numerically
slower in N3W1. Participants were slower at recognising the target word
and identifying the referent picture when mismatching coarticulatory
information in the target word’s vowel matched a real word (as in the
W2W1 sequences) than when this coarticulatory information did not
match an existing word (as in the N3W1 sequences). Very little effect of

2 Additional analyses were conducted after excluding trials for which the latency was less
than 200 ms or more than 1500 ms. Fixations occurring before 200 ms were likely to have been
programmed before the onset of the target word, and not resulting from processing the target
word. Trials where participants took more than 1500 ms to �xate the target were treated as
outliers. In total, 38 out of the 422 remaining trials were excluded (9.0%, 11, 11, and 16 in
W1W1, W2W1, and N3W1, respectively). Analyses yielded the same pattern of results as
found in the full data set.
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mismatching information was observed when the coarticulatory informa-
tion did not match an existing word.

Analysis of �xations over time. We computed the proportions (across
participants) of �xations to the target picture over time, for each of the
three splicing conditions. For each participant and each trial, we
established which of the four pictures or the cross was �xated at each
time frame, beginning at the onset of the target word. The proportion of
�xations to each picture at each time frame was then computed for each
participant, and these proportions were averaged across participants.
Figure 1 presents the proportions of �xations to the target picture over
time for each splicing condition. Fixations between conditions were
comparable until about 600 ms after target onset, where the �xations in
W2W1 started diverging from those in W1W1 and N3W1. Recall that the
duration of the pre-splice fragment was about 400 ms, with coarticulatory
cues being presumably strongest in the late portion of the vowel. Given a
200-ms delay to program and launch an eye movement, �xations occurring
around 600 ms are likely to result from the processing of the coarticulatory
information. When this information matched an existing word, as in
W2W1, �xations to the target were considerably delayed; when this
information did not match a word, as in N3W1, no such delay was
observed. Difference in �xations between W2W1 and N3W1 extended
until about 1200 ms after target onset. A two-way ANOVA (splicing
condition £ voicing status) on mean �xation proportions over a time
window extending from 600 to 1200 ms after target onset revealed a
signi�cant effect of splicing condition (F1(2, 58) ˆ 12.55, p < .0001, MSE
ˆ 0.0376; F2(2, 26) ˆ 15.06, p < .0001, MSE ˆ 0.008), no main effect of
voicing, and no interaction with splicing condition. Planned comparisons
revealed a signi�cant difference in target �xations over the 600- to 1200-ms
window between the N3W1 and W2W1 conditions (t1(29) ˆ 3.63, p < .005,
t2(14) ˆ 3.33, p < .01) and between the W1W1 and W2W1 conditions

TABLE 1
Experiment 1. Mean latency (in ms) and standard errors (between parentheses) for
each splicing condition as a function of the voicing status within the triplet (same-

voice vs. different-voice)

Same-voice Different-voice

Example Latency Example Latency

W1W1 ne(t)t 639 (44) pi(t)t 636 (40)
W2W1 ne(ck)t 834 (39) pi(g)t 867 (59)
N3W1 ne(p)t 712 (51) pi(b)t 634 (57)
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(t1(29) ˆ 5.56, p < .0001, t2(14) ˆ 5.42, p < .0001), but no signi�cant
difference between the W1W1 and N3W1 conditions.

The �xation analysis revealed a competition effect extending roughly
from 600 to 1200 ms after target onset. Given that the mean duration of the
target word was 585 ms and even after adding a 200 ms delay for
programming an eye movement, this suggests that the competition
between W2 and W1 may persist for several hundred ms after the
disambiguating information is encountered. However, it is possible that the
eye-movement data exaggerate how long it takes for lexical competition to
resolve because on some trials, participants made multiple eye movements
before �xating the target, and each new �xation involved some motor
delay. In order to eliminate effects due to multiple �xations, we conducted
a subanalysis that included only those trials on which participants made a

Figure 1. Experiment 1: Proportion of fixations to the target picture (W1) over time for each
splicing condition (W1W1 [filled triangles], W2W1 [filled squares], N3W1 [empty squares]).
Bars indicate standard errors.
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single �xation from the onset of the target word, and in which that �xation
was to the target. (That �xation always began from any picture except the
target picture.) This analysis included 23.5% of the trials. Figure 2 presents
�xation proportions to the target picture over time in each splicing
condition. As is apparent from the �gure, evidence of lexical competition
(i.e., difference between the W2W1 and N3W1 conditions) extended until
about 1000 ms after target-word onset. Recall that, on the main analysis,
competition effects were observed as early as 200 ms after the offset of the
pre-splice portion (at 600 ms, with a mean pre-splice portion of 380 ms),
con�rming that 200 ms is a reasonable estimate of the delay for observing
effects of processing and integrating the spoken input in the eye-tracking
task. Moreover, the post-splice consonant was 206 ms long on average. If
lexical competition were to resolve as soon as disambiguating information

Figure 2. Experiment 1: Proportion of fixations to the target picture (W1) over time for each
splicing condition (W1W1 [filled triangles], W2W1 [filled squares], N3W1 [empty squares]) on
single-fixation trials (see text).
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has been heard and processed, evidence for such resolution would be
expected around 800 ms after target onset. Although this analysis should
be interpreted with caution (no statistical analyses were conducted, due to
the small number of data points per subject), it suggests that lexical
competition continues for several hundred ms beyond the point where the
disambiguating information has been processed.

Discussion

The latency with which participants �xated the target picture was slower
when mismatching information in the target word matched a competitor
word than when it did not. The latency analysis showed a small
(nonsigni�cant) difference between the W1W1 and N3W1 conditions,
whereas the difference between the W1W1 and W2W1 conditions was
substantial. This suggests that lexical access is much more disrupted when
mismatching coarticulatory information matches a word than when it does
not. Eye movements to the target picture thus con�rm the general
prediction made by models that assume lexical competition throughout the
recognition process. Early in the W2W1 sequence, the competitor W2
becomes highly active and competes with the target W1. The recognition
of the target word is thus delayed. In contrast, early in the N3W1 sequence,
W2 is only weakly active, so its activation has a much smaller effect on the
recognition of W1. The eye-movement analyses capture the time-course
aspect of the competition effect: Fixations to the target picture in the
W2W1 and N3W1 conditions remain fairly similar up to 600 ms after target
onset; at this point, the proportion of target �xations in W2W1 is delayed
compared to the other conditions, as a result of the strong activation of the
competitor (W2).

EXPERIMENT 2

Experiment 1 demonstrated that the recognition of the target word is more
delayed when it contains mismatching coarticulatory information that
matches an existing competitor word than when the mismatching
information does not favour a potential lexical competitor. Experiment 2
was designed to assess more directly the competitor’s activation by
measuring �xations to this competitor over time in each of the splicing
conditions. Furthermore, �xations to the target and its competitor over
time provide the basis for a direct comparison between these �xation
patterns and the activation patterns generated by a model that
incorporates lexical competition. In order to obtain time-course data on
the activation of both the target and the competitor in each of the splicing
conditions, we presented the competitor picture along with the target
picture and two distractors.
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Method

Participants. Thirty students at the University of Rochester partici-
pated in the experiment and were paid $7.50. All were native speakers of
English. None of them had participated in Experiment 1.

Materials. The materials were identical to those used in Experiment 1,
with the exception of the displayed pictures. Here, the competitor picture
was displayed along with the target picture and two unrelated distractors
(e.g., the picture of a net, a neck, a bass, and a deer). The list of the pictures
is presented in Appendix B.

Procedure. The procedure was identical to that used in Experiment 1.
Three lists were constructed, by varying which of the three versions of each
experimental target word was presented (W1W1, W2W1, or N3W1).
Within each list, �ve critical items were assigned to each condition. Ten
participants were randomly assigned to each list. For each list, three
random orders were created; approximately the same number of
participants were assigned to each random order.

Results and discussion

Because of technical failures, �ve trials were missing; in addition, for nine
trials (2%), participants erroneously clicked on the competitor picture.
These trials were excluded from the analyses. Figure 3 presents the �xation
proportions to the target W1 (upper panel) and its competitor W2 (lower
panel), for each splicing condition. Fixations to the target over time
indicated a fast rise in W1W1, separating from the other conditions shortly
after 600 ms; the target �xations rose more slowly in N3W1, and slowest in
W2W1. Fixations to the competitor W2 revealed a complementary picture.
The competitor picture was �xated most in W2W1, where coarticulatory
information in the vowel matches the competitor’s name, intermediate in
N3W1, where coarticulatory information weakly matches both W1 and
W2, and least in W1W1, where coarticulatory information favours W1. In
the latter condition, �xations to target and competitor increased in parallel
until shortly after 600 ms, where competitor �xations began to decrease,
and target �xations, to increase. Fixations at this point thus re�ect the use
of coarticulatory information in the vowel supporting the target over the
competitor.

We computed the mean proportion of �xations to the target and
competitor for each splicing condition over the 600- to 1200-ms time
window. On average, the target was �xated most given W1W1,
substantially less given N3W1, and least given W2W1 (70%, 49%, and
42%, respectively); a complementary pattern was observed for the



Figure 3. Experiment 2: Proportion of fixations to the target picture (W1) (upper panel) and
the competitor picture (W2) (lower panel) over time, for each splicing condition (W1W1
[filled triangles], W2W1 [filled squares], N3W1 [empty squares]). Bars indicate standard
errors.
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competitor (15%, 29%, and 39%, respectively). A three-way ANOVA
(picture [target or competitor] £ splicing condition £ voicing status)
revealed a main effect of picture (F1(1, 28) ˆ 56.6, p < .0001, MSE ˆ
.0612; F2(1, 13) ˆ 16.93, p < .001, MSE ˆ .0607) and a signi�cant
interaction between splicing condition and picture (F1(2, 56) ˆ 26.65, p <
.0001, MSE ˆ .0603; F2(2, 26) ˆ 23.26, p < .0001, MSE ˆ .0159), re�ecting
the complementary pattern found for the target and competitor �xations
across the splicing conditions. (The data from one subject were excluded
from the subject analyses because of missing data causing empty cells.) No
other main effect or interaction reached signi�cance. A similar pattern of
results (although marginally signi�cant by items) was found when the
analysis was restricted to the two crucial conditions (W2W1 and N3W1)
and averaged across voicing status. There was a main effect of picture
(F1(1, 29) ˆ 28.86, p < .0001, MSE ˆ .0320; F2(1, 14) ˆ 3.3, p ˆ .09, MSE
ˆ .0467) and an interaction between picture and splicing condition
(F1(1, 29) ˆ 5.32, p < .05, MSE ˆ .0225; F2(1, 14) ˆ 2.8, p ˆ .12, MSE ˆ
.0275). Pairwise comparisons revealed a signi�cant difference between
W2W1 and N3W1 only on competitor �xations (t1(29) ˆ 2.52, p < .05,
t2(14) ˆ 1.99, p ˆ .06).3

Fixations to both the target and the competitor pictures over time
revealed differences between the splicing conditions. Given W1W1, the
target (W1) and its competitor (W2) were both equally activated until the
sensory input, presumably the coarticulatory information in the vowel,
favoured W1 over W2. While the input was consistent with both W1 and
W2, these items were equally likely to be �xated. This is consistent with
‘‘cohort’’ effects previously demonstrated with the eye-tracking paradigm
(Allopenna et al., 1998; Dahan et al., 2000; Tanenhaus et al., 1995). When
coarticulatory information was encountered in the vowel given W1W1 or
W2W1, �xations to the mismatching item decreased. Participants’
sensitivity to coarticulatory information was revealed by the contrastive
patterns for W1 and W2 early on given W1W1 and W2W1. Eye
movements thus capture sensitivity to �ne-grained information in the
sensory input. Furthermore, the lesser decrease in �xations to W1 given

3 We also conducted an analysis on the latency in �xating the target picture. On average,
the latency was 819 ms in W1W1 (standard error ˆ 33 ms), 1110 ms in W2W1 (standard error
ˆ 42 ms), and 1052 ms in N3W1 (standard error ˆ 43 ms). A two-way (splicing condition £
voicing status) ANOVA showed a main effect of condition (F1(2,56) ˆ 14.9, p < .0001, MSE
ˆ 91887; F2(2,26) ˆ 17.27, p < .0001, MSE ˆ 17379), with no main effect of voicing and no
interaction. Pairwise comparisons revealed signi�cant differences between W1W1 and both
W2W1 and N3W1, but not between W2W1 and N3W1. Note that both mean latencies and
variability were noticeably greater than in Experiment 1, certainly due to the eye movements
made to the competitor picture before �xating the target picture. Nevertheless, there was a
trend toward slower latencies in �xating the target picture in W2W1 than in N3W1, con�rmed
in the �xation-proportion analysis.
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N3W1 compared to W2W1 revealed lexical competition. The effect of
mismatch was substantially less when the mismatching information did not
favour any lexical alternative.

SIMULATIONS OF THE EYE-MOVEMENT DATA
WITH THE TRACE MODEL

In order to test whether the eye-movement data are consistent with
predictions from a model that incorporates lexical competition via lateral
inhibition, we simulated the �xations to the target and competitor by
transforming activation generated by TRACE into �xation probabilities.
We used the publicly available TRACE implementation (ftp://ftp.crl.ucs-
d.edu/pub/neuralnets ) with the standard parameter set reported in
McClelland and Elman (1986).4 The lexicon was augmented to 257 words
to include the closest possible transcriptions of our stimuli given TRACE’s
limited phoneme set. The transcriptions of our stimuli are presented in
Appendix A.

TRACE provides a coarse approximation of coarticulation by spreading
features from a segment forward and backward six slices, such that each
segment spans 11 cycles. Segments overlap because adjacent phoneme
centres are six cycles apart. Features spread with a triangular function,
such that they peak at each phoneme centre, and decrease gradually
forward and backward from the peak. In our simulations, words were
preceded by 6 cycles of silence; thus, the onset of each word was at cycle 7,
with phoneme centres at cycle 12, 18, and 24. In order to generate W2W1
and N3W1 cross-spliced inputs, the cross-splicing point was chosen to
follow the time slice immediately preceding the centre of the last
consonant. Input stimuli were presented to TRACE, one at a time. All
lexical items were allowed to compete.

Figure 4 shows the raw TRACE activation over time for W1 and W2
nodes as W1W1, W2W1, and N3W1 inputs were presented, averaged over
the 15 items (upper panel). These activation patterns were converted into
predicted �xation probabilities over time using a variant of the Luce choice
rule applied to the four visually present alternatives, i.e., W1, W2, and two
phonologically unrelated distractors (for a more detailed explanation of
the issues involved in mapping activation onto �xation proportions, see
Allopenna et al., 1998; Dahan et al., 2001; Magnuson, Tanenhaus, Aslin, &
Dahan, submitted). Fixation probabilities are shown in the lower panel of
Figure 4. The �xation probability for W1 rises fastest given W1W1,

4 The default parameter set in the distribution version differs from that reported by
McClelland and Elman (1986). In the original paper, all features were set to spread forward
and backward six slices, whereas in the distribution code, different features spread different
numbers of slices.



Figure 4. Simulations: Raw TRACE activation (upper panel) and predicted fixations (lower
panel) for the target (W1) and the competitor (W2), over cycles, for each splicing condition
(W1W1 [filled triangles], W2W1 [filled squares], N3W1 [empty squares]).
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somewhat slower given N3W1, and slowest given W2W1. Note that W1
�xations reach a high probability in all conditions, even when the input in
the vowel favours its competitor W2, as in W2W1 sequences. Activation
levels are thus modulated by information occurring later in the input,
counteracting earlier information. The model predicts more �xations to
W2 given W2W1, less given N3W1, and the least given W1W1. The
predicted �xations closely mirror the human data shown in Figure 3.

These simulations diverge from the TRACE simulations reported by
Marslen-Wilson and Warren (1994) in important ways. Their simulations
did predict a lower probability of recognising the target (W1) given W2W1
than given N3W1 or W1W1, in agreement with our human data and
simulations. However, the probability of recognising W1 given W2W1 was
only temporarily delayed in our simulations, while it remained very low
even after 80 cycles in Marslen-Wilson and Warren’s. Furthermore, they
simulated lexical activation to cross-spliced nonword sequences (W2N1,
e.g., smo(g)b), and found that the probability of recognising W2 given
W2N1 reached roughly the same level as the probability of recognising W1
given W1W1 (see their Figures 12 and 13). Translated into lexical-decision
judgements, these probabilities predict high error rates in lexical decisions
given W2N1, because the nonword sequences W2N1 receive as much
‘‘word’’ support as the word sequences (W1W1 or N3W1). However,
lexical decisions to the nonword sequences W2N1 had a very low error
rate, both in the Marslen-Wilson and Warren (1994) and the McQueen et
al. (1999) studies. Marslen-Wilson and Warren attributed the discrepancies
between the human data and their simulations to TRACE’s architecture
(in particular, the presence of lateral inhibition between word nodes and
absence of bottom-up inhibition). Because our simulations of the same
conditions did not show the patterns reported by Marslen-Wilson and
Warren, this suggests that these patterns resulted more from parameter
and/or stimulus choices than from the principles underlying TRACE’s
architecture.5

5 We have not been able to uncover the source of the discrepancies between our
simulations and those reported by Marslen-Wilson and Warren (1994). However, it is clear
that the pattern we report represents typical TRACE behaviour. It holds for splicing at
multiple locations and three different parameter sets (those reported in McClelland & Elman
[1986], the default parameter settings in the Unix distribution of the TRACE simulator, and
the parameters described by Frauenfelder and Peeters [1998]). Similar results hold across
different variants of the Luce choice rule with a range of values for the k parameter (see
Magnuson, Dahan, and Tanenhaus, 2001, for details), different sets of stimuli (the CVC
analogs to our stimuli, every possible stimulus set in the lexicon used by Marslen-Wilson and
Warren, and the speci�c set of �ve triplets used by Marslen-Wilson and Warren [league/lead/
*leab, pug/pub/*pud, slab/slag/*slad, stab/stag/*stad, and shrub/shrug/*shrud; Warren,
personal communication]), and two different implementations of TRACE (the Unix

(continued overleaf)
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In summary, our TRACE simulations mirror the eye-movement data,
with delayed �xation probabilities over time for the target (W1) in W2W1
compared to N3W1, caused by a high �xation probability for W2.

GENERAL DISCUSSION

The present study examined lexical competition when mismatching
coarticulatory cues in a vowel (i.e., inconsistent with the actual identity
of the following consonant) match another existing word and when these
cues do not match an existing word. Earlier studies (Marslen-Wilson &
Warren, 1994; McQueen et al., 1999) collected lexical-decision latencies to
cross-spliced word sequences containing mismatching coarticulatory cues
and found no effect of the lexical status of the con�icting cues. Marslen-
Wilson and Warren (1994) interpreted this result as evidence against
lateral inhibition between activated word units, as instantiated in the
TRACE and Shortlist models. However, Norris et al. (2000) showed that
the absence of a lexical effect between W2W1 and N3W1 is compatible
with a model incorporating lateral inhibition if lexical competition is
resolved before lexical-decision responses are generated. On their account,
such lexical competition takes place but is resolved before activation
reaches a suf�cient threshold to generate a lexical decision.

The present eye-movement data showed that the recognition of W1 is
delayed given W2W1, compared to N3W1, demonstrating clear lexical
competition between the competitor (W2) and the target (W1), regardless
of whether W2 was visually present or not. Using the linking hypothesis
developed by Allopenna et al. (1998) and Dahan et al. (2001), we showed
that lexical activation generated from TRACE mirror the eye-movement
data quite closely. Predicted �xations to the competitor W2 reach a higher
level and �xations to the target W1 are more delayed in W2W1 than in
N3W1. Importantly, the subcategorical mismatch affects activation only
temporarily. The target’s activation reached the same maximum value in
all splicing conditions, suggesting that the target will always be ultimately
recognised. This contrasts with the simulations reported in Marslen-Wilson

implementation, and the Macintosh implementation, ‘‘MacTRACE’’, provided to us by Paul
Warren). Although we obtained stronger competition effects given W2W1 for some items
than for others (e.g., longer words, especially the CCVCs used by Marslen-Wilson and
Warren), the patterns more closely resembled the results shown in Figure 4 than the pattern
reported by Marslen-Wilson and Warren. In short, we were unable to replicate the pattern
reported in Marslen-Wilson and Warren (1994) with any combination of these variables. Thus,
it seems safe to conclude that whereas some combination of stimuli and parameters may result
in simulations with the pattern presented in Marslen-Wilson and Warren (1994), the
simulations that we report in this article are more representative of the results that arise from
the TRACE architecture.
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and Warren (1994), where the ultimate response probabilities favoured the
pre-splice portion of the input (e.g., W2’s activation given W2N1 was at
least as high as W1’s activation given W1W1), leading researchers to
incriminate various aspects of TRACE’s architecture, such as lateral
inhibition and lack of bottom-up mismatch (Marslen-Wilson & Warren,
1994) or lack of ‘‘optimisation’’ at every input slice (Cutler, Norris, &
McQueen, 2000; Norris et al., 2000). Although the source of the
discrepancies between the present simulations and those reported by
Marslen-Wilson and Warren remains unclear, the present results indicate
that Marslen-Wilson and Warren’s simulations cannot be considered
decisive evidence against the architectural assumptions of TRACE (see
discussion in footnote 5).

Both the eye-movement data and the TRACE simulations showed an
effect of the lexical status of the pre-splice portion of the sequence. Target
recognition, as assessed by �xations, was more delayed when the pre-splice
portion of the sequence came from another word (as in W2W1) than when
it did not (as in N3W1). However, lexical-decision studies (Marslen-Wilson
& Warren, 1994; McQueen et al., 1999) showed no difference in response
latencies between these conditions. Why do lexical-decision latencies fail
to show a difference between the W2W1 and N3W1 conditions, while we
�nd such a strong difference in the eye-movement data? McQueen et al.
(1999) argued that the lexical-decision data show no difference between
the W2W1 and N3W1 conditions because the lexical competition between
W2 and W1 is quickly resolved and W1 dominates the activation pattern,
‘‘leaving no trace of that competition process in the [lexical-decision]
responses made to the cross-spliced words’’ (page 1385). According to
Norris and colleagues (Cutler et al., 2000; Norris et al., 2000), the dynamics
of word-node activation in Merge (i.e., optimisation by letting the network
cycle 15 times and resetting word nodes at each time slice) are required to
account for the lexical-decision data. In their simulations, the competition
between W2 and W1 is resolved by the end of the �nal consonant of the
cross-spliced stimuli and W1’s activation reaches a response threshold with
the same delay in the W2W1 and N3W1 conditions. However, our eye-
movement data, and in particular the subanalysis conducted on Experi-
ment 1 (see Figure 2), suggest that effects of lexical competition in cross-
spliced stimuli extend well beyond the target-word offset, that is, until after
processing of the post-splice consonant is likely to have completed. Even
when considering only single-�xation trials, the delay with which
participants �xated the target picture was longer when the pre-splice
portion of the target word matched a competing word than when it did not,
and this effect extended about 200 ms after the post-splice consonant had
been heard and processed. Thus, effects of competition can be observable
for some time after suf�cient input to resolve ambiguity has been heard
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and processed. This apparently delayed resolution of lexical competition,
with respect to the time course with which spoken input becomes available,
seems more compatible with a model like TRACE, where a word’s
activation at any particular point in time depends on both its activation at
the previous time step and the current input, resulting in gradual increases
and decreases of word activation, than with a model like Merge (or
Shortlist), where multiple activation cycles and a reset of word nodes result
in an optimal interpretation of the input at each time slice. Further
evidence suggesting that the impact of speech information on the state of
the lexical system is not immediate is provided by Zwitserlood and
Schriefers (1995).

If competition effects do extend several hundred ms after disambiguat-
ing information has been heard, why aren’t these effects re�ected in
lexical-decision latencies? A possible explanation for the absence of
competition effects in the lexical-decision responses, as suggested by
Norris and colleagues, is that participants responded after lexical
competition had resolved. Mean reaction times in the McQueen et al.
study were about 470 ms after target offset in the W2W1 and N3W1
conditions. If processing and motor-response delays in lexical decisions can
be as short as 200 ms, responses could have been generated after full
competition resolution. Note that on this account, there is no need to
assume optimisation in competition resolution. However, this apparent
lack of sensitivity of the lexical-decision task to lexical competition is at
odds with other evidence that lexical-decision responses to a target word
are in�uenced by the activation of its competitors. For instance, Luce and
Pisoni (1998) showed that lexical-decision latencies to words in high-
density neighbourhoods (i.e., words with many phonologically similar
competitors) are slower than latencies to words in low-density neighbor-
hoods. Why would response latencies to cross-spliced words, for which the
initial activation of the pre-splice competitors is certainly very high, fail to
show a competition effect? If anything, one would expect to see an
especially strong competition effect with such stimuli.

As an alternative account for the absence of lexical-competition effects
in the lexical-decision data, we propose that lexical-competition effects are
masked in the mean lexical-decision latencies because the activation of
competitors as well as targets in�uences lexical-decision responses. The
lexical-decision task does not require correct identi�cation of the intended
target. Participants may also respond ‘yes’ in response to the high
activation of a competitor item. More speci�cally, some ‘yes’ responses to
W2W1 sequences would be triggered by W2’s early strong activation, while
the impact of competitors’ activation would be small on responses to
N3W1 sequences. The mean lexical-decision latency in the W2W1
condition would thus include a range of latencies, from early responses
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to the initial activation to W2 to late responses to W1, delayed by lexical
competition. In contrast, the mean lexical-decision latency in the N3W1
condition would include responses triggered by W1 activation, moderately
slowed down by the presence of a subcategorical mismatch.

As a �rst step in evaluating this hypothesis, we tested whether the
variability in lexical-decision latencies to W2W1 sequences was greater
than the variability in latencies to N3W1 sequences, as our account of the
lexical-decision data implies.6 We analysed the lexical-decision latencies
from McQueen et al. (1999, Experiment 3), using standard deviation as a
simple index of variability.7 Following McQueen et al., reaction times
slower than 1500 ms after sequence offset were excluded, but missing data
points, due to outlying RTs or to errors, were not replaced. Latency
standard deviations per participant and per condition were then computed
and submitted to a one-way ANOVA. Mean standard deviations were 162
ms, 201 ms, and 168 ms for W1W1, W2W1, and N3W1 conditions,
respectively, with a signi�cant effect of conditions (F(2, 88) ˆ 11.85, p <
.0001, MSE ˆ 1700.8). Newman–Keuls tests indicated that the standard
deviation was greater in the W2W1 condition than in the N3W1 condition
(with a ˆ .05).

The higher latency variability in W2W1 than in N3W1, despite
equivalent means, suggests that the responses generated in these
conditions may come from different underlying patterns of lexical
activation. In order to provide further support for our account of the
lexical-decision data, we developed a simple model to simulate these data
under the assumption that a ‘‘yes’’ response is generated probabilistically
when either the target (W1) or the competitor (W2) reaches threshold.
(The activation of other words in the lexicon remains low and could have
only negligible impact.) We conducted separate simulations using the eye-
movement data collected in Experiment 2 and TRACE-activation data.
Each simulation was run 1000 times for each of the 15 experimental items,
across a range of response thresholds.8 These simulations showed that

6 It might seem that a stronger test of our hypothesis would be to test whether the
distribution of lexical-decision responses in W2W1 differs from the response distribution in
N3W1, and in particular, whether it �ts a mixture of the two distributions generated by W2
and W1 activation (this mixture need not result in a bimodal distribution, in contrast with
what Norris et al. [2000, p. 356] have argued). However, because the W2W1 and N3W1
distributions are very similar when the data from all the subjects are combined, and the
number of data points per subject per condition is very small, explicit tests of the hypothesis
are dif�cult.

7 We are grateful to James McQueen, Dennis Norris, and Anne Cutler for providing their
raw data.

8 Space constraints preclude extensive details on the algorithm used in the simulations but
a fuller report can be obtained from the authors.



530 DAHAN ET AL.

predicted lexical-decision means given W2W1 and N3W1 were roughly
identical and higher than for W1W1 across a range of thresholds before
diverging, whether computed from �xation proportions from Experiment 2
or from TRACE activation. These simulations demonstrate that identical
lexical-decision means can be obtained from different underlying W1 and
W2 activation patterns in the W2W1 and N3W1 conditions, if one assumes
that ‘‘yes’’ responses can be triggered by the activation of either the target
W1 or its close competitor W2.

It is important to note that our lexical-decision simulations do not
provide a comprehensive account of the McQueen et al. (1999) and
Marslen-Wilson and Warren (1994) data. In particular, the simulation
incorrectly predicts a higher error rate for the nonword sequence W2N1
(e.g., smo(g)b) than for the sequence N3N1 (e.g., smo(d)b) because early
activation of W2 would trigger some ‘‘yes’’ responses. The human data
showed low and equivalent error rates for both conditions. However, a
closer look at the error rates reveals a complex pattern. Error rates were
substantially higher in W2W1 and N3W1 than in all the other conditions, in
both Marslen-Wilson and Warren (1994) and McQueen et al. (1999). This
suggests a bias for the listeners to respond ‘‘no’’ to stimuli containing
mismatching coarticulatory cues. Neither our lexical-decision simulation
nor Norris et al.’s model accounts for these high error rates. A complete
simulation of the lexical-decision data, accounting for both response
latencies and error rates, will require a more complex decision mechanism
than a simple threshold. The decision rule adopted by participants in these
studies may well have been affected by the unusual nature of the stimuli,
which contained a large proportion of cross-spliced sequences.

Regardless of how the lexical-decision data are interpreted, simulations
of lexical activation of cross-spliced sequences with subcategorical
mismatches all assume that, at some point during the recognition process,
the recognition of the target W1 is more impaired given W2W1 than
N3W1. The lexical-competition effect is apparent both in the TRACE
simulations presented here and in Merge’s activation levels in Norris et al.
(2000), where word nodes in these localist connectionist models directly
compete via lateral inhibition. These models are thus consistent with our
eye-movement data. As shown in its simulations of the Marslen-Wilson
and Warren data, the distributed model of speech perception (Gaskell &
Marslen-Wilson, 1997, Figure 3) also predicts lexical-competition effects
during the recognition of the target W1, although they are predicted to be
small and transient. Our eye-movement data are also potentially consistent
with the Cohort model (Marslen-Wilson, 1987) if one assumes that eye
movements do not re�ect lexical-activation levels per se, but are generated
probabilistically from a continuously operating decision mechanism. A
decision rule would continuously evaluate a candidate’s activation
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proportionally to its competitors’ activation. This would predict delayed
target recognition in W2W1, because the most active competitor (W2)
would be more active in W2W1 than in N3W1 (assuming other
competitors were equally active). However, our eye-movement data rule
out a model where lexical competition takes place at a late decision stage
of recognition, because lexical-competition effects were observed well
before the end of the cross-spliced stimuli.

We conclude by highlighting the critical implications of the current
work. First, our results provide clear evidence for lexical competition.
Second, because most current models incorporate some form of lexical
competition, distinguishing among competing models will require detailed
information about the time course of lexical activation, including how
quickly competition is resolved, and an explicit hypothesis linking
behavioural data to underlying processes. Our results demonstrate that
the eye-tracking paradigm meets these criteria when coupled with
simulations from an explicit model. Finally, the present study provides
information about the time course of lexical competition that may provide
important constraints on models of spoken word recognition.
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APPENDIX A

Same voicing

Target W1 Word Competitor W2 Nonword Competitor N3
net (git) neck (gik) *nep (gip)
tap (tap) tack (tak) tat (tat)
bud (bud) bug (bug) *bub (bub)
butt (b^t) buck (b^k) *bup (b^p)
carp (kup) cart (kut) *cark (kuk)
fort (srt) fork (srk) *forp (srp)
harp (lrp) heart (lrt) hark (lrk)

Different voicing

Target W1 Word Competitor W2 Nonword Competitor N3
cat (kat) cab (kab) *cag (kag)
bat (bat) bag (bag) *bab (bab)
road (rid) rope (rip) *roke (rik)
pit (pit) pig (pig) *pib (pib)
hood (sud) hook (suk) *hoop (sup)
knot (gut) knob (gub) *knog (gug)
beak (bik) bead (bid) *beab (bib)
rod (rud) rock (ruk) *rop (rup)

Note: * indicates a sequence that is not a real word in American English. The transcriptions
adopted in the TRACE simulations (given the lack of some phonemes) are indicated in
parentheses.
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APPENDIX B

Experimental Trials

Distractor 1 Target W1 Distractor 2 / Competitor W2 Distractor 3
bass net nurse / neck deer
skunk tap trunk / tack peas
fox bud bow / bug eye
clams butt bride / buck ghost
swing carp comb / cart moon
light fort �ag / fork hat
desk harp house / heart claw
vase cat crown / cab tree
pen bat bone / bag stool
knee road rug / rope glass
ark pit pot / pig �ute
eggs hood hose / hook brush
mouse knot knight / knob beer
saw beak bench / beads thumb
bear rod rake / rocks fries

Note: Distractor 1 corresponds to the target picture from the initial ‘‘point to’’ instruction.
Distractor 2 was displayed only in Experiment 1; the Competitor W2, only in Experiment 2.


