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Among the most compelling issues in psychology is 
how the cognitive system can spontaneously leap from one 
structure to another. For example, as children are learning 
to solve addition problems (e.g., 4 1 2 5 ?), they initially 
raise the appropriate number of fingers to represent the two 
addends (e.g., four on one hand, two on the other) and count 
them all. However, after using this strategy for a while, 
children spontaneously discover a new strategy: They raise 
the appropriate number of fingers for the smaller addend 
(e.g., two), and then begin counting from the larger addend 
(e.g., four, five, six; Siegler & Araya, 2005). Such discov-
eries or insights are particularly interesting phenomena, in 
part because the change in structure appears to be driven 
by the activity of the system itself. There is no external 
agent guiding the individual toward a new organization, 
nor is there an internal plan that contains the new struc-
ture in miniature. Explaining the emergence of new struc-
tures is a serious challenge for cognitive theory. Chronicle, 
MacGregor, and Ormerod (2004), for example, noted that 
information- processing approaches had not made substan-
tial progress in explaining new structures (i.e., insights) 
during problem solving. The central question is, how can a 
functioning system can suddenly self-organize into a new 
configuration in the absence of any external supervision or 
internal blueprint.

In previous work, we found evidence for just such a 
spontaneous change in cognitive structure during a simple 
problem-solving task (Dixon & Kelley, 2006). Participants 

were asked to solve gear-system problems by predicting the 
turning direction of the final gear, given the turning direc-
tion of the first gear (see Figure 1). After solving the prob-
lems with lower level strategies, many participants sponta-
neously discovered a mathematical relation— parity—that 
afforded a higher order solution to the problems (Dixon & 
Bangert, 2004; Dixon & Kelley, 2006, 2007). (The parity 
of the number of gears in the system [i.e., odd, even] deter-
mines whether the final gear turns in the same direction as 
the driving gear.) The participants rarely made errors prior 
to discovering parity. Furthermore, since the gear displays 
were static, the relation could not be extracted from the 
movement of the gears. The new relation appears to arise 
from the participants’ own activity. Gentner and Namy 
(1999) investigated a similar phenomenon in which rep-
resentational change occurs from the child’s own actions. 
They showed that when children repeatedly compare ob-
jects during classification, they begin to detect their com-
mon dimensions, a process sometimes called progressive 
alignment. Gentner has proposed that repeated alignment 
is a central process in cognitive development (e.g., Gentner, 
Loewenstein, & Hung, 2007). In the present study, we ad-
dress the emergence of new cognitive structure from one’s 
own activity as an instance of self-organization.

Self-Organization of New Structure
Researchers across a wide variety of domains have 

grappled with the emergence of new structure (Jensen, 
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sequence of events is governed by a set of higher order 
relations, evident in system behavior, that obtain during 
self-organization (we discuss two such relations in detail 
below) (Hilborn, 1994). Because these higher order rela-
tions are grounded in the principles of nonlinear dynamics 
and make strong predictions about well-understood mea-
sures, they have provided a powerful approach for under-
standing self-organization.

In psychology, the idea that the activity of many in-
teracting microelements undergirds cognition has had 
a major impact on theory through the development of 
connectionist computational models (McClelland, Rum-
elhart, & PDP Research Group, 1986). An important 
class of connectionist models exhibits self-organization 
in the sense described above. Under a variety of condi-
tions, these models, which usually employ Hebbian and/
or self-organizing map (SOM) algorithms, spontaneously 

1998; Webster & Goodwin, 1996). Physical and biological 
systems spontaneously exhibit new structures, just as cog-
nitive systems do. For example, when a fluid is heated, the 
fluid molecules spontaneously form convection cells, new 
structures that function to keep the fluid stable (Hilborn, 
1994; Lorenz, 1963). Similarly, a well-studied, single-
celled organism, Acetabularia, can generate an assortment 
of novel structures (i.e., not seen in its typical develop-
mental course) depending on the medium in which it is 
grown (Harrison & Hillier, 1985). Although the details of 
such systems vary greatly, research in nonlinear dynam-
ics has delineated the sequence of events that results in 
the self-organization of new structure. In broad outline, 
self-organization begins when the activity of the system 
changes the interactions among microelements. The new 
interactions create new properties, leading to a different 
organization that appears as new, global structure. This 

Figure 1. Examples of gear-system problems. The gear systems varied along three dimen-
sions: size (small, 4 or 5 gears; large, 7 or 8 gears), number of pathways (one or two), and 
whether an extraneous gear was present. Extraneous gears were not part of the causal path-
way from the driving gear to the target gear. Gear systems with two pathways had the po-
tential to jam—to fail to turn because of opposing forces on the target gear; thus, a button 
labeled “Jams!!” constituted a third response option (in addition to clockwise and counter-
clockwise rotation).
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tem again becomes more orderly (Kelso, 1995; Nicolis & 
Prigogine, 1977; Prigogine & Stengers, 1984).

Power-law behavior is a specific type of nonlinear rela-
tionship between the magnitude of a behavior (e.g., size of 
a movement, length of a response time) and its frequency 
(i.e., how often behaviors of that magnitude occur). Like 
entropy, power-law behavior is related to the degree to 
which the system is constrained, but in a way that reflects 
an additional fundamental property of the system’s ar-
chitecture: nested structure. All biological systems (and 
many nonbiological ones) are organized at multiple levels 
(West, Brown, & Enquist, 1999). In such nested struc-
tures, higher levels are made up of lower ones, which in 
turn are made up of yet lower ones; this nesting obtains 
across many scales. Nested structure produces power-law 
behavior because, as one traverses the system from higher 
to lower levels, the number of microelements increases 
proportionally to the number of levels traversed.

When such a system is operating in a stable configu-
ration, some of the microelements are constrained; they 
temporarily function together much like a unitary whole or 
component. As the system approaches a phase transition, 
constraints break across multiple levels, thereby freeing 
previously constrained microelements. This increases the 
amount of activity at each level. Statistically, the increase 
in activity across the nested structure can be quantified by 
the magnitude of the power-law exponent: The greater the 
activity is, the greater the value of the power-law exponent 
will be. As constraints re-emerge and the system settles 
into a new structure, the power-law exponent decreases 
(Grebogi, Ott, Romeiras, & Yorke, 1987). Much of the in-
terest in power-law behavior stems from the relationship be-
tween power-law exponents and phase transitions. Indeed, 
a major basis for classifying types of dynamical systems is 
their critical power-law exponent, the value of the exponent 
at which the phase transition begins (Hilborn, 1994).

We propose that changes in entropy and changes in 
power-law exponents will predict a phase transition in the 
cognitive system. For this purpose, we now present a sim-
plified model of a dynamical system undergoing a phase 
transition and chart its entropy and power-law exponent 
throughout. The system that we have chosen is the Lorenz 
(1963) model of fluid convection. This well-known model 
consists of three interrelated equations: dX/dt 5 s(Y 2 X ), 
dY/dt 5 rX 2 Y 2 XZ, and dZ/dt 5 XY 2 bZ. The X variable 
indexes the intensity of the fluid flow. Y indexes the differ-
ence between ascending and descending convection cur-
rents. Z is related to the deviation of the vertical temperature 
profile from linearity. The three variables, X, Y, and Z, form 
the dimensions of the system’s phase space. Phase space is 
simply the set of all potential states, defined as all possible 
combinations of X, Y, and Z values. Setting the s, r, and b 
parameters and initial values of X, Y, and Z determines the 
system’s behavior. The model demonstrates a wide variety 
of complex behavior, including a sudden shift from one at-
tractor to another as a control parameter, r, intended to rep-
resent the heating of the fluid, increases (Sparrow, 1982). 
The goal of this example is to concretely demonstrate how 
entropy and the power-law exponent change as a dynami-

generate new, functionally appropriate structures without 
supervision (McClelland, 2006; Silberman, Bentin, & 
Miikkulainen, 2007). These algorithms provide biologi-
cally plausible accounts of changes in neural connectiv-
ity (Ashby, Ennis, & Spiering, 2007; Sullivan & de Sa, 
2006). Self-organizing connectionist models have been 
successful in addressing the emergence of new structure 
in language acquisition, including aspects of vocabulary 
(Li, Zhao, & MacWhinney, 2007) and syntax (Hadley & 
Cardei, 1999). They have also proven useful for modeling 
the emergence of early concepts, such as physical causal-
ity (Cohen, Chaput, & Cashon, 2002; Schyns, 1991).

Attempts to understand how such networks change dur-
ing learning has revealed that many of these models op-
erate under the principles of self-organization from non-
linear dynamics (Graepel, Burger, & Obermayer, 1997; 
Siri, Quoy, Delord, Cessac, & Berry, 2007). The same 
higher order relations that govern self-organization in a 
wide variety of other domains, such as fluids, lasers, and 
ferromagnets, are exhibited by a class of connectionist 
models that learn via Hebbian and SOM algorithms. The 
alignment of nonlinear dynamics with the self-organizing 
behavior of this class of connectionist models has deep 
implications, because nonlinear dynamics makes a distinct 
set of predictions about the behavior of a system as it self-
organizes: Nonlinear dynamics predicts that microscopic 
fluctuations in behavior change systematically during the 
emergence of new macroscopic structure. Therefore, this 
class of connectionist models should also make predic-
tions about properties of very fine-grained behavior that 
are endemic to self-organization. Here, we focus on two 
key predictions from dynamics: Changes in entropy will 
anticipate the transition to new cognitive structure, and 
in addition, power-law behavior will also anticipate the 
transition to new cognitive structure.

Entropy and Power-Law Behavior
One way to understand why changes in entropy and 

changes in power-law behavior predict phase transitions 
is in terms of constraints, physical bonds that hold mi-
croelements together. In order for a system to function 
in a specific configuration, some of its microelements 
must be coupled or constrained. Such constraints are the 
underlying explanation of a system’s structure. Without 
constraints, the microelements would act independently 
of each other, and the system would have no structure; 
that is, it would show no organized behavior. Entropy is 
inversely related to the number of constraints among the 
microelements (Kugler & Turvey, 1987). As a dynamical 
system approaches a phase transition, constraints among 
the microelements begin to break down. This results in 
more disordered (i.e., entropic) behavior. It also results 
in an increase in the degree to which interactions among 
its microelements dominate behavior, because microele-
ments that were previously constrained are now free to in-
teract. If the interactions give rise to new structure within 
the system, they do so by creating new constraints among 
the microelements. As the number of new constraints in-
creases, entropy decreases, and the behavior of the sys-
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creases as it settles into the new one. Entropy, here, is a 
measure of the degree of disorder in the trajectory through 
phase space. The power-law exponent also increases prior 
to the transition and decreases while the system settles into 
the new attractor. The power-law exponent indexes the de-
gree of activity across the scales in the system. The activ-
ity increases and decreases around the phase transition. 
We explain the methods used to calculate entropy and the 
power-law exponent more fully in subsequent sections.

Predicting the Emergence of Cognitive Structure
In the present study, we explore the possibility that the 

spontaneous emergence of a new cognitive structure—a 
mathematical relation—reflects a phase transition within 
the cognitive system. On each trial, participants were given 
the turning direction of a driving gear that provided force 
to the system and were asked to predict the movement of 
a target gear. The gear systems were presented as static 
displays in the context of a game. We densely sampled the 
changing position of eye gaze as the participants solved 

cal system passes through a phase transition. The control 
parameter within the Lorenz model is useful for changing 
its activity but is not a necessary aspect of such systems. 
Whether the cognitive system is sometimes driven by com-
parable variables (i.e., control parameters) is an open ques-
tion, but not one that we intend to address here.

The upper panel of Figure 2 shows the trajectory of the 
Lorenz (1963) model across its three-dimensional phase 
space as a control parameter is increased. The trajectory 
is initially in a tight, disk-like attractor, but then abruptly 
leaves that regime. Subsequently, the system slowly settles 
into a new attractor. An attractor here corresponds to a 
region of the phase space to which the system repeatedly 
returns. From a more macroscopic perspective, attrac-
tors correspond to modes of behavior. In the example, the 
Lorenz model first repeatedly traverses a small region of 
very similar states. After the phase transition, the system 
behaves very differently, traversing a much broader region 
of states regularly. As can be seen in Figure 2, entropy in-
creases as the system leaves the initial attractor and de-
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Figure 2. The top panel shows the trajectory of the Lorenz system as it undergoes a phase transition from a 
preshift to a postshift attractor. The middle panel shows measures of entropy and the power-law exponent over 
time steps as the Lorenz system approaches and goes through its phase transition. The dark gray curve shows the 
entropy of the phase-space trajectory over time; the light gray curve shows the power-law exponent. The panels 
beneath the horizontal axis show the phase-space trajectory of the Lorenz model as its control parameter is in-
creased. The darkened region of each trajectory shows the activity of the system during the portion of the time 
course distinguished by the dashed vertical lines in the figure.
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Materials and Procedure
The participants were seated at a computer monitor with an eye-

tracking camera located below it, calibrated to the left eye. Point-
of-gaze relative to the computer screen was sampled at 60 Hz by 
an eyetracking system (ASL 6000). The gear-system task was pre-
sented on the computer monitor. The participants were asked to play 
a computerized game in which they would race their train against 
one controlled by the computer. They could increase the speed of 
their train by solving the gear-system problems presented at fueling 
stations along the racecourse.

Each gear system comprised a driving gear that turned clockwise, 
a variable number of intermediate gears, and a target gear. The fuel 
was located on a shelf on the target gear. The participants predicted 
whether the gear would turn clockwise or counterclockwise; their 
train was positioned so as to catch the fuel (if the gear turned in 
the correct direction). It was also possible for some gear systems to 
jam—to fail to turn because of opposing forces from two gear path-
ways. Thus, a third response option was a button labeled “Jams!!” 
located next to the target gear. After the participants indicated that 
they were satisfied with their prediction, the final gear turned appro-
priately, thereby providing feedback about whether their prediction 
was correct. The other gears were covered by a virtual screen prior 
to the final gear’s moving. Figure 1 shows examples of the various 
types of gear systems. The participants completed 4 practice trials, 
followed by 32 standard trials. The practice trials were presented in 
a fixed order; the order of the standard trials was randomized for 
each participant.

The participants could solve the gear-system problems in any way 
they wished. They were asked to think aloud as they worked through 
each problem; the experimenter coded their strategy on each trial. 
The transition to the parity strategy is marked by counting and the 
use of odd–even designations; thus, it is very easy to identify. Reli-
ability was very high, with 95% agreement between two indepen-
dent raters across all strategies and 100% agreement with regard to 
the onset of parity. 

Quantifying Angular Change in Point-of-Gaze
We calculated angular change in point-of-gaze by taking the arc-

tangent of (dh/dv) for each pair of successive frames or time steps, 
(t, t 1 1), where dh and dv are changes in the horizontal and vertical 
coordinates, respectively (Aks, Zelinsky, & Sprott, 2002). Figure 3 
illustrates how angular change, θ, was computed for two hypotheti-
cal points. An angular-change time series was computed for each 
trial; Figure 4 shows an example from one trial.

Phase-Space Reconstruction
We used the time series of changes in point-of-gaze to reconstruct 

phase space on each trial. Phase space is defined by the variables that 
determine the state of the system; each variable forms one dimen-
sion of the space. Each point within the space specifies a particular 
state of the system (i.e., the combination of positions across the di-
mensions). Phase-space reconstruction is a powerful, widely used 
technique in nonlinear dynamics based on a fundamental insight by 
Takens (1981). Takens proved that, given a nonlinear system, key 
geometrical properties (i.e., the topology) of phase space could be 
reconstructed by using copies of the times series to stand in for di-
mensions that had not been explicitly measured. These copies of the 
original series are lagged (i.e., time shifted) but are otherwise identi-
cal to the original, univariate series. The lagged time series serve as 
proxies for the unmeasured dimensions of phase space, in the sense 
that they jointly capture important aspects of its relational structure.

Although the formal arguments underlying phase-space recon-
struction are beyond our present scope (Abarbanel, 1996), an ex-
ample may facilitate the understanding of this approach. The left 
panel of Figure 5 shows a trajectory through a three-dimensional 
phase space. The right panel shows the reconstruction of that phase 
space using only the X variable; the other two dimensions are lagged 
copies of the time series. As can be seen in the figure, the recon-

the gear-system problems. On the basis of previous work, 
we expected that the majority of the participants would 
first solve the problems using two lower level strategies. 
In general, previous work made two consecutive obser-
vations about participants in this task. Initially, partici-
pants traced the turning motions of the individual gears 
and the pushing of intermeshed teeth. Subsequently, they 
discovered that the gears form an alternating sequence 
(Dixon & Kelley, 2006; i.e., adjacent gears turn in oppo-
site directions). Here, we focus on a further transition in 
which participants spontaneously discover an underlying 
mathematical relation: The parity of the system predicts 
the turning direction of the target gear (Dixon & Bangert, 
2004; Schwartz & Black, 1996). In systems with an odd 
number of gears, the target gear turns in the same direc-
tion as the driving gear; in systems with an even number, 
it turns in the opposite direction.

Stephen, Dixon, and Isenhower (in press) showed that 
the transition from manually tracing the gears to treating the 
gears as an alternating sequence was predicted by changes 
in entropy and power-law behavior. Stephen et al. densely 
sampled fluctuations in behavior by tracking the motion of 
the participants’ dominant hand as they traced the gears. 
Analyses of the time series from each trial showed that the 
transition to alternation was anticipated by changes in en-
tropy and power-law behavior, as is described above. 

In the present research, we measured the fine-grained 
fluctuations in behavior by tracking participants’ point of 
gaze while they solved the gear-system task. Research 
from a variety of domains has shown that point-of-gaze 
is a very sensitive index of changes in cognition (Kowler, 
1990). We used the time series of changes in point-of-
gaze to test whether the transition to a mathematical 
relation— parity—shows the signatures of a phase transi-
tion. Specifically, we tested two converging predictions 
from the theory of nonlinear dynamics. First, the onset of 
new structure (i.e., discovery of the parity relation) should 
be predicted by an increase in entropy followed by a de-
crease. We measured the entropy of system behavior by 
performing recurrence quantification analysis (RQA) on 
the time series (Webber & Zbilut, 1994), a method that 
we explain below. We quantified the pattern of change in 
entropy across the six previous trials to predict the discov-
ery of parity on each current trial. The second prediction 
from nonlinear dynamics is that the power-law exponent 
will increase as participants approach the transition and 
decrease just prior to the transition. For each trial, we esti-
mated the power-law exponent using spectral analysis on 
the time series of changes in point-of-gaze (Aks, 2005). 
The participants should show a systematic increase and 
subsequent decrease in power-law behavior as they ap-
proach the discovery of parity.

METhOD

Participants
Thirty-three undergraduate students, 14 male and 19 female, 

completed the experiment as one option for fulfilling a course 
requirement.
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whether the system is precisely revisiting a point in space is easy: 
The distance between the current point and the previous point is 
zero. More usually, recurrences are defined as coming very close 
to a previous point (i.e., within some specified distance); the circles 
surrounding the points in Figures 6C and 6D illustrate this idea. If 
two points fall within a specified distance (the diameter of the sur-
rounding circles), they are considered recurrent. (The distance is set 
as a parameter in the analysis.)

Recurrences are the building blocks from which all other mea-
sures in RQA are constructed (i.e., these other measures assess 
properties of the pattern of recurrences). Of particular interest is 
when recurrences occur successively, because this indicates that the 
system is in an attractor (i.e., a region of phase space preferred by the 
system). The lines connecting recurrent points in Figures 6E and 6F 
show successive recurrences. Runs of recurrent points show that 
the trajectory through phase space has reconverged with its previ-
ous path (or is very close its previous path). In RQA, these runs of 
recurrent points are an important indicator of the organization of 
phase space.

structed trajectory has the same ordinal relations among its points 
as the actual phase-space trajectory (i.e., the ordering of the points 
along the dimensions is the same). Note also that the reconstruction 
gives the trajectory of the system in which the X variable is embed-
ded. It is not just the trajectory of X alone, despite the fact that only 
the X variable was used in the reconstruction.

RQA
RQA is a method for assessing the organizational properties of 

phase space (Marwan, Romano, Thiel, & Kurths, 2007; Webber & 
Zbilut, 1994). RQA first evaluates the degree to which a system 
returns to points (or narrow regions) within phase space. Put more 
plainly, the first step in RQA is to assess when the system is in ap-
proximately the same state as it was at some previous time. As an 
example, assume that the trajectories in Figures 6A and 6B were 
repeatedly sampled, once at each point shown. For the purposes of 
exposition, we assume that there are only two relevant dimensions; 
these dimensions jointly define the space of states that the system 
may take. Given the location of each point in this space, identifying 

Point-of-gaze at time t

dh

dv

= tan–1(dh/dv)

Point-of-gaze
at time t+1

Figure 3. An example of the computation of angular change for two hypothetical, 
successive eye positions. Change on the h coordinate, dh, and change on the v coordi-
nate, dv, allow the angle, θ, to be calculated.
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more conventional analytical methods before taking up 
the complex, dynamical systems analyses. In the first sec-
tion, we address reaction time and accuracy effects in two 
different directions: the effects that practice, discovery 
of parity, and individual differences had on reaction time 
and accuracy and the effects that reaction time and accu-
racy had on the onset of parity. In the second section, we 
address the conventional fixation measures in eye move-
ments: changes in the number of fixations across trials 
and the relationships between fixations and the onset of 
parity. Among other findings, it will emerge that reaction 
time, accuracy, the number of fixations, and the duration 
of fixations all fail to predict the onset of parity.

We then move on to the dynamical systems analyses of 
eye movements. In the third section, we report descriptive 
statistics from the RQA of angular change in eye position. 
RQA is the technique that we used to generate a measure 
of entropy from eye movements for each trial and for each 
participant. In the fourth section, we report both models of 
measured RQA entropy and models of measured power-
law exponent that successfully predict the onset of par-
ity. It emerges from these analyses that the trajectories 
of entropy and the power-law exponent follow the same 
patterns as those illustrated by the phase transition in the 
Lorenz (1963) system.

In many of the inferential analyses reported below, we 
employed maximum likelihood estimation rather than or-
dinary least-squares estimation (Singer & Willett, 2003). 
Within this framework, testing the significance of an indi-
vidual parameter or set of parameters involves evaluating 
the reduction in the deviance of the model. The reduction 
in deviance is usually reported as 22 * log of the likeli-
hood (22LL), which is distributed as χ2 with the number 
of degrees of freedom equal to the number of parameters 
added to the model. For example, a change in 22LL is 
significant at p , .05 on one degree of freedom when it 
exceeds 3.84.

For our present purposes, we consider two measures of dynamic 
organization: percent recurrence and entropy. Percent recurrence is 
simply the number of observed recurrences divided by the number of 
potential recurrences (i.e., the number of unique pairs of points). Per-
cent recurrence provides an index of the degree to which the system 
revisits previous regions. The trajectories in Figures 6A and 6B have 
2.5% and 3.1% recurrence, respectively. Because all other measures 
within RQA rely on the number of recurrent points, we use percent 
recurrence as a covariate in our analyses. Although it is desirable to 
keep recurrence relatively low (~2%–4%), the greater the percentage 
of recurrent points is, the larger the other measures will tend to be.

RQA also provides a measure of entropy. Entropy assesses the 
degree of disorder in the trajectory through phase space. The more 
variable the trajectory is, the larger the value of entropy will be. 
Entropy is quantified using Shannon’s (1948) equation:

 Entropy 5 2Σp(xi)log2 p(xi),

where p(xi) is the (nonzero) proportion of runs of length i. For ex-
ample, the trajectory in Figure 6A has an entropy of 0; the trajectory 
in Figure 6B has an entropy of 1.58.

RESuLTS

Descriptive Statistics on Performance  
and Strategy

As was expected, prior to discovering parity, the partici-
pants manually traced the force across the system, simu-
lating the turning and pushing of the individual gears (on 
65% of prediscovery trials). Many of the participants also 
used an alternation strategy in which they classified the 
turning direction of the gears in an alternating sequence 
(on 35% of prediscovery trials). Performance prior to dis-
covery was quite accurate (84% correct). Of the 33 partic-
ipants who took part in the study, 22 discovered the parity 
relation. The median discovery trial was 20.

Organization of Analyses
We report multiple analyses to describe the changes 

over time in the participants’ global behavior and to ad-
dress the key predictions of the study. We first employ 

Z i

Yi

Original Phase Space

Xi

X i +
 2

s

Xi + s

Reconstructed Phase Space

Xi

Figure 5. The panel on the left shows an example of a three-dimensional phase space for the Lorenz model. 
The points in the left panel (actual phase space) are given by the values of three variables: pi 5 [Xi, Yi, Zi], where 
i indexes time steps in the series. The panel on the right shows the reconstruction of that phase space using only 
the X dimension. To reconstruct phase space, the original time series of value X is lagged by s time steps (s 5 7, in 
the present example) for each dimension. The points in the right panel (reconstructed phase space) are given by 
values of X and lagged copies of X: pi 5 [Xi, Xi1s, Xi12s]. 
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apparent in the figure, there was no effect of trial on ac-
curacy [B 5 0.008, SE 5 0.01; change in 22LL, χ2(1) 5 
0.62, n.s.]. The onset of the parity strategy significantly 
increased the proportion correct [B 5 1.64, SE 5 0.38; 
change in 22LL, χ2(1) 5 25.08]. The onset of parity did 
not interact with the rate of change over trials [B 5 0.013, 

Response Time and Accuracy
Replicating previous results, we found that the partici-

pants solved the gear system problems quite accurately. 
The upper panel of Figure 7 shows the proportion of cor-
rectly solved problems over trials. A logistic regression 
showed that, consistent with the lack of change over trials 

A B

C D

E F

Figure 6. (A) A hypothetical trajectory projected onto a two-dimensional space. The state of the system at any moment 
in time is given by the values on the two variables. As the system changes, it creates trajectories through the space. The 
continuous behavior of the system cycles through three loops in the following order: Loop A, Loop B, Loop C, Loop A, 
Loop B, and so forth. The dots indicate points that were sampled during one complete circuit through the trajectory. 
(B) An analogous but more disordered trajectory. (C, D) The concept of recurrence. Some points in each panel fall within 
a specified distance of each other, as is indicated by the diameter of the circles. Each pair of points within a circle is thus 
considered recurrent. (E, F) Runs of recurrent points. In panel E, there are two such runs. One run, shown in the top half, 
consists of four recurrent pairs of points from the convergence of Loops A and B. The second run, shown in the bottom 
half, also consists of four recurrent pairs; here, Loops B and C are converging. Panel F also shows runs of recurrent pairs 
as Loops A and B are converging and as Loops B and C are converging. This trajectory also has another run of recurrent 
pairs as Loops A and C converge. All three runs are of different lengths; this variability is indexed by the entropy mea-
sure. Panel F also contains a recurrent pair of points that is not part of a run of recurrences: Two trajectories intersect 
but are not aligned for any length of time.
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a decrease in response times. This relation is often ob-
served in growth-curve models and is usually treated as 
an artifact.

The onset of the parity strategy, the event of central in-
terest, did not have a significant effect on the intercept 
(i.e., shifting the response time curve down) [B 5 22.03, 
SE 5 1.05; change in 22LL, χ2(1) 5 2.95, n.s.]. However, 
the onset of parity did significantly interact with trials 
[B 5 20.20, SE 5 0.09; change in 22LL, χ2(1) 5 4.13] 
(often called an “effect on the slope”). That is, average 
response time after the discovery of parity was not differ-
ent from the average response time before the discovery 
of parity. However, the discovery of parity led to a signifi-
cantly more rapid decrease in response time.

Number and Duration of Fixations
The total number of fixations per trial is shown in 

the top panel of Figure 8. The number of fixations de-
creased significantly over trials [B 5 20.34, SE 5 0.05; 
change in 22LL, χ2(1) 5 27.15]. The model included a 
random effect on the intercept [σ2 5 63.30; change in 
22LL, χ2(1) 5 121.32], on the slope (i.e., trials) [σ2 5 
0.03; change in 22LL, χ2(1) 5 6.50], and on their cor-
relation [r 5 2.80; change in 22LL, χ2(1) 5 19.75]. The 
significant random effects imply that there was substantial 
individual variation in the total number of fixations on the 
first trial, as well as in the rate of change in the number 
of fixations over trials. Given the nonlinear shape of the 
curve, we added trial2 to the model to capture the quadratic 
form [B 5 0.016, SE 5 0.004; change in 22LL, χ2(1) 5 
20.06]. The positive quadratic term indicates that the 
number of fixations decreased at a decreasing rate. The 
random effects remained largely unchanged with the ad-
dition of the quadratic term.

We tested for changes in number and duration of fixa-
tions with respect to the onset of parity. The onset of par-
ity did not have a significant effect on the intercept [B 5 
21.28, SE 5 1.11; change in 22LL, χ2(1) 5 1.32] or the 
slope [B 5 0.037, SE 5 0.12; change in 22LL, χ2(1) 5 
0.76] of the number-of-fixations trajectory. The discov-
ery of the parity strategy did not result in an immediate 
shift in the number of fixations, nor did it impact the rate 
of change in the number of fixations over trials. We also 
calculated the mean and median duration of each partici-
pant’s fixations on each trial. The middle and lower pan-
els of Figure 8 shows these two measures, respectively, 
as a function of trial, averaged over participants. As the 
figure suggests, neither of these measures changed reli-
ably across trials [largest change in 22LL, χ2(1) 5 1.52]. 
The onset of parity did not affect the intercept or the 
slope of these trajectories over trials [largest change in 
22LL, χ2(1) 5 1.32]. That is, the number and duration 
of fixations were not appreciably different before or after 
the onset of parity.

Descriptive Statistics for RQA Parameters
We reconstructed phase space from the angular-change 

time series for all trials up to the discovery of parity and 
performed RQA on the reconstructed phase-space tra-

SE 5 0.05; change in 22LL, χ2(1) 5 0.06]. In other 
words, the onset of parity improved accuracy, but practice 
did not improve accuracy beyond this effect, whether for 
lower level strategies or for parity. More complex models 
that handle the potential autocorrelation and heterosce-
dasticity in data over time confirmed the results reported 
above.

The lower panel of Figure 7 shows the mean response 
times (in seconds) over trials. Response times did not de-
crease significantly over trials. A growth-curve (i.e., ran-
dom coefficients) model showed no significant effect of 
trials [B 5 20.05, SE 5 0.03; change in 22LL, χ2(1) 5 
1.29, n.s.] (Mirman, Dixon, & Magnuson, 2008; Singer 
& Willett, 2003). The model included random effects 
on the intercept [σ2 5 37.24; change in 22LL, χ2(1) 5 
76.30], on the slope (i.e., trials) [σ2 5 0.005; change in 
22LL, χ2(1) 5 0.26], and on their correlation [r 5 2.71; 
change in 22LL, χ2(1) 5 6.15]. The significant random 
effect on the intercept implies that there was significant 
between-participants variation in initial response time. 
The lack of a significant random effect on the slope sug-
gests that the rate of change in response time over trials 
did not vary substantially between participants. The indi-
vidual (i.e., per participant) parameters used to estimate 
these two random effects were negatively correlated. 
(This relationship is estimated as an additional parameter 
in the model.) The negative correlation indicates that in-
dividual differences in initial response time were related 
to individual differences in the rate of change in response 
time, such that initial response time usually preceded 
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variance in entropy (~2%) and recurrence (,1%). Table 1 
shows the bivariate correlations between these measures 
and the RQA measures of phase space. The conventional 
measures are not associated with RQA measures, suggest-
ing that RQA and conventional analyses provide different 
information (see Knöblich, Ohlsson, & Raney, 2001, for 
an example of conventional measures applied to insight 
problems).

Predicting the Discovery of Parity
Entropy. Recall that a central prediction from self-

organization is that entropy should increase and decrease 
prior to discovery. In previous work, we found that en-
tropy peaked and then dropped across the trials preced-
ing discovery. The light gray curve in Figure 9 shows the 
mean values of entropy on the six trials prior to discov-
ery; discovery trials are aligned on the far right side. As 
was predicted, entropy increased and decreased just prior 

jectories for each trial separately. Following Abarbanel 
(1996), we set the lag for each trial at the first minimum of 
the average mutual information function (M 5 3.46 bits, 
SD 5 1.38). Average mutual information is a measure (in 
bits) of how much one learns about the current value of a 
time series from a previous value. The first minimum of 
this function across all lags has been shown to be a good 
choice of lags for reconstructing phase space (see Arbar-
banel, 1996, for a complete discussion). Given the length 
of the time series under consideration, we set the number 
of dimensions to four. The number of dimensions has been 
shown to be a noncritical parameter for this method (Web-
ber & Zbilut, 2005). The mean values for recurrence and 
entropy were M 5 2.48% (SD 5 3.46) and M 5 0.85 bits 
(SD 5 0.80), respectively.

The conventional measures of eye movement behavior 
(i.e., total number of fixations, mean and median fixation 
duration) and response time jointly explained very little 
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SE 5 0.037), prior trial2 (B 5 20.015, SE 5 0.035), target 
trial (B 5 20.0003, SE 5 0.005), and percent recurrence 
(B 5 0.21, SE 5 0.005). The model also included ran-
dom effects on the intercept (σ2 5 0.001), prior-trial (σ2 5 
0.21), and prior-trial2 (σ2 5 0.14). Two additional random 
effects were included at the level of target trial; these pa-
rameters were used to model the potential autocorrelation 
and heteroscedasticity across target trials (σ2s 5 0.38 and 
0.0003, respectively).

The prediction of interest was whether the trajectory 
for entropy immediately prior to discovery trials was 
different from that prior to nondiscovery trials. To test 
this prediction, we added a variable to the model that in-
dicated whether a discovery had occurred on that target 
trial. We included the effects of discovery on the prior-
trial and prior-trial2 terms. The resulting coefficients in-
dicate whether the parameters that capture the changes 
in entropy are different for discovery and nondiscovery 
trials. Discovery had significant effects on prior-trial2 
[B 5 20.44, SE 5 0.196; change in 22LL, χ2(1) 5 4.99] 
but not on prior-trial [B 5 20.34, SE 5 0.21; change in 
22LL, χ2(1) 5 2.57]. The prior-trial2 term is more nega-
tive prior to discovery trials, indicating a steeper rise and 
fall, as was predicted.

In a parallel set of analyses, we took the estimated qua-
dratic growth-curve model parameters (again using or-
thogonal polynomials) to capture the rise-and-fall pattern 
of the entropy measure over the six trials preceding each 
target trial. We then used these parameters as predictors 
of discovery in a discrete time survival analysis (where 
trials define the unit of discrete time) (Singer & Willett, 
2003). This is conceptually equivalent to, but statistically 
more efficient than, performing a separate ordinary least-
squares polynomial regression on the six trials preceding 
each target trial and then using those parameters to predict 
the first use of the parity strategy. The parameters quantify 
the predicted rise-and-fall pattern in entropy that should 
precede discovery. As might be expected from the growth-
curve model analyses reported above, adding prior-trial 
and prior-trial2 to the model significantly improved the 
model fit [Bs 5 6.94 and 26.77, SEs 5 4.65 and 3.56, 
respectively; change in 22LL, χ2(2) 5 6.73]. Assessing 
the independent contributions of these two terms to the 
model showed that prior-trial2 was primarily responsible 
for the effect. The model also included terms for the av-
erage height of the entropy curve (the centered intercept 
from the growth curve model) (B 5 21.30, SE 5 1.20), 
the intercept (of the current regression) (B 5 23.30, SE 5 
1.20), trial (B 5 0.04, SE 5 0.03), and percent recurrence 
on the previous trial (B 5 0.12, SE 5 0.05). Note that the 

to discovery. The darker curve shows the mean values 
of entropy on the six trials preceding all nondiscovery 
trials (for all trials on which the participants were still at 
risk for discovery). We tested the different form of these 
observed functions more formally using a multilevel 
growth-curve model.

We assessed the trajectory of the entropy measure on 
the six trials preceding each trial (beginning, necessarily, 
with Trial 7). Trials that immediately precede a discovery 
should have a sharper rise and fall in entropy than trials 
that do not immediately precede a discovery. The predicted 
rise-and-fall pattern prior to a target trial is easily quanti-
fied as a quadratic function, consisting of an intercept, 
prior-trial, and prior-trial2. We created a set of orthogonal 
polynomials for prior-trial and prior-trial2 to eliminate the 
colinearity between these predictors (we retain the labels 
prior-trial and prior-trial2 for these orthogonal polynomi-
als). The base model included the following fixed effects: 
intercept (B 5 0.32, SE 5 0.14), prior-trial (B 5 0.034, 

Table 1 
Descriptive Fixation Statistics and Bivariate Correlations  

With Entropy and Recurrence

  M  SD  Entropy r  Recurrence r

Number of fixations 17.53 14.08 .04 .06
Median fixation duration (msec) 864.24 841.13 .02 .01
Mean fixation duration (msec) 1,288.76 926.14 .07 .00
Response time (msec)  19,010.40  12,792.22  .11  .07
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Figure 9. The peaked gray curve shows the mean entropy values 
on the five trials leading up to discovery (i.e., the trial on which a 
participant first used parity). The darker curve shows the mean 
entropy values on trials preceding all other trials (i.e., those on 
which a discovery did not occur). The trial just prior to the cur-
rent target trial is labeled 21; two trials prior is labeled 22; and 
so on. Entropy indexes the variability in the phase-space trajec-
tory on each trial.



Phase TransiTions and discovery    1143

amplitude of a sine wave at a given frequency thus rep-
resents fluctuation at a time scale corresponding to the 
frequency. The square of the absolute value of amplitude 
gives power (e.g., Handy, 2004). Hence, the square of the 
amplitude spectrum is the power spectrum. The slope of 
a log–log plot of frequency and power gives an estimate 
of the power-law exponent. (Following the recommenda-
tions of Edwards et al. [2007], we contrasted the fit of the 
power-law function with the exponential and gamma func-
tions. For all of the participants, the power-law function 
provided a significantly better fit. Details of this analysis 
are presented in the Appendix.)

We performed this analysis on the time series of changes 
in point-of-gaze for each trial separately. Figure 10 shows 
the average power-law exponent as a function of trials for 
the participants who were at risk for discovering parity. 
The light gray line shows the participants who eventu-
ally discovered parity; the darker line shows those who 
did not discover it during the experiment. Note that the 
participants contributed to the average for all trials up to 

measures of dynamic organization that we employed as 
predictors were computed from previous trials, not from 
the current one. Therefore, the rise and fall in entropy an-
ticipates the discovery; it is not a consequence of using the 
new approach (i.e., parity).

Other, more traditional predictors, such as response 
time on the prior trial, prior accuracy, and number of sac-
cades on the prior trial, did not contribute significantly to 
the model [largest change in 22LL, χ2(1) 5 1.51, n.s.]. 
Similarly, the estimated effects for both prior-trial and 
prior-trial2 did not change appreciably when the standard 
measures were added to the model.

Power-law behavior. We performed a power spectral 
analysis to quantify the power-law exponent for each trial 
separately. We used a fast Fourier transform to decom-
pose the time series into its amplitude spectrum, a set of 
sine waves of varying amplitudes across a spectrum of 
frequencies (Aks, 2005). Frequency is inversely related 
to time (i.e., larger frequencies span smaller time scales, 
and smaller frequencies span greater time scales). The 
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Figure 10. The main figure shows the mean power-law exponent for all trials prior to dis-
covery, with separate curves for the participants who discovered parity (light gray line) and 
for those who did not (dark gray line). The participants who discovered parity contribute to 
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trial) on the quadratic term. (A) An example of the predictions for relatively early discovery; 
discovery occurs on Trial 17. (B) Predictions for later discovery, on Trial 24.



1144    sTePhen, Boncoddo, Magnuson, and dixon

to a mathematical rule and that eye movements can be used 
to assess the changes in dynamic organization.

Our results are consistent with a growing body of work 
indicating that cognition is a self-organizing, complex sys-
tem characterized by nonlinear dynamics (Dale, Roche, 
Snyder, & McCall, 2008; Spivey, 2007; Spivey & Dale, 
2006). In nonlinear dynamics, new structures emerge 
from the multifarious, continuous interactions among 
microscopic elements of the system. Such systems are 
capable of creating new structure precisely because their 
dynamics are dominated by these interactions, rather than 
the activity of isolated components (Jensen, 1998). Previ-
ous work has shown that new structures in human move-
ment emerge through self-organization (Kugler, Kelso, & 
Turvey, 1982). For example, the spontaneous shift from 
one pattern of motion (e.g., synchronous finger tapping) 
to another (e.g., asynchronous finger tapping) constitutes 
a phase transition (Bressler & Kelso, 2001). Similarly, Van 
Orden, Holden, and Turvey (2003) found that performance 
in a simple word-naming task exhibited a signature pattern 
of variation, often called 1/f noise, indicative of systems 
that continually self-organize to a critical point, the point 
just prior to a phase transition. In their study, the transi-
tion is from a state of uncertainty regarding the presented 
string of letters to the production of phonological map-
ping. On the basis of analyses of performance in a num-
ber of classic tasks (e.g., mental rotation, visual search), 
Gilden (2001; Thornton & Gilden, 2005) concluded that 
this signature 1/f pattern was a general property of cogni-
tion, associated with the kind of memory that arises in dy-
namical systems. The present study suggests that the reach 
of self-organization extends to the spontaneous formation 
of new structures at the conceptual level. Even quite ab-
stract concepts, such as a mathematical relation, emerge 
according to the principles of self-organization.

Power-law behavior has been observed at other scales 
in cognitive performance, most notably in the relationship 
between practice and speed of response. In a variety of 
tasks, gains in speed are greatest early in learning and then 
tail off asymptotically as a function of practice (e.g., Lee 
& Anderson, 2001; Palmeri, 1999; Rickard, 1997). The 
pres ent analyses find power-law relations in the microlevel 
fluctuations of behavior within a single trial. Although we 
would speculate that these two scales are ultimately con-
nected to one another, the present findings do not allow us 
to address this issue. However, Lee and Anderson (2001) 
demonstrated that learning occurred at many different 
scales within a single complex task and that power-law 
functions at these scales had similar exponents.

The analysis offered here complements an extensive 
literature on self-organization in computational models 
of cognition. Hebbian learning and self-organizing maps 
(e.g., Kohonen maps) are among the most prominent 
learning algorithms in computational models of self-
 organization. A wide variety of cognitive phenomena have 
been addressed with these computational models, includ-
ing critical periods (Munakata & McClelland, 2003), vo-
cabulary acquisition (Li et al., 2007), and the development 
of categories and concepts (Cohen et al., 2002; Schyns, 
1991). The ability of self-organizing models to capture the 

the trial on which they discovered parity, but not beyond. 
As was predicted, the participants who discovered parity 
showed an increase in power-law behavior and a subse-
quent decrease over trials. That is, the degree of activity 
across the nested structure, indexed by the power-law ex-
ponent, first increased and then decreased across trials. 
Nondiscoverers did not show this systematic change in 
power-law exponents. Growth-curve analysis confirmed 
that the participants who discovered parity had a signifi-
cantly larger trial2 term (B 5 20.0001) than those who 
did not [B 5 20.00004; change in 22LL, χ2(1) 5 9.60]. 
The parameters for the intercept (B 5 0.27) and the linear 
effect of trial (B 5 0.002) were not significantly differ-
ent for the participants who discovered parity and those 
who did not (i.e., there was no effect of discovery vs. non-
discovery on these parameters). The model also included 
a random effect on the intercept [σ2 5 0.002; change in 
22LL, χ2(1) 5 146.00]. The random effect of trial was 
estimated to be very close to zero and was thus trimmed 
from the model. The model would not converge when a 
random effect of trial2 was included.

Of course, individual discoveries were distributed across 
trials (M 5 20, SD 5 8.2). Therefore, the rate of increase 
and decrease in power-law behavior, captured by the pa-
rameters for the quadratic effect of trial, should depend 
on the timing of discovery. To test this prediction, we used 
the timing of each participant’s discovery of parity (i.e., 
the distance between the current trial and their discovery 
trial) as a level-two predictor in the model. This allows 
the model to capture changes in the power-law trajectory 
as a function of the impending discovery of parity. We 
included an effect of timing on both trial and trial2. The 
effect of the timing of discovery on trial (B 5 0.0002) was 
not significant [change in 22LL, χ2(1) 5 2.86]. The form 
of the quadratic effect of trial depended on the timing of 
discovery, such that the increase and decrease occurred 
more rapidly for the participants who discovered parity 
earlier [B 5 20.0001; change in 22LL, χ2(1) 5 4.90]. 
To illustrate the results of the analysis graphically, the two 
insets in Figure 10 show effects of the estimated param-
eters for the participants who discovered parity relatively 
early (A) and later (B).

DISCuSSION

We showed that the discovery of a new mathematical 
representation of a problem can be predicted from mea-
sures of dynamical organization. Specifically, we demon-
strated that a decrease in the entropy of the system predicts 
the discovery of the parity relation. Decreases in entropy 
indicate that the system has become more orderly. We also 
demonstrated that systematic changes in power-law behav-
ior anticipate discovery. Power-law behavior increases as 
the current configuration relaxes its structural constraints 
and then decreases as a new configuration coalesces. These 
findings replicate and extend previous work in which we 
showed that the discovery of the alternation relationship 
was predicted by changes in entropy and power-law behav-
ior (Stephen et al., in press). The present results demon-
strate that the same set of relationships predicts a transition 
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that splashes into a bowl of milk. The vertical trajectory 
of the droplet and the 24-point crown resulting from the 
splash may be predicted from a Newtonian description of 
a homogeneous sphere of fluid. However, the exact shape 
and orientation of the 24-point crown at the splash is out-
side the scope of purely Newtonian mechanics. These 
features are due to the precise, fine-grained, stochastic 
elements that a Newtonian description does not include: 
heterogeneities in the milk droplet, the milk surface in the 
bowl, and the air current in between. Newtonian mechan-
ics sets a relatively coarse set of constraints on what we 
may expect in the aggregate, but Newtonian descriptions 
average across functionally infinite variations in the ac-
tual trajectories that unfold over time (Mandelbrot, 1982; 
Shle singer, Zaslavsky, & Klafter, 1993).

We may extend the example of the milk droplet to the 
gear task. For this purpose, let us compare the fall of the 
milk droplet with practice with the gear task and the 24-
point crown with the discovery of parity. Given unlimited 
trials of practice with the gear task, we may expect that all 
high-functioning cognitive systems will discovery parity, 
just as the spherical droplet will always produce the same 
24-point crown upon splashing. Here, we have the sym-
bolic description of the discovery of parity. The present 
research is an attempt to chip away at the individual-level 
temporal differences in this change. The conventional 
expectation is that relatively coarse-grained measures 
of performance (i.e., reaction times, accuracy, fixational 
eye movements) obey symbolic constraints and will mark 
changes in focus or attention that will herald cognitive 
change (e.g., van Gompel, Fischer, Murray, & Hill, 2007). 
This expectation provides no predictive insight into the 
discovery of parity, as is evidenced by the repeated null re-
sults in the Response Time and Accuracy and the Number 
and Duration of Fixation sections of the Results section. 
The symbolic description of cognitive behavior provides 
no ready account for this cognitive change; indeed, there 
is doubt whether a strictly symbolic description of cogni-
tion can account for any cognitive change (Fodor, 2000). 
On the other hand, dynamical systems analyses of the 
fine-grained fluctuations in eye movements have proven 
effective for predicting the discovery of alternation. Un-
like the symbolic description of cognitive behavior in the 
gear task, dynamical systems theory has a ready account 
for the emergence of new structure, through the changes 
in microscale interactions. Symbolic descriptions of cog-
nitive behavior may serve in the aggregate to describe 
overall regularities at the coarser scales, but we propose 
that this physical-interaction account will serve to predict 
the transition of the cognitive system from one representa-
tion to another.

A potentially surprising aspect of the present findings 
is that the time series of angular changes in point-of-gaze 
yielded information about the dynamics of the larger sys-
tem in which the eyes are embedded. The ability to assess 
the dynamics of cognition from eyetracking data opens 
the door to dynamical analysis for a large number of prob-
lems in the field. Eyetracking has been used in a wide 
variety of different domains (e.g., categorization, object 
perception, language comprehension) and could, in prin-

core features of such a broad range of phenomena speaks 
to their potential power. Recent work shows that the prin-
ciples of self-organization, outlined above, govern the be-
havior of these models. Thus, in addition to demonstrating 
the potential ability of these neurally plausible algorithms 
to generate interesting new structures, it is possible to test 
a set of behavioral predictions from the broader theory 
under which they operate. The present study demonstrates 
how two measures from nonlinear dynamics can be ap-
plied to eyetracking data to test these predictions.

We note that the approach pursued here differs substan-
tially from most current approaches to problem solving. 
One major difference is that our approach assumes ex-
plicitly that cognition runs on the physical interactions 
in a complex system. The physical interactions causally 
change the way the system functions, resulting in the tran-
sition from one behavior to another. Most approaches to 
problem solving assume that the informational or seman-
tic content of the system has causal status. For example, 
the semantic content of a goal state is evaluated against 
the projected outcome of a particular move (e.g., Chron-
icle et al., 2004). The extent of agreement between these 
semantic values has causal implications for the state of 
the system. One way to view this fundamental difference 
between these two approaches is that the explanations are 
at different levels of analysis. The microlevel fluctuations 
that are central to the physical-interaction account occur 
on much faster time scales than the internal comparisons 
of the information-based account.

It is currently unclear whether these different approaches 
can be aligned in a way that is mutually beneficial. However, 
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APPENDIx

The presence or absence of power-law behavior can be assessed by the structure in the power spectrum of a 
time series. Power and frequency would be uncorrelated (i.e., completely horizontal) for Gaussian noise. How-
ever, in the case of 1/f noise, power P is an inverse power law of frequency f:

 P
f

∝ 1
β ,  (A1)

where β is the power-law exponent defining the steepness of the curve (see the top panel of Figure A1).
The power law specifies an invariant relationship between power and frequency. That is, the change in power 

(i.e., fluctuation) is always the same proportion of the change in frequency (i.e., inversely, time scale), no matter 
the frequency. It becomes especially clear when we plot the power law on logarithmic axes (see the bottom panel 
of Figure A1). The power law becomes a line with slope 2β.

There are, of course, other ways to generate a power spectrum with higher power in the lower frequencies. For 
example, consider the exponential function

 P
e f

∝ λ
λ ,  (A2)

where λ is a rate parameter specifying the change in power. Whereas the unmodulated β in Equation A1 ensures 
that power-law behavior is scale invariant, the modulation of rate λ by f in Equation A2 makes exponential be-
havior scale dependent. The exponential curve bears passing resemblance to the power law on regular axes (see 
the top panel of Figure A2). However, whereas the power law exhibits invariantly linear structure on logarithmic 
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axes, the curvilinear structure of the exponential curve on logarithmic axes shows its sensitivity to scale (see the 
bottom panel of Figure A2).

Asserting that a particular data set demonstrates power-law behavior thus requires testing the power-law fit 
against the fit of other skewed distributions, such as the exponential function and the gamma function. Tradition-
ally, a comparison of the ordinary least-squares r2 of competing distributional fits has sufficed (e.g., Anderson 
& Schooler, 1991). However, recent research in statistical mechanics has demonstrated that maximum likelihood 

estimation is a more appropriate strategy for assessing the relative likelihood of power laws over other skewed 
distributions (Edwards et al., 2007; Sims et al., 2008). Maximum likelihood estimation generates the log likeli-
hood of each candidate distributional fit for a given data set, and the best-fitting candidate distribution will have 
the highest log likelihood.

In the present study, we used the fast Fourier transform to produce the power spectrum of the time series of 
angular change in eye movements for each trial. Because each participant completed 36 trials, we calculated 36 
different power spectra for each participant. We used maximum likelihood estimation to fit a power-law (i.e., 
generalized Pareto) distribution, an exponential distribution, and a gamma distribution to each power spectrum. 
We compared the log likelihood for power-law fit with respect to those for gamma fit and exponential fit of 
each power spectrum. For each participant, we ran two paired-samples t tests over 36 power-spectrum fits to test 
the difference between exponential and power-law log likelihoods and the difference between the gamma and 
power-law log likelihoods. For all of the participants, power-law log likelihoods were greater than exponential 
log likelihoods [t(35)s ranging from 3.58, p , .001, to 11.25, p , .0001, with a median of 4.94, p , .0001]. For 
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Figure A1. The top panel shows an example of a power-law relationship in 
original scales. Power is plotted as a function of frequency. The lower panel 
shows the same relationship plotted in log–log scales.



Phase TransiTions and discovery    1149

Po
w

er

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5

Frequency

Lo
g

 P
o

w
er

–30

–40

–20

–10

0

10

–2.5 –2 –1.5 –1 –0.5 0 0.5 1

Log Frequency

Figure A2. The top panel shows an example of an exponential relationship 
in original scales. Power is plotted as a function of frequency. The lower panel 
shows the same relationship plotted in log–log scales.
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all of the participants, power-law log likelihoods were also greater than gamma log likelihoods [t(35)s ranging 
from 3.26, p , .01, to 10.26, p , .0001, with a median of 5.58, p , .0001]. In brief, for all of the participants, 
the power-law log likelihoods were significantly greater than those for the other candidate distributions. 
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