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current theoretical frameworks, and that a new theoretical paradigm is needed.
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Spoken word recognition is the study of how lexical representations are accessed from phonological
patterns in the speech signal. That is, we conventionally make two simplifying assumptions: Because
many fundamental problems in speech perception remain unsolved, we provisionally assume the input
is a string of phonemes that are the output of speech perception processes, and that the output is
a string of recognized words that are passed onto mechanisms supporting, for example, sentence

processing. These kinds of assumptions allow psycholinguists to break language understanding into
manageable research domains, and as we review, they have afforded great progress in understanding
spoken word recognition. However, we also review a growing body of results that are incompat-
ible with these assumptions: Spoken word recognition is constrained by subphonemic details and
top-down influences from higher level processing. We argue that these findings are incompatible with

ord-level processing (see Magnuson, 2008, for
ailed discussion). The nature of the input and
oals of processing are what David Marr (1982)
4 the computational level of theorizing about
spmation processing systems. We need to articu-
o compurational-level theory before we can dis-
« what sorts of representations and mechanisms

por human spoken word recognition.

. Computational Problem

Marr (1982) described three levels of informa-
n processing theorics: computational, algorith-
¢ and implementational. The idea is that when
ar¢ faced with some sort of information process-
system—a thermostat, a calculator, a computer,
uman language processing—and want to figure
through empirical investigation what the system
ses and how it works, we need to posit theories
¢ multiple levels of analysis to guide our investiga-
sns. The most abstract level is the compurational
cory, which is an analysis of the goals or pur-
ose of the system based on the mapping between
he system’s input and output—which defines the
iiformation processing the system does. For a basic
alcularor, the input might be numbers and symbols
¢ mathemarical operations, and the output would
¢ the result the calcularor displays.

At the algorithmic level, we develop a theory of
he “software” that could achieve the computational
apping. For example, we might posit that for
ultiplication, the calculator performs a sequence

When we comprehend spoken language, we
accomplish many amazing feats. We map the acous-
tics of speech onto phonological categories, despite
a rapid signal,' with tremendous variation in talker
characreristics, acoustic environment, speaking rate,
and many other dimensions (see Chapter 26, this
volume). We also build syntactic strucrures on the
fly as we hear speech, allowing us to derive a ralker’s
intended meaning, overcoming rampant syntactic
and semantic ambiguity along the way (Trueswell
& Tanenhaus, 1994). The study of word recogni-

tion focuses on processes that intervene, more or

tence processing.

less, between phonological and syntactic process-
ing: how do listeners map phonolegical forms onto
words in memory, taking into account prior proba-
bilities, linguistic and nonlinguistic context, includ-
ing the phonetic, phonological, lexical, semantic,
and syntacric structures that have been activated
by the speech signal as it unfolds in time. As we
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shall see, there may not be distinct processes or rep-
resentations that are concerned purely with spoken
word recognition.” Word recognition is influenced
by, (and in turn influences processing of) low-level
_acoustic and phonetic details of speech as well as
semantic and syntactic processing; there is no sharp
boundary between speech perception and word rec-
ognition, nor between word recognition and sen-

Nonetheless, psycholinguistics is divided into
intuitively identifiable levels of organization in
human language processing—speech perception;
spoken word recognition, sentence processing, and so
on—providing a logical division of labor among
psycholinguists. This way, rather than waiting until
all fundamental problems at the level of speech per-
ception are solved, researchers can make progress
on the word level by making simplifying assump-
tions about the nature of the input and the goals

fadditions (given 4 x 3, itadds 4 + 4 + 4) or that it
st looks up the result from a list of pairwise prod-
ucts coded in its memory. We might then propose
anempirical test of these two theories by measuring

o«

hiow long the calculator takes to display its answer
in cases where the two theories would require a
similar number of operations versus cases where the
serial addition theory would involve many more
operations.

The third level is the implementational level,
which in the case of our calculator would be the
hardware level. Here, we examine the inner work-
ings of the calculator-——perhaps taking it apart,
cnumerating the components and their interconnec-
tions. In a modern calculator, this would be a circuit
:  board. We take as given that the relevant implemen-
. tational level for spoken word recognition is that of
neural systems. Despite the advent in recent years
of sophisticated neuroimaging techniques, under-
standing of the neural basis of language remains
tather coarse (for recent reviews, see Blumstein &
Myers, in press; Hickok & Poeppel, 2007; Ueno,

Saito, Rogers, & Lambon Ralph, 2011). While we
argue at the end of the chaprer that integration with
cognitive neuroscience via lesion studies, neuroim-
aging, and genetics will be necessary for full under-
standing of human language processing, our focus
will remain firmly on cognitive psychology in this
review.

One of Marr’s goals in identifying these three
levels of informarion processing theory was to make
clear that they can be addressed independently.
Theories at different levels need not have contact
with each other to make progress (although a com-
putational level theory—the relevant input-oucput
mapping and its purpose—is a prerequisite to an
algorithmic theory and a crucial source of con-
straints in studying the implementational level), but
they can be mutually constraining. For example, if
we are comparing algorithmic theories of multipli-
cation thar posit serial addition vs. memory lookup
(for single digits), we might search for circuits at the
implementational level that perform addition when
a multiplication operation is called for. Conversely,
if we determine at the implementational level that
the device has a memory limited to 1 kilobyte, we
should not propose algorithmic theories that require
megabytes of memory.

Now imagine we have a device that happens to
be a calculator—but we do not know that, because
the Arabic numerals and mathematical symbols have
been replaced with arbicrary symbols. What should
our first step be in figuring out what information
processing this device does? We will have to observe
what symbols are displayed as we input different
key sequences. We should arrive at the same com-
putational theory as we would with a “normal” cal-
culator, but it will take a lot of work to document
the input-output mappings and surmise the pur-
pose of the information processing the device does.
Enumerating all possible inputs and their results
would not be feasible—depending on the limits of
the calcularor, these may be infinite or at least imprac-
tically many. If we have no clue that this device is a
calculator, imagine how difficult it would be to jump
to the algorithmic or implementational level before
establishing a computational theory—that is, figur-
ing out that the purpose of the device is calculation.
And this is largely the position we find ourselves in
when atrempting to develop theories of cognition.
So lec’s begin by deriving a computational theory
of spoken word recognition: Whar are the inpurs, the
outputs, and the mapping between them?

The input is a trickier issue than one mighe
think. It may seem obvious that for spoken word
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recognition, the input is speech. This turns out to be
an impractical starting point, because of unsolved
mysteries in speech perceprion. The central one is
called the lack of invariance problem, and it refers to
the fact that there is not a simple mapping between
acoustic patterns and percepts (such as consonants
and vowels, syllables, or words). Instead, there is a
many-to-many mapping (e.g., Lisker, 1985). The
acoustic patterns that map to a particular pho-
neme (consonant or vowel) vary depending on
phonetic context (what phonemes precede and
follow), acoustic environment (an open field vs.
an echoey stairwell vs. a noisy party), talker char-
acteristics (physical size, sex, dialect, idiolect, emo-
tional state), speaking rate ... and this is a partial
list! (See Chapter 26, this volume, for a review.)
The result is that many acoustic patcerns can map
to the same percept. Compounding this problem
is the fact that phonological categories overlap in
acoustic space and an identical acoustic partern can
map onto multiple percepts depending on context.

For instance, a given vowel can sound like the vowel

in “bit” in the context of one talker, bur like the

vowel in “bet” in another talker’s voice (Ladefoged

& Broadbent, 1957; Peterson & Barney, 1952), and

the same acoustic pattern can sound like “b” in the

context of slow speech but “w” in fast speech (Miller

& Liberman, 1979; for examples of how speech rate

affects spoken word recognition, see Dilley & Pirr,

2010).

The acoustic variability in different phonetic
contexts arises due to the fact that speech is coarticu-
lated, meaning that the vocal tract gestures we use to
produce successive speech sounds overlap. If we try
to identify the time inrervals where the vocal tract
is making the motor movements for the phonemes
/b/, 2/, and /g/ in the word “bag,” we find thar the
gestures for /z/ extend over the entire production of
the word, and even gestures for /b/ and /g/ overlap in
time (for a review, see Fowler & Magnuson, 2012).
Coarticulation contributes to the lack of invariance
problem (the acouystics for a phoneme will change
given the mortoric constraints of producing adjacent
phonemes with which it is coarticulated) but is also
at the heart of the segmentation problem: There are
few acoustic cues to where one phoneme ends and
another begins because arriculation and therefore
acoustics are usually continuous. Discontinuities—
actual breaks and pauses in the signal, which would
seem like a logical acoustic cue to boundaries—are
not reliable cues to phoneme boundaries. These dis-
continuities rarely occur “between” phonemes and
are likely to happen “within” a phoneme, such as
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the sudden reduction in sound when a constrictio
for a voiceless stop consonant like /p/ is made (i,
constriction gesture being the brief, air—stopping
closure of the lips).

Rather than waiting until these mysteries ate
resolved, psycholinguists make simplifying assump.
tions that allow them to tackle higher levels of pro.
cessing. Typically, psycholinguists allow themselyg
to assume that the input to word recognition will be
a string of phonemes generated by a speech percep-
tion mechanism (and scientists studying sentence
processing make a similar assumption and assume
a string of words to be a plausible input to sentence
processing—and so on, as one moves to higher ley.
els of organization). This simplifying assumption
allows us to get started, bur as we shall see later in
this chaprer, it paradoxically makes some aspects of
theories of spoken word recognition more complex
than they need be.

For now, let’s consider what this assumption buys

us. If we consider the inpur to be a string of pho-
nemes, the nextstep inderivinga computational-level
theory of spoken word recognition is to ask what
the output should be, in order to identify the goal of
the information processing system we are studying,
"The ultimare goal is, of course, a full specification
of the listener’s understanding of the speaker’s mes-
sage, but the complexities of semantics and syntax
render this, as with the input, oo large a problem to
take on simultaneously with word-level processing,
Wewould also have to grapple with how words map
onto syntactic and semantic structures of various
sorts, how those result in appreciation of the speak-
er’s intent (or not) in light of linguistic and nonlin-
guistic context, the listener’s prior experiences, and
so on. Rather than grappling wirh all of these details
in one gos psycholinguists break the problem into
manageable chunks. For spoken word recognition,
we assume the intermediate goal of the system is to
achieve a macch to a lexical representation of a word
in memory and feed it forward for higher levels of
processing.

What should be the contents of lexical repre-
sentations? Certainly, there will have to be a pho-
nological form—a sequenced list of the phonemes
that should occur (the most typical assumption)
or some other acoustic form (e.g., episodic traces;
Goldinger, 1998), or detailed phonetic or phono-
logical form. While one possibility we have just
listed is explicitly nonphonological (acoustic epi-
sodes), we will use “phonological form” to mean
any coding scheme that maps the speech signal
onto words in the lexicon. While phonological

form will be the primary key for accessing lexical
reprcsentations, what else should we assume lexi-
cal representations contain? We might minimally
expect lexical semantics and grammatical class,
Jthough contemporary linguistic and psycholin-
guistic theories of grammar and sentence process-
ing acrribute even more syntactic and semantic
knowledge to lexical representations (Altmann
& Mirkovi¢, 2009; MacDonald, Pearlmurter, &
Seidenberg, 1994; Pusteyevsky, 1995; Trueswell 8
Tanenhaus, 1994). Again, theories of spoken word
recognition typically defer consideration of details
beyond phonological form to higher levels, such as
sentence processing. As with input representation,
the risk of seemingly simplifying assumptions may
make the problem of spoken word recognition
paradoxically more difficult if they exclude contri-
butions of semantic, synractic, and pragmatic fac-
tors to resolving word-level ambiguities (e.g., Barr,
2008; Dahan & Tanenhaus, 2004; Magnuson,
Tanenhaus, & Aslin, 2008).

So now we have a basic definition of the com-
putational problem: The input is a string of speech
sounds represented either abstracty (as symbolic
representations) or episodically (as memory traces
preserving surface details),” and the goal is access of
alexical representation, which includes at least pars-
ing the phonemes onto phonological forms of words
in memory, and may include accessing some degree
of semantic, syntactic, and pragmatic knowledge
(though these details tend to be beyond the scope of
current theories of spoken word recognition). The
next steps in determining how the system achieves
this goal are characterizing the mappings between
inputs and outputs through experimental obser-
vation, and then enumerating the computational
challenges the system must overcome in achiev-
ing the mapping, and constraints on how it does
so (How quickly are particular words processed?
What kinds of errors do listeners make?). With a
sufficiently large body of results of this sort in hand,
one can begin to construct algorithmic (“software”)
level theories specifying cognitive mechanisms that
could achieve the observed mapping. This sets the
stage for competition among algorithmic theories,
as theories generate experimentally testable predic-
tions that go beyond the phenomena that have been
observed so far, and the knowledge base and level
of derail about the input-output mapping grows.
Thus, as algorithmic theories are posited and tested,
the computational theory—the mapping that any
algorithmic theory must account for—becomes
more detailed and refined.

We will use an even more abstract lens—Kuhn’s
(1962) three phases of scientific paradigms—to
present our view of the literature and history of
spoken word recognition: preparadigm, where basic
facts are enumerated and preliminary, incomplete
theories begin to point the way to a theoretical con-
sensus; normal science, where theories drift toward
consensus in response (o an ever-growing corpus
of empirical details, but eventually anomalous
findings that cannot be accommodated by extant
theories push the paradigm toward a crisis; and
revolutionary science, where a new paradigm arises
from insights that allow for a new theoretical per-
spective that accommodates the anomalies (a classic
example from Kuhn is Gallileo’s insight that friction
can explain why terrestrial objects in motion stop
withour some force pushing them, rather than this
being an intrinsic natural property of objects, which
paved the way for a paradigm shift to Copernican
cosmology). Wich this framework in mind, we will
next present a selective and not purely chronological
review of the spoken word recognition literature in
three parts: the foundational, preparadigm consen-
sus (the initial computational-level facts on which
spoken word recognition researchers agree); the
progression to an initial phase of normal science,
where models and measures of the time course of
processing pushed theory development; and finally,
where we find ourselves today—(hopefully) late in
a périod of normal science, with a growing body
of anomalous findings that cannot be easily fit into
current theories. We will conclude the chapter with
a discussion of what we view as the most pressing
crises, and possible avenues to a revolution. These
include grappling with the actual speech signal, inte-
gration of word-level processing with the context of
language understanding, development throughout
the life span, and neurobiological constraints on
algorithmic theories.

Basic Science Phase: Foundations of a
Computational Theory of Spoken Word
Recognition

To set the stage for our review of foundational
empirical results, the basic facts on which all theories
of spoken word recognition agree arc summarized
in Table 27.1.% These basic facts were discovered in
the middle- to lace-1900s as the essential technolo-
gies, methods, and theoretical framework emerged.
These developments, namely the advent of chro-
nometric (i.e., precise reaction time) experimental
methods, digital speech analysis and manipula-
tion methods, and the development of theories of
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Table 27.1 Basic, Agreed-Upon Facts About Spoken Word Recognition

Spoken Word

Recognition Is. ..

Details, Implications, Challenges, Etc.

Incremental

As aword is being heard, that is, as soon as even the initial sound is heard:

» Multiple words are activated in parallel in memory,

» With strength proportional to their similarity (both phonetic and semantic) to the inpuc
and prior probability (frequency of occurrence and, to a lesser degree, fit to lexical, sentential,
or other contextual constraints); and

» Activated words compete for recognition

Sequential

» Coarticulation: sound patterns corresponding to phonological categories such as conso-

nants and vowels are constellations of temporally overlapping (but not necessarily coinci-
dent) buzzes, chirps, and frication that must be bound together to map onto phonological

categories

» Phoneme segmentation problem: phonemes overlap in time and there are no invariant

boundary cues®

> Lexical segmentation problem: there are no invariant cues to word boundaries

» Embedding problem: segmentation must not lead to “recognition” of embedded words
{e.g., when hearing window, the system should recognize just that word, and not win, wind,
in, or _dough). This is potentially a very large problem; McQueen et al. (1995) estimate that
84% of English polysyllabic words contain ar least one embedded word.

Interactive

Spoken word recognition influences performance on speech perception tasks and is influ-

enced by semantic, syntactic, and pragmatic context.

cognitive psychology, still form the core of spoken
word recognition research.’ Next, we will unpack
this consensus, beginning by focusing on pho-
nological form, introducing some of the “basic,”
“incomplete” theories of the preparadigm phase,
and eventually turning to meaning and context.

First, we can intuit the necessity of spoken word
recognition being sequential from the segmentation
problem: Despite our subjective impression that
words “pop out” from continuous speech, there are
in fact no perfectly reliable cues to word boundar-
ies (Aslin, Woodward, LaMendola, & Bever, 1996;
Cole & Jakimik, 1980; Lehiste, 1970); indeed, as
we have already reviewed briefly, there are no such
things as phoneme boundaries (see Chapter 26, this
volume). (To refute your subjective impression that
there are breaks between words when listening to a
language you know, try discerning word boundar-
ies when listening to someone speak an unfamiliar
language.) The absence of robust acoustic boundary
cues makes it impossible, for example, for spoken
word recognition to depend on a process that buf-
fers the acoustic input until a boundary is detected,
and then performs recognition on the entire word
form in parallel.

Sequential processing can also be inferred from
behavior. The first time-course method devised to
study spoken word recognition was the gating task
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(Grosjean, 1980). In gating, a small portion of the
onset of a word—the first “gare”—is presented, and
the subject is asked for the most likely completion.
Then, the second gate—a slightly longer portion of
the word, beginning from word onset—is presented,
and the subject guesses at a complerion. This con-
tinues with successively longer gates until the entire
word is presented. Recognition is operationalized as
the gate by which the correct word is always given.
_Even at the first gate, participants are able to offer
completions. As more of the word is presented, the
number of completions offered decreases, in a fash-
ion consistent with the phonemes heard so far. Given
/b/ as the first gate, participants provide comple-
tions that begin with /b/. If the second gate provides
strong evidence that the second phoneme is /2/, the

completions narrow to words beginning with /ba/.

Gating reveals many additional details about word

recognition. For example, word frequency is an

important predictor of completion probability (e.g:»

given /ba/, bat is a more likely response than bass).

Gating results also suggest that words are often rec:

ognized before they have been fully heard; that is,

high identification accuracy is often possible before

the entire word is presented. This recognition point

is highly corrclated with the unigueness point—the
phoneme at which there is only one possible (unin-
flected) completion of a word, such as the /f/ sound

in elephant. In some cases, though, the recognition
point can. even precede the uniqueness point (e.g.,
when one possible completion is much more prob-
able due to word frequency). Thus, gating suggests
chat lexical activadion is incremental (people are able
to provide highly likely completions thar are consis-
rent with the gated input), that multiple words are
activated {(given che variety of completions offered),
and that word onsets are crucial keys to accessing
lexical irems—subjects virtually never provide a
completion that mismatches with the initial sounds
in the gate (e.g., given /ba/, subjects do not suggest
car as a completion).

So far we have support for (a) sequential/incre-
mental/continuous processing beginning from word
onset, (b) multiple activation, and (c) roles for simi-
larity and prior probability (frequency). However,
the gating task is racher unusual, and one could argue
that it bears little similarity to word recognition “in
the wild,” and may be instead a guessing game subject
to various strategies. Converging evidence, though,
comes from tasks like flexical decision and naming.
In a lexical decision task, you hear a spoken word
(ball) or a spoken nonword (ba/t), and press a button
to indicate whether what you heard was a word. In
naming (sometimes called shadowing or repetition),
you hear a word and repeat it as quickly as you can.
In tasks like these, response latencies decline and/
or accuracy increases (especially when the speech
signal is degraded or noise is added) with word fre-
quency (e.g., Luce, 1986; Luce & Pisoni, 1998).
These measures also provide evidence for activation
of and competition among multiple words, as reac-
tion times increase and/or accuracy declines with the
number of words in the lexicon that are phonologi-
cally similar to a target word.

It is more challenging to detect the sequential
nature of processing with tasks like lexical decision
and naming. They provide a single, presumably
postperceptual measure, and like gating, arguably
have little connection to word recognition outside
the laborarory. Furthermore, lexical decision has the
potential to index something other than the actual
recognition of a target word; for example, one might
achieve high accuracy just from responding based on
a sense of familiarity, or based on the summed acti-
vation of multiple words, before one has truly iden-
tified the word (Grainger & Jacobs, 1996; Rogers,
Lambon Ralph, Hodges, & Patterson, 2004). The
coordination of perception and production required
by the naming task might direct attention to differ-
ent details of the signal than a situarion where there
18 no need to repeat a word as you hear it.

However, an exrremely clever variant of lexical
decision, the cross-modal semantic priming paradigm,
provides converging evidence for other derails from
the gating task. The paradigm exploits the phenom-
enon of semantic priming (Meyer & Schvaneveldr,
1971), where hearing or seeing a related word
appears to preactivate or prime semantically related
words (e.g., you are faster to recognize doctor if it is
preceded by nurse than if icis preceded by sandwich).
In cross-modal priming, your task is to perform
lexical decision on visually presented letter strings,
which are interspersed with auditory stimuli (e.g.,
Marslen-Wilson & Zwitserlood, 1989). This allows
experimenters to look for semantic or other effects
berween the spoken and written words. In faci, the
paradigm might be better called “cross-modal, pho-
nologically mediated semantic priming.” Rather than
looking for direct competition between the spo-
ken prime and visual target, Marslen-Wilson and
Zwitserlood (1989) predicted that if a spoken word
(e.g., castle) activates a cohort of words with simi-
lar onsets (candy, cabin, etc.) to a significant degree,
those words should spread detectable activation to
semantic relatives (sweet, log, etc.). If instead word
onsets are not crucial, other highly similar words
should also be in the competition cohort (and so
castle should activate hassle, which should prime
bother). The former predictions were borne out:
Priming was found for pairs like castle-sweet, but not
pairs like castle-bother (even when word frequency
and other factors were controlled). It is important
to note thar these results also imply that the set of
activated words includes items that are semantically
related to words that are phonologically consistent
with the spoken input. However, the ramifications
of this implication are mostly ignored by models
of spoken word recognition—a point to which we
will recurn at the end of this section and in the next
section.

Marslen-Wilson and colleagues took the gat-
ing and priming results to rather transparently
reflect the workings of human spoken word recog-
nition and proposed the Cobort Theory of spoken
word recognition (Marslen-Wilson & Tyler, 1980;
Marslen-Wilson 8 Welsh, 1978); because their defi-
nition of the competition cohort was based on onset
ovetlap, “cohort” has become a synonym for onset
competitor.) One of their key insights was that the
apparent complication of sequential input actually
provides a basis for understanding nort just isolated

~ word recognition but also how the system might

address the embedding and segmentation problems
in isolated words and word sequences.
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They proposed a mechanism that at utterance
onset begins activating all words consistent with
the input. Given the input /b/, all /b/-initial words
receive modest activarion. As the input continues to
/bx/, all /ba/-initial words receive more activation,
and all /b/-initial words that do not continue to /2/
are removed from the activation cohort (or begin to
be inhibited). This continues as more input comes
in. If only a single word is uttered, the latest point at
which the word will be recognized is after the final
phoneme is heard. However, the word can be very
strongly activated prior to word offset as the cohort
decreases in size. In the extreme case thar a single
word remains in the cohort prior to word offset (e.g.,
[banlstAr/-banister, which becomes unique at /s/),
uniqueness point effects are predicted. The origi-
nal version of the model was interactive. It allowed
context to activate words so strongly they could be
recognized significantly earlier than their unique-
ness points. The model was revised (Marlen-Wilson,
1987, 1989) with strong bottom-up priority—
malking initial processing autonomous, to avoid the
problem that words unexpected in a context can still
be clearly recognized (e.g., the system should not
recognize nice instead of knife given he cut the bread
with a nice switchblade). In the next section, we will
discuss how these difficulties with interaction can be
avoided when one does not assume there is actually
an instant of definitive recognition (the so-called
“magical moment”; Balota, 1990), rather than flux
in the relative activations of lexical representations.

In the case of a sequence of words,
phoneme-by-phoneme winnowing of the cohort
provides a potential solution to the segmentation
problem (the absence of reliable bottom-up cues to
word boundaries). For example, if the utterance so
far is /ben/ (ban), and the next sound is /1/ (ih, as
in banish or banister), a word boundary cannot be
posited. Even though éan is a word, longer words
beginning with that string remain in the cohort (set
of activated words). If instead the next sound is /v/,
aword boundary must be posited, because there are
no words that begin &anv. In some cases, a bound-
ary must be posited at an earlier position. For exam-
ple, if the input has so far been /bznl/ (bani-) and
the next sounds is /f/ (as in the word sequence ban
if), a boundary must be posited before the /I/. This
algorithm also provides an explanation for how the
embedding problem might be handled. In the case
of banister, ban is not recognized because longer
words remain in the cohort when /bzn/ has been
heard. Thus, segmentation and handling of embed-
dings emerge from a simple parsing mechanism
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motivated by the need to handle sequential inpy
and result in a very specilic similarity metric, tha
is, the basis for including a word in the activatioy
set. In the case of the Cohort Model, the simila;.
ity metric is roughly that two words will compete
strongly if they overlap in the first one or two pho-
nemes (Marslen-Wilson, 1987).

But this is where we encounter our first basis for
debarte about the basic empirical facts for form acti-
vation. We cired work by Luce and colleagues earlier
in support of the basic fact that recognition faciliry
(speed and accuracy) increases with word frequcncy
and decreases with competitor set size (Goldinger,
Luce, & Pisoni, 1989; Luce, 1986; Luce & Pisoni,
1998). While one obtains the same results manipu-
lating the size of the onset cohort (e.g., Zhang,
Randall, Stamtakis, Marslen-Wilson, & Tyler,
2011), Luce and colleagues tested a very different
similarity metric. This metric, known as neighbor-
hood density, was motivated by the observation that
the Cohort Model must assume virtually noise-free
input to work as we have just described it (other-
wise, the cohort cannot be winnowed accurately),
burt in the real world, speech is often heard in noisy
contexts. So they devised a more forgiving metric
that assumes less input certainty and so greater
confusability. Extending some previous notions
of structure in the auditory lexicon (Greenberg &
Jenkins, 1964; Landauer & Streeter, 1973), they
proposed what is now called the “DAS” similarity
metric: Two words are considered neighbors (and

likely to activate each other) if they differ by no

more than one phonemic deletion (D), addition
(A), or substitution (S). As they predicted, the more
neighbors a word has, the more slowly and/or inac-
curately it is processed. This is consistent with the
notion that neighbors are activated and compete for
recognition, and further evidence for competition
comes from the resulc that the neighborhood effects
are amplified by neighbor frequency; if two words
are matched in frequency and number of neighbors,
but the mean frequency of one word’s neighbors is
higher, that word will be harder to process (Luce &
Pisoni, 1998).

This leads ro a very different conception of the

competitor set compared to Cohort. The word cat,

for example, has the deletion neighbor 4%, addition
neighbors scar and cast, and substitution neighbors
like bat, cot, and can. Many items that would be in the
Cohort competitor set are excluded: monosyllables
like camp and cask, and manylonger words (cabin,
cabinet, cabbie, caddy, calcium, candy, catalog, etc.).
Thus, this metric conflicts with the Cohort metric

R

by including words that mismatch at onset, and by
excluding many words for which Marslen-Wilson
and colleagues reported robust competition effects.
Luce and Pisoni gloss over these seemingly problem-
atic items by maintaining their focus on monosyl-
labic words, acknowledging that aspects of Cohort
theory may need to be integrated into their similar-
ity metric later to handle longer words.

Luce and colleagues also showed that the DAS
rule can be improved by using a graded similar-
ity merric. Instead of counting complete matches
or mismatches, you calculate pairwise similarity
between words phoneme-by-phoneme. Luce and
colleagues have done this by using actual confusion
probabilities measured when speech was presented

in noise, but one could also use a metric based on °

similarity in phonetic features. While this approach
provides a modicum of greater precision, Luce and
colleagues have reported that the DAS rule works
nearly as well, with one important exception: The
graded similarity approach predicts inhibitory
priming berween words that are highly similar at
every position but do not overlap in even a single
phoneme, such as weer and full (these examples
differ from each other by a single phonetic fea-
wure at each phoneme; see Luce, Golding, Auer, &
Vitevitch, 2000, for priming results supporting this
prediction).

Luce and colleagues proposed a model based
on their results: the Neighborhood Activation Model
(NAM). NAM does not address the time course
of processing—and so is mute on questions of
incrementality—focusing instead on multiple, par-
allel activation and competition. NAM models an
assumed final stage of spoken word recognitioﬁ
where acoustic-phonetic detectors have accumu-
lated activation from bottom-up inpuc, which they
combine with lexical knowledge, such as word fre-
quencies. Decision unit activations are assumed to
be proportional to frequency-weighted neighborhood
probability; here is our slightly streamlined version
of the FWNP:

S,

Fwnp=LSe (1)

waSwr

Thus, the FWNP for target word ¢ is the ratio of
/5, where fis £s log frequency, and s_is /s similarity
to an utterance of ¢ (which is not necessarily 1.0, as
one might confuse the /t/ of bar with /d/, for exam-
ple), to the sum of the similarity to ¢ of every word,
w, in the lexicon (s ), weighted by its log frequency
(f). We can simplify further if we base similarity on

the DAS rule. Now a word is cither a neighbor or
it is not, because it either meets the 1-phoneme dif-
ference threshold or it does not. Since s will be 1 for
all neighbors and 0 for every other word, we drop
it, leaving the ratio of #s log frequency to the sum of
all its neighbors’ log frequencies (Equation 2, where
w has been replaced by 7 in the denominaror, as the
summation is now over all neighbors, notall words).
Because ¢ will be included in the denominator, since
it is a neighbor of itself, we can think of this as rep-
resenting the proportion of the frequency weight of
its own neighborhood that a word contribuces.

FWNPys =§fi— @

n

This compact, elegant equation (essentially a
simplified variant of the R. D. Luce [1959] choice
rule) simultancously represents the core theoreti-
cal stance of NAM and provides a crucial method-
ological tool—studies of spoken word recognition
routinely use Equation 2 to control neighborhood
(or at least concrol the raw neighbor counts). Thus,
decision unit activations are assumed to be propor-
tional to FWNP, and human behavior is predicted
1o be proportional to decision unit activations, such
that the higher the FWNP for a word, the faster
and/or more accurately it should be recognized.
The FWNP has largely been tested in the aggregate,
with factorial manipulations of FWNP or number
of neighbors or with regressions examining how
well the FWNP predicts recognition facility for
a large number of words (Luce & :Pisoni, 1998),
as opposed to the typical approach in testing the
Cohort model—assessing priming of specific words
or enumerating gating completions for specific
words. In regression analyses, FWNP accounts for
approximately 15% of the variance beyond the 5%
accounted for by word frequency alone. We will
have more to say about these competing visions of
the competitor set in the next section.

Now let’s consider evidence for contextual con-
straints on spoken word recognition. The question
is whether semantic, sentential, or other contextual
information interacts directly with the bottom-up
mapping of sublexical information to lexical repre-
sentations, or if bottom-up lexical activation is ini-
tially autonomous—protected from context, which
is integrated at a later stage. Frauenfelder and Tyler -
(1987) made a useful distinction between structural
and nonstructural context. Nonstrucrural context
is like word-to-word priming; it does not cross lev-
els of hierarchical organization. If we assume that
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semantic and (phonological) form representations
exist at the same lexical level, finding priming of
the sort we have already described does not address
the autonomy issue. Experiments by Tyler, Voice,
and Moss (2000) showing that high imageability
facilitates recognition of words with many cohort
competitors suggests that form and meaning are
indeed integral (we will discuss this more in the
next section). Evidence of early impact of struc-
tural context (e.g., sentence or discourse details),
however, would violate bottom-up autonomy. An
example of structural context comes from a study
by Tanenhaus, Leiman and Seidenberg (1979; see
also’ similar work by Swinney, 1979). They used
cross-modal semantic priming, but with auditory
stimuli presented in sentence contexts. Their criti-
cal items were homophones that were presented. in
contexts that favored one meaning (¢hey all rose) or
the other (be gave her a rose). Their first question
was whether priming would be found for associates
of both senses (stand, flower). When they presented
the probe item visually ac homophone offset, they
found statistically equivalent priming for associates
of both meanings. If they waited 250 msec, there
was selective priming for the context-appropriate
meaning. Tanenhaus et al. interpreted this as con-
sistent with a mechanism where autonomous, full
access to all items matching the bottom-up input
is quickly followed by a process integrating the
bottom-up signal with sentential context. Shillcock
and Bard (1993) used more constraining contexts
that strongly predicted closed-class words (e.g.,
would) over open-class homophones (e.g., wood)
and found selective priming as early as they could
look for it (partway through the homophone). This
study tends to be neglected in reviews of this litera-
ture, but we shall see later that this result has been
replicated and extended using newer techniques.
Interaction in the opposite direction—from
words to sublexical processing—has been of great
interest in spoken word recognition. Examples
where lexical knowledge affects sublexical perfor-
mance include the word superiority effect (Rubin,
Turvey, & Van Gelder, 1976), where phonemes
can be detected more quickly in the context of a
word than nonword, and phoneme restoration
(Samuel, 1981, 1996; Warren, 1970), where a pho-
neme replaced with noise appears to be filled in in a
context-appropriate fashion, even having perceptual
effects like those of clear phonemes, such as selec-
tive adaptation (Samuel, 1997, 2001). While such
effects are consistent with the idea that there is direct
feedback from words to phonemes, lexical effects on
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performance in phoneme tasks could also arise post.
perceptually. We will discuss this possibility later,
for now, the important thing to note is that theoricg
of speech perception must provide some account of
these top-down effects.

The issues we have reviewed have emerged as the
primary questions theories of spoken word recogni-
tion address—that is, as the boundaries of spoken
word recognition theories. In particular, research
in the latter half of the 20th century established 3
framework that assumes that phonemic input acti-
vates multiple words in parallel as a function of
similarity and prior probability, and activated words
compete for recognition. In the next section, we dis-
cuss how research over the last couple of decades has
filled in many details about these questions, but has
also begun to strain ar these borders.

The Normal Science Phase: An Emerging
Consensus

Here is where this review departs from chro-
nology to discuss the normal science phase of con-
temporary rescarch on spoken word recognition.
“Normal science” is what Kuhn (1962) calls the

* “puzzle-solving” or filling-in period, as (and after) a

consensus on a parddigm emerges. To mix Kuhn and
Marr, this is the consensus on Marr’s (1982) com-
putational level theory and agreement on the sorts
of experimental methods and measures thart provide
valid evidence (the most common experimental
tasks, along with their advantages and disadvantages
are summarized in Table 27.2). On our view, the
best way to get a sense of the current paradigm is by
walking through the details of the TRACE model
of speech perception and spoken word recogni-
tion (McClelland & Elman, 1986). This is not to
say that TRACE Js the consensus. However, there
is substantial agreemenc that the functions TRACE
provides—for example, activation of representa-
tions at multiple levels (phonemes, words), inhibi-
tion providing the means for competition among
activated representations—are needed, even if there
is disagreement (and occasional fractious debate)
about the best ways to “wire up” those functions
(e.g., What is the best similarity metric for predict-
ing whar words will be coactive? Is lexical competi-
tion better modeled by lateral inhibition berween
words or bottom-up inhibition from phonemes to
words? Should we allow feedback between levels of
representation in language processing, or does infor-
mation flow only in a bottom-up direction?). Most
crucially, TRACE ushered in a new level of detail in
predictions about not just recognition time but also

.
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Table 27.2 Common Paradigms for Studying Spoken Word Recognition

Task

Advantages

Disadvantages

Lexical decision: Nonwords (e.g.,
“plat”) are mixed with words, and
participants press a button indicat-
ing YES for words and another
indicating NO for nonwords (an
alrernative “go/no-go” version asks
participant to press a button for
words and withhold a response for
nonwords, or vice versa)

e Fast
o Commonly used

¢ Correct responses do not require
full word recognition, but just a
relative sense of familiarity or par-
tial activation of multiple words

© RT on critical word stimuli is
sensitive to design of nonword
filler items

Naming (also called Shadowing or

Repetition): Participants hear a word

and repeat it as quickly as possible
(alternative: participants report
what word they heard by typing it
into a computer keyboard).

@ Direct measure of recognition: process-

ing entire word form is required

e Slow: Participants need more
time for each trial, so they can
complete fewer trials

e Does not guaranrtee deep (e.g.,
semantic-level) processing

 Accuracy requires coding the
responses, which can be time
consuming and ambiguous
(e.g.» should mispronunciations/
misspellings count as correct or
incorrect responses?)

Semantic judgments: Participants
indicate whether some semantic
property {living thing vs. artifact,
something you can touch, etc.) is
true of the concept named by the
spoken word

o Fast
 Requires access to lexical semantic
knowledge

¢ Semantic variables may compli-
cate results (e.g., edible plants
such as “tomato” are somewhat
ambiguous with regard to their
status as living things—when it is
on the plant it is living, when it is
on the plate it is not)

Word-to-picture matching: Par-
ticipants indicate which of several
pictures matches a spoken word.

¢ Fast

® Requires semantic access

o Naturalistic (does not require
meta-linguistic judgments)

e Can be combined with eye- or
hand-tracking to measure the time
course of spoken word recognition

¢ Limited to words that refer to
pictureable objects or actions

 Reaching movements can make
RTs noisy

e Sensitive to number of alterna-
tives and their similarities

Priming: Using any of the above
tasks, test processing of a word
when the preceding word is related
on some dimension compared to
when it is unrelated. Variants:

¢ Phonological (BALD-—BALLS,
HAND--SAND)

¢ Phonetic (BULL—VEER)

¢ Semantic (DOCTOR—NURSE)

¢ Cross-modal: prime presented
auditorily, target presented visually
(or vice versa, depending on which
modality the researcher wants

to drive initial access to lexical
memory)

e Fast
& Sensitive

o Can measure time course by manipulat—
ing the relative timing of the prime and

target (“interstimulus interval”)

¢ Priming can be positive (facil-
itatory—related prime causes
better performance) or negative
(inhibitory—related prime causes
worse performance), and the
literature is rife with conflicting
positive and negative priming
effects

e Phonological and semantic prim-
ing are susceptible to bias and
strategy (e.g., sensitive to propor-
tion of related-prime trials; see
Luce et al., 2000, for the relative
susceptibility of phonological vs.
phonetic priming)
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the subphonemic time course of lexical activation
and competition. In this section, we will begin with
a description of TRACE and the motivation for
its architecture and processing components. This
sets the stage for debates about the specific mecha-
nisms a model should employ, and the advent of
experimental methods that provided time course
measures comparable to the time course predictions
of models like TRACE. Time course modeling and
measures brought about a period of intense research
aimed at filling in fine-grained details in the corpus
of empirical knowledge (which continues today). In
the section following this one, we will argue that
current debates are really a matter of fine-tuning
the consensus on how one might model the agreed-
upon computational theory (that phonemic input
activates multiple words in parallel as a function of
similarity and prior probability, and activated words
compete for recognition)—especially when com-
pared with emerging crises of empirical facts that
cannot be accommodated in current theory; a har-
binger of a scientific revolution, according to Kuhn

(1962).

TRACE and the Time Course of Word
Recognition
THE TRACE MODEL OF SPEECH PERCEPTION
AND SPOKEN WORD RECOGNITION

Lets walk through how the TRACE model
implements the core theoretical consensus (along
with some debatable details). TRACE (McClelland
& FElman, 1986; McClelland, 1991) was inspired by
the Cohort model, but the competition dynamics
of the interactive activation framework (McClelland
& Rumelhart, 1981) were substituted for bottom-
up inhibition (inhibiting words that do not include
a perceived phoneme) and for the notion of an
explicit segmentation tracking device: Recall thar
in Cohort, the system tracks possible completion
of words given the input so far; a word boundary
is detected when the input so far corresponds to a
word and the following segment cannot be added
to it. In TRACE, competition and segmentation
are emergent properties; there is no explicit track-
ing of word boundaries. Figure 27.1 shows how this
works. On the left, we show a conceptual schemaric
of the interactive activation framework as it is imple-
mented in TRACE. “Pseudo-spectral” inputs (shown
in the center of the figure) activate feature detector
nodes, which activate phonemes that contain them.
Phonemes send activation forward to words that
contain them. Words send feedback to phonemes
that they contain. Competition comes from lateral
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inhibition within the phoneme and word leyelg
Inhibition among activated units usually leads one
node at each level to dominate (achieve the high.
est activation) for some period of time. Activatiop
wax and wane as a function of bottom-up input
lateral inhibition, and top-down feedback, as the set
of strongly activated words changes gradually oye,
time. When a sequence of words is presented, there
is nothing inherent in the model that corresponds
to a discrete, “magical moment” (Balota, 1990)
of word recognition for each word; instead, as the
input unfolds, the lexical nodes for the presented
words briefly dominate the lexical level in series.” Ty
make explicit comparisons with a specific task, sycl
as lexical decision, one must construct a linking
hypothesis between the behavior of the model and
measures of human performance, such as reaction
times (see Magnuson, Mirman, & Harris, 2012),
The actual architecture of TRACE is more
complex than the conceptual schematic suggests.
A problem that any implemented model of spoken

word recognition must grapple with is temporal-

order. Many preceding theories side-stepped this
problem; since they were not implemented, they
simply stipulated that lexical representations would
be sensitive to temporal order (the Cohort Model
being a notable exception). Addressing this problem
is crucial and very difficult, so it is instructive to
walk through how TRACE handles it. If the net-
work were really as simple as the conceptual sche-
matic, it would have no way of telling /bzad/ from
/deb/ or even /ebd/; all three inputs would simul-
taneously activate all word nodes containing those
three phonemes. What TRACE does is sketched
in the rightmost panel of Figure 27.1. Rather than
having a single node for the word éad, TRACE has
many, each aligned with a different point in time.
The same scheme applies at the phoneme level:
There are /b/ nodes aligned at successive time slices.
This provides the model with phonemic and lexical
memory—the “trace” behind the model’s name.
Consider the input in the center of Figure 27.1.
The featural code corresponding to /b/ spreads from
time O to time 11. There are /b/ nodes aligned with
every time slice. So when the input is “heard” by the
model, the input at slice 1 is fed to feature nodes
aligned with slice 1, then the input at slice 2 is fed
to aligned feature nodes, and so on. Feature nodes

send activation forward to phoneme nodes aligned -

with them. Phoneme nodes in turn send activation
forward to word nodes aligned with them. In Figure
27.1, connections between /b/ nodes at the right
edge of the figure to a bad node are shown. Those
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Figure 27.1 The TRACE Model. (Zefi) Conceptual schematic showing feedforward connections from features to phonemes and pho-

nemes to words, feedback from words to phonemes, and lateral inhibition (dashed “bulb” connectors) within phoneme and lexical
levels. (Middle) TRACE input for the word “bat,” showing how activations ramp up at different levels of different features for phonemes,
and how phonemes overlap in time. (Right) More detiled schematic of the actual design of phoneme and lexical levels in TRACE.

Fach phoneme node is replicated at multiple time steps, allowing TRACE to “spatialize” time, such that independent nodes can de-

tect the presence of the same or different phonemes at different points in time. The same scheme is used at the word level. Only the

phoneme—word connections for one of the last “BAD” word nodes from /b/ are shown. Only the lateral inhibition connections from

those /b/ nodes to the /k/ nodes they would inhibit are shown (nodes only inhibit nodes with which they overlap in time). Only the

lexical lateral inhibition nodes between one highlighted BAD node and the CAT nodes with which it overlaps in time are shown.

/bl nodes also have (mutually) inhibitory links with
all other phoneme nodes thar overlap with them in
time. 'This last point is crucial, as it allows multiple
phoneme nodes to become highly active; thart is,
a series of nodes that do not overlap in time can
become highly activated since they do not inhibit
each other. This allows the model to robustly rep-
resent temporal order, since each phoneme is asso-
ciated not just with a featural code, but with that
featural code linked to a particular point in time.
For a word node to get robustly activated, the cor-
rect temporal series of phonemes must be activated.
Just as this scheme allows a series of phonemes to
become strongly activated, it also allows TRACE
to “recognize” a series of words; nodes aligned with
the points in time where the words occurred get
activated and do not interfere with earlier and later
words with which they do not overlap in time.

A common way for TRACE’s behavior to be
quantified is with a time course plot, as in Figure
27.2, where we use an example that illustrates how
TRACE handles embedded word effects and dif-
ferences it predicts in the time course of biases for
short versus long words. On the left, the input is the
word artist; on the right, it is are. We track activa-
tions of several words activated by this input. Note
that there is an carly short-word advantage apparent
in both panels. We also see a late advantage for long
words: Note how dramatically higher the activation
for artist on the left becomes compared to that for

art on the right. Finally, note as well that TRACE

is handling the embedded word problem—arzist
eventually wins the competition on the left despite
the fact that the entire patterns corresponding to
are and art have been encountered. The early short-
word advantage and late long-word advantage are
particularly interesting because Pitt and Samuel
(20006) reported evidence for both.

Let’s walk through how TRACE does this. The
easiest piece of this to understand is the basis for
the late advantage for long words: Long words sim-
ply accrue more bottom-up activation than short -
words—the more phonemes there are in a word, the
more feedforward activation it will receive. There is
a flip side to this advantage, though: Because word
nodes receive inhibition from word nodes with
which they overlap in time, longer words have more
“inhibition sites” than shorter words (that is, they
simply overlap temporally with more word nodes
because they extend further in time), which puts
them ar a disadvantage compared to shorter words.
Even the tiny bit of bottom-up activation that nodes
send when they do not have strong similarity to the
input can have a large effect.® In the case of embed-
dings, the fact that artist receives more botrom-up
input allows it to eventually overcome the activa-
tions of embedded words because it can send them
more inhibition than they can send o it.

'The aspect of TRACE that is conceptually diffi-
cult is understanding where the activations in a time
course plot come from. This is illustrated in-the
upper panels of Figure 27.3, which also illustrates
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Figure 27.2 Embedded word and word length effects in TRACE. TRACE phonemic inputs are shown in the lower left of each panel,
aligned with the cycle at which they were presented. TRACE's handling of embedded words can be seen on the left, where artiss wing
out over even the fully embedded word, ar¢. The early short-word bias can also be seen on the left, where the activations of ar¢ and are
rise more quickly than that of #r#st. This can also be seen by comparing how quickly ar#is¢ rises in the left panel (hitting activation of
0.3 ar cycle 30) and how quickly a7¢ rises in the right panel (hitting 0.3 around cycle 27). The late advantage for long words can be seen

in comparing the peak target activations on the left and right.

what word “segmentation” looks like in TRACE.
The figure shows what happens as the series of
words boy pars dog (/buipatsdag/) has been pre-
sented to the network. The “floating” phonemes, for
example, have a specific “temporal alignment”—a
slice of the model’s memory “trace.” As time goes
by, phonemes (and words) at particular alignments
become more or less active as a function of their
current and earlier bottom-up support, top-down
support (lexical feedback to phonemes), and inhibi-
tion from other nodes at the same level. You can
also sce that the network is successfully inhibiting
the word, par, which is embedded in pats, and the
word stack, which is highly similar to the string of
phonemes straddling the second word boundary, /
sdag/. The bottom panel of Figure 27.3 shows the
corresponding lexical time course plot, where the
maximally active nodes for a set of words of interest
are plotted.

THE TIME COURSE OF COMPETITION

The competition dynamics of TRACE also shed
light on the competitor set disagreements between
the Cohort and Neighborhood Activation models
(reviewed carlier). Cohort predicts that words over-
lapping at onset will activate one another, even if
they are of different length, and that activation of
words mismatching at onset will be negligible, even

if overall (global) similaricy is high. NAM ignores
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onsets and instead posits that global similarity
is what marters, predicting that words will com-
pete if they differ by no more than one phoneme,
TRACE predicts something in between the two
and offers a resolution to this debate. The left panel
of Figure 27.4 shows simulations from Allopenna,
Magnuson, and Tanenahus (1998), who examined
what TRACE predicts for a target word, beaker; a
cohort competitor, beetle; a thyme, speaker; and an
unrelated word, carriage (the figure actually averages
over several item sets, and an analog to the carrier
phrase, “click on the...,” was presented prior to the
target word; also, to conform to the way Allopenna
et al. presented simulations, activations less than
zero are plotted as zero). As the input unfolds, the
target and cohort activate together since they are
consistent with the bottom-up input, /bi/. Once
the input begins to favor the target (once the /k/ is
presented for beaker), the activation of cohort items
begins to drop off both because of lesser bottom-up
supportbut also because the target is able to inhibit
them. Simultaneously, the input has become more
similar to the rhyme (speaker), and it becomes much
more activated than the unrelated comparison item.
However, its peak activation remains substantially
below that of cohort items—despite its overall
greater similarity to the input (in the example set,
the rhyme overlaps in four phonemes with the tar-
get, but the cohort only overlaps in two). This is
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Figure 27.3a Activations over time in TRACE." (Zeff) Snapshots of phoneme (middle) and word (rap) activations just as the /g/ in /
buipatsdag/ (“boy pats dog”; note that we are transcribing with phonemes from TRACE's limited inventory rather than accurate Eng-
lish phonemic tanscriptions) has been presented (cycle 72, corresponding to temporal alignment 24). (Right) Snapshots slightly later
(cycle 78, alignment 26). Note the multiple /b/ activations at the left side of the phoneme plots. These show the activations of /b/ nodes
aligned with ditferent time slices. The word activations make clear that there is not a magical moment of word recognition in TRACE;
rather, there is flux in the relative activation of word units aligned with different portions of the temporal memory “rrace.” Note, for
example, how the DOG (/dag/) node emerges as the late time course “winner” over just the few time steps between the left and right
graphs. The plots also illustrate that TRACE solves the lexical embedding problem (PATS wins over PAT). The bortom panel presents
a conventional activation time-course plot. Here, each word is represented by the activation of one node—the node for that word that
had the highest activation. Note, for example, that activation of boy persists, overlapping with high activation of the following words.
This does not mean that the model is simulating “hearing” these simultaneously. In the top panel, we can see that the boy node we are
wracking is aligned with temporal slice 2, which corresponds to processing cycle 6, while the maximally activated (and therefore tracked)
node for pars aligns with temporal slice 8/processing cycle 24, and the tracked node for dog is at slice 16/cycle 48. This illuscrates how
TRACE maintains an active memory of what words have been presented over time; word activations tracked here are linked to specific
instants in memory, such thar the tracked activation for &gy indicates nor just that oy is active, but that it occurred ar a specific time
(position, really) in memory. Plots were generated using jTRACE (Strauss, Harris, & Magnuson, 2007).

because it is inhibited not just by the already-acti-
vated target bur also by the cohort items. Thus, the
“head start” that the onset overlap affords to cohort
items turns into a signiﬁcant activation advantage
compared to rhymes. But how do these time course
predictions correspond to human performance?

‘The other panels of Figure 27.4 illustrate how
Allopenna et al. tested these prediciions, using the
then new “visual world paradigm” (Tanenhaus,
Spivey-Knowlton, -Eberhard, & Sedivy, 1995.)°
Subjects saw displays like the one in the center panel
(there were also filler trials where all items were
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Figure 27.3b (Continued)

unrelated). Subjects heard a verbal instruction to
pick up one of the items and place it relative to one
of the shapes on the screen. Allopenna et al. tracked
point of gaze using a head-mounted eye tracker as
subjects did this. Starting from the onset of a tar-
get word, such as bewker in the instruction “pick
up the beaker,” they plotted the mean proportion
of fixations to each of the four items at each time
step (right panel, Fig. 27.4), which looked remark-
ably similar to the TRACE predictions (indeed, see
Allopenna et al., 1998 for a simple linking hypoth-
esis that transforms raw activations using a variant
of the R. D. Luce [1959] choice rule into response
probabilities that are virtvally indistingnishable

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132
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from the observed data). Let’s examine some essen-
tial details.

First, it’s important to understand where the
fixation proportions plotted over time come from.
On a single trial, “proportions” can only be 1 or 0
for any object at any instant—a subject can only
fixate one item at a time. On typical trials, subjects

only made ~1.5 fixations in the Allopenna et al.

study. So a subject might look at the cohort item
250 ms after word onset, and at the target 350 ms
after word onset. For that trial, the data would be
1.0 for the central fixation cross and 0.0 for every-
thing else from word onset to 250 ms, 1.0 for the
cohort and.0.0 for everything else from 250-350

8 0 Targer, e.g. beaker
# Cohort, e.gbectle
4Rhyme, e.g, speaker

O Target, e.g. beaker
® Cohort, e.g.beete
08l * Rhyme, e.g. speaker
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(.G b
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o
)
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“Pick up the beaker.”
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Msecs since target onset

Figure 27.4 (Leff) Relative activation of cohort (onset) and rhyme competitors in TRACE. (Adapted from Allopenna et al., 1998.)
(Center) Sample stimulus display and (spoken) instruction from Allopenna et al. {1998). (Righ#) Proportions of fixations over time to
each item of interest. Proportions do not sum to 1.0 because fixations outside the four items of interest (e.g., to the central fixation

cross) are not plotted.
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ms, and 1.0 for the target and 0.0 for everything
else from 350 ms until the end of the trial. Trials
for each condition are averaged within participants,
and then participant means are averaged to arrive
at plots like the one in Figure 27.4. Then, the same
sorts of statistical approaches that are used for other
kinds of psychological data can be applied (e.g.,
ANOVA; but see Barr, 2008 and Mirman, Dixon,
& Magnuson, 2008, for alternative approaches
explicitly designed for assessing change over time).
Second, when we look at the time course plots, we
can sce that changes in mean fixation proportions
tended to fag behind phonetic details by about 200
ms. Given that it rakes approximately 150 ms to
plan and launch an eye movement to a point of
light in a darkened room (Fischer, 1992; Matin,
Shao, & Boff, 1993; Saslow, 1967) and that inter-
saccade intervals are typically in the 200-300 ms
range in similar tasks, such as visual search (Viviani,
1990), this lag was neatly as short as could, theo-
retically be." Third, proportions of eye movements
over time map onto phonetic similarity over time:
Target and cohort looks increased in the early time
course, and as the bottom-up input favored the tar-
get, fixation proportions to the cohort diminished.
This is consistent with results from the gating task.
Simultaneously, however, the input had become
more similar to the rhyme, and the thyme fixation
proportion eventually exceeded that for the unre-
lated baseline item. Recall that rhymes are never

offered as completions in the gating task, nor are

they predicted to compete in the Cohort Model.
Why might rhyme effects emerge in this task?

One possibility is that presenting rhymes in
the visual display primes them. Allopenna et al.,
though, pointed ourt that fixation proportions map
onto phonetic similarity over time—rhymes are
not fixated until there is phonetic overlap between
them and the input. However, this does not rule out
priming; it could be that picture priming boosts the
resting level of the rhyme’s lexical representation.
Allopenna et al. also provided an empirical case
for differences between tasks. In a second experi-
ment, they combined the gating task with the visual
world task. They presented gated auditory inputs
with the same visual displays. Rhyme effects dis-
appeared. Allopenna et al. (1998) argued that this
demonstrated that the gating task emphasizes word
onsets, leading to overactivation of onset competi-
tors compared to what happens when fluent speech
is presented: A later study explicitly tested effects
of displaying competitor pictures empirically and
with computational modeling (Dahan, Magnuson,

Tanenhaus, & Hogan, 2001), and the results sug-
gested that displaying a competitor emphasizes
competition effects slightly—but likely because
the possibility of fixating the competitor when it
is on the screen better reveals competition rather
than amplifying it. Compeiition effects persisted
when competitors were not displayed. Magnuson,
Dixon, Tanenhaus, and Aslin (2007) found effects
of frequency-weighted competitor counts (neigh-
borhood and cohort densities, discussed later) even
when no competitors were displayed at all.

Now with strong evidence that TRACE simula-
tions of cohort and rhyme effects are largely borne
out in time course measures with human subjects,
let’s return to the debate over the nature of the com-
petitor set. Recall that many results support the
Cohort Model (e.g., the absence of evidence for
rhyme activation from cross-modal semantic prim-
ing), while others support NAM (the variance for
recognition and naming data accounted for by the
frequency-weighted neighborhood probability met-
ric that includes many offset competitors): Think
about what must happen for priming to be detected
in the cross-modal semantic priming paradigm. A
target like beaker must activate a competitor like
beetle strongly enough that activation spreads to
the competitor’s semantic associates (like Znsect).
If rhymes are activated later and less strongly than
cohorts, less activation will spread to their semantic
associates, making it difficult to detect priming. By
combining the gating and visual world paradigm,
Allopenna etal.’s (1998) second experiment suggests
that the failure to find evidence of rhyme activation
in gating may be an artifact of repeated presentation
of onsets in gating, which boosts activation of onset
competitors. Thus, it appears that including items
that mismatch at onset in the competitor set, as in
the NAM, is justified.

However, the NAM s clearly incorrect in exclud-
ing onset competitors that mismatch in multiple
phonemes (e.g., it would exclude beetle from beaker
neighborhood), and in treating neighbors as equiva-
lent competitors no matter where (when) they dif-
fer from a target; clearly, onset competitors need to
be weighted more heavily. A study by Magnuson et
al. (2007) suggests that the temporal distibution of
phonetic similarity has complex impacts on the time
course of lexical activation and competition that may
be difficult to formalize in a revised NAM metric.
Magnuson et al. (2007) attempted to examine the
relative contributions of cohort and neighbor defi-
nitions by factorially manipulating word frequency,
frequency-weighted neighborhood probability, and
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frequency—wcighted cohort probability. That is, they
tested words that were high or low frequency, had
low or high neighborhood probability, and low or
high cohort probability. Neighborhood probability
was estimated by the ratio of a word’s log frequency
to the summed log frequency of all its neighbors
using the NAM 1-phoneme difference definition.
Cohort probability was estimated the same way,
with cohorts defined as words overlapping in at least
the first two phonemes, with no limit on how many
subsequent phonemes could differ. Magnuson et al.
used the visual world paradigm, presenting target
pictures among pictures of three phonologically
and semantically unrelated items. They found clear
effects of word frequency (high-frequency targets
were fixated more quickly than low-frequency tar-
gets) and cohort density (low-cohort targets were
fixated more quickly than high-cohort targets). The
results for neighborhood were more complex. There
was an unexpected early advantage for high-neigh-
borhood density items, followed by the expected
low-neighborhood- advantage. This led Magnuson
et al. to more carefully examine the makeup of their
items’ neighborhoods. Although the low- and high-
neighborhood items were matched on cohort den-
sity (that is, the ratio of the target’s frequency to the
summed frequencies of its cohorts), it turned out
that a larger proportion of low-neighborhood items’
neighbors were also cohorts. This explained the early
disadvantage for low-neighborhood items: Their
neighborhoods were “fronr-loaded.” If we consider
phonetic overlap between targets and competitors
phoneme-by-phoneme, the point of greatest pho-
netic overlap—and therefore greatest moment of
competition—in the low neighborhoods was shifted
toward word onset.

THE TIME COURSE OF WORD FREQUENCY
EFFECTS

Other experiments comparing the predictions
of the TRACE model with time course estimates
from the visual world paradigm have revealed that
the time course predictions of TRACE are surpris-
ingly robust and very much illustrate the “puzzle
solving” of normal science. One example is the
temporal locus of frequency effects. Word fre-
quency (frequency of usage) has long been known to
influence word recognition, with higher frequency
associated with faster and/or more accurate recogni-
tion performance (c.g., Howes & Solomon, 1951;
Luce & Pisoni, 1998; Marslen-Wilson, 1987).
Some cross-modal priming studies suggested that
frequency seemed to have an early, transient effect
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{Marslen-Wilson, 1987; Zwitserlood, 1989). For
example, in presenting the word captain, one cap test
for priming of semantic associates of captain and its
lower frequency onset competitor, captive. Stronge;
priming is found for visually presented associage
of higher frequency items (for this example, mope
priming is found for ship than guard), but only whey,
the visual probe is presented as the word is being
heard. McQueen (1991) also found larger frequency
effects in fast responses in a phoneme decision tag)
than in slow responses—again, suggesting ffﬁquency
has an early influence. Connine, Titone, and Wang
(1993) employed an ingenious method for assess.
ing temporal locus from single-response method.
They used the Fox Effect (Fox, 1984), in which
participants identify the initial consonant of tokeng
drawn from a continuum berween two words (eg,
best-pest). Fox found that if one endpoint has higher
frequency, responses shift in its favor. Connine et al,
used this method but manipulated whether a block
of trials was biased toward high-frequency words,
low-frequency words, orwas balanced (mixed). In the
low-frequency list, for example, ambiguous tokens
from low-high frequency pairs (e.g., pest-best) were
presented, as was the low-frequency endpoint (e.g.,
pest). The prediction was that if frequency were an
integral part of the initial activation and perception
of a word, this “extrinsic” frequency manipulation
(that is, of the probability of low- or high-frequency
words being heard) should not matter, and results
should be similar whether items were blocked by fre-
quency or mixed. However, they found that extrin-
sic frequency did matter—so much so that subjects
exhibited-a bias for low-frequency responses in
low-frequency blocks. Their interpretation was that
for subjects to be able to modulare attention to word
frequency as a function of their extrinsic frequency
manipulation, frequency must apply postperceptu-
ally, asa decision-stage bias.

Dahan, Magnuson, and Tanenhaus (2001)
explored this issue further by testing three imple-
mentations of frequency in the TRACE model: (1)

making the resting-level activations of words pro- -

portional to word frequency, so that a higher fre-
quency word would have a permanent head start;
(2) making phoneme-word connections propor-
tional to word frequency (so that the connection
from /b/ to bed would be stronger than the con-
nection from /b/ to bench), consistent with the idea
that experience should tune connection strengths;
and (3) as a postperceptual effect, where frequency
is suddenly applied late in the processing of a word.
The resting-level implementation predicts a constant

SRS e

frequency advantage that diminishes as a word is
heard and bottom-up input disambiguates berween
competitors. The postperceprual bias predicts exactly
the same thing, except with no frequency effect at
all until the “magical moment” where frequency is
applied, at which point it becomes identical to the
resting-level simulation. The connection strength
simulation predicts a constant effect of frequency,

byt one that is “gated” by the botcom-up input.
ul g y p np

That is, the connection strength basis for the fre-
quency effect is the multiplication of the bottom-up
signal strength by the frequency-weighted connec-
tion. When inpur is weak, the frequency difference
is small. As the input becomes stronger, the differ-
ence between low- and high-frequency word units
becomes much more robust. Then, as with the other
implementations, the frequency effect declines as
the bottom-up input disambiguates between high-
and low-frequency alternatives. When Dahan and
colleagues tested these predictions using the visual
world paradigm, they found that fixation propor-
tions over time were best modeled by the connec-
rion strength implementation: A constant effect of
frequency was apparent in the fixation proportions,
but it was subtle near word onset, became robust in
response to the ambiguous portion of a word (com-
patible with two alternatives differing in frequency,
e.g., be- with the alternatives bed and bench), and
then disappeared once the full word had been
heard.

As we mentioned before, our focus on the
TRACE model is just to illustrate functions that
most current theories regard as necessary—which

“are cthe functions we have reviewed thus far. These

are as follows: a degree of phoneric sensitivity in
input representations (/p/ should be more simi-
lar to /b/ than to /s/ or /al), a sublexical level of
representation mediating the signal-lexical map-
ping, sensitivity to prior probability at the word
level (frequency), the ability to segment a series
of words without explicit word boundary mark-
ers, and the ability to handle embedded words
(the latter two derails are achieved through laceral
inhibition at the word level, and through the redu-
plication of phoneme and word units over time).
Next, let’s consider details where there continues
to be debate.

Points of Disagreement
LATERAL INHIBITION

First, not all models agree that lateral inhibi-
tion at the phoneme level is required. The Cohort
Model approach favors bottom-up inhibition, for

example (Marslen-Wilson & Warren, 1994), and at
least one study has argued thar inhibition among
phoneme units eliminates sensitivity to pho-
netic detail too quickly to account for behavioral
recovery from “lexical garden-paths” (McMurray,
Tanenhaus, & Aslin, 2009). Second, it is not clear
that direct lateral inhibition between units is the
best way to capture competitive dynamics. Gaskell
and Marslen-Wilson (1997, 2002) proposed that
“emergent inhibition” among ovetlapping distrib-
uted lexical-semantic representations provides a
better account (we discuss this account in more
detail later).

WORD SEGMENTATION

Even models that agree that lateral inhibi-
tion is required at the word level do not buy into
the TRACE strategy of reduplicating phoneme
and word units to_solve the segmentation prob-
lem. The Shortlist Model (Norris, 1994) rejects
both unit reduplication and feedback. Instead,
Shortlist proposes that as words are activated by
their bottom-up fit to spoken input, “shordists”
of lateral inhibition networks are created where
activated words compete for recognition. This
does away with the need for reduplicated units
with massive numbers of feedforward, feedback,
and lateral inhibition connections (Hannagan,
Magnuson, & Grainger, 2012, estimate that a
TRACE implementation with a realistically sized
lexicon of 20,000 -words and a 2-second memory
trace would require abourt 4 million nodes and 80
billion connections). However, Shortlist requires
that there be an as-yet unimplemented mecha-
nism that could wire up the needed nerworks
continuously as speechis heard, as well as an as-
yet-unimplemented “lookup” nerwork for finding
shortlists reduplicated at each phoneme in the
input, making the actual savings in terms of num-
bers of units and connections somewhat unclear.
One particularly intriguing aspect of Shortlist
is the use of stress information and the possible-
word constraint (pressure on the model to arrive at
parses that result in only a series of words, without
leaving residual phonemes that could not form a
word according to the phonotactics of English;
for example, if apple were recognized on hearing
Jfapple, this would leave fas “residue” that could
not form a word, and indeed, listeners have more
trouble noticing they have heard apple in that
case than on hearing an item like vaffapple, where
parsing apple leaves a word-like remainder, vuff;

Norris, McQueen, Cutler, & Butterfield, 1997).
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INTERACTIVITY

There is disagreement about the need for
lexical-sublexical feedback, which aficionados of
spoken word recognition will recognize as one of
the most visible debates in the field. Such feedback
is a common feature of interactive activation mod-
els, and it is posited to have two beneficial proper-
ties: (1) it provides an implicit implementation of
probabilistic phonotactics, with common sequences
of phonemes receiving boosted activation via reso-
nance from the many words that contain them'};
and (2) it makes the model robust against noise,
whether external (literal noise in the case of speech)
or internal. Note that feedback also crucially pro-
vides an explanation for top-down effects on speech
perception, buc these are side effects of a mechanism
that make the model more robust.

Norris, McQueen, and Cutler (2000) marshaled
a comprehensive theoretical and empirical case
against the need for feedback in word recognition.
They claimed that logically, feedback could not
improve recognition beyond the best performance
possible with well-tuned feedforward connections,
and that feedback would override bottom-up input
to cause hallucinations. They then went on to dem-
onstrate that the majority of top-down effects could
be simulated without feedback in a new extension
of the Shortlist model that they dubbed Merge. In
Merge, phonemes feed to lexical nodes, and there
is no lexical-phonemic feedback. To simulate, for
example, lexical effects on phoneme decisions,
Merge posits a set of postlexical phoneme decision
units that receive input directly from phoneme
input nodes and directly from lexical nodes. This
allows phonemic and lexical informartion to be
merged-—thus accounting for lexical effects on pho-
neme decisions—but postperceptually, and without
contaminating phonemic processing nodes with
top-down input (i.e., avoiding hallucinations).

The argument that feedback does not do any-
thing useful in TRACE was based on simulations by
Frauenfelder and Peeters (1998) that tested a set of
21 words selected for other simulations. When this
analysis was extended to about 900 words, nearly
75% of words were recognized more quickly with
feedback on than off (Magnuson, Strauss, & Harris,
2005). Furthermore, Magnuson et al. (2005) tested
the performance of the model as noise was added
(recall that a primary motivation for feedback is pro-
tecting the model against noise effects) and found
that feedback substantially preserved accuracy.

The hallucination argument is surprising in

light of Figure 7 of the original TRACE paper
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(McClelland & Elman, 1986), which clearly shoy,
thar lexical feedback modulates phonemic activatioy
but does not overwhelm bottom-up input (and g
for an input like shigarette, lexical feedback WOulci
boost activation of /s/, but /f/ would still be much
more active than /s/). Mirman, McClelland, apq
Holt (2005) explored this issue more thoroughly,
confirming that lexical feedback in TRACE could
not overwhelm bottom-up input, but it could delay
recognition of lexically inconsistent phonemes
in some cases. Their behavioral experiments thep
confirmed that human listeners do indeed exhibit
lexically induced delays in phoneme recognition
in precisely the contexts predicted by TRACE,
Furthermore, Mirman, Bolger, Khaitan, and
McClelland (in press) demonstrated that it is trivi-
ally easy to balance feedforward and feedback gain
to preclude hallucination, and they extended ear-
lier arguments by Movellan and McClelland (2001)
thar interactive models such as TRACE implement
optimal perceptual inference.

Most damaging for the Merge account, there
appear to be “knock-on” or “indirect” effects of lexi-
cal activation on sublexical processing, which are
only possible if lexical information is feeding back
directly to sublexical levels during online process-
ing. The first demonstration of such effects was
lexically mediated compensation for coarticulation
(Elman & McClelland, 1988; see also Magnuson,
McMurray; Tanenhaus, & Aslin, 2003a; Samuel &
Pitt, 2003), which has been disputed (McQueen,
Jesse, & Norris, 2009%; Picr & McQueen, 1998;
see also the exchange between McQueen, 2003,
and Magnuson, McMurray, Tanenhaus, & Aslin,
2003b). However, there are at least two other such
indirect effects: lexically induced selective adapta-
tion (Samuel, 1997, 2001) and lexically guided
tuning of speech perception (Norris, McQueen,
& Cutler, 2003; for a review see Samuel & Kraljic,
2009). 'The latter of these is particularly important
because it is less controversial (both camps agree it
requires feedback, but they debate when feedback
happens; Norris et al. argue that the learning signal

is somehow stored in memory and applied later— -

“feedback for learning” rather than the online feed-
back in TRACE) and has opened new avenues for
investigating the representation of speech sounds
and the interplay between lexical and sublexical
representations (more on this later).

For more detailed discussion of interactivity in
speech perception and other cognitive and percep-
tual domains, see McClelland, Mirman, and Holt
(2006), the exchange between McQueen, Norris;

and Cutler (2006) and Mirman, McCelland, and

_ Holr (2006), Mirman (2008), and Mirman et al.
(in press). While our position on this topic is likely

clear, we think it is fair to say that the preponder-

. ance of evidence supports interactive processing as

4 central principle across cognitive and perceprual
domains, including spoken word recognition and
speech perception. Convincing all parties will likely
rake substantially more empirical and computa-
tional work.

Moving Beyond the Limitations of the
TRACE Model

It is essential that we keep TRACE’s limitations
in mind. TRACE achieves deep and broad coverage
only of sound form recognition—not meaning—
and it is a “hand-wired” model with fixed param-
eters set by the experimenter. Given that the goal
of spoken word recognition is to support percep-
tion of a speaker’s message, the absence of semantics
and connections to sentence processing in TRACE
and nearly all other models of spoken word recogni-
tion is a serious gap. And while an accurate model
of average adult performance in word recognition
is an invaluable tool, it can only be a waypoint
in the quest ro understand language comprehen-
sion, which eventually must include an account of
development.

A handful of efforts have been made at addressing
spoken word recognition in a developmental context
with models of word learning using simple recurrent
networks (Christiansen, Allen, & Seidenberg, 1998;
Gaskell & Marslen-Wilson, 1997, 1999; Magnuson,
Tanenhaus, Aslin, & Dahan, 2003). Each of these
has modeled some important aspects of word learn-
ing and word recognition, but the Gaskell and
Marslen-Wilson Distributed Cohort Model stands out
for tackling form and meaning simultancously. The
Distributed Cohort Model simulartes several aspects
of spoken word recognition (largely consistent with
the earlier Cohort Model) and leads to some new

puzzles for models of spoken word recognition to

grapple with that would have been difficult to intuit
without a working model that simultaneously acti-
vates form and meaning. For example, in the midst
of phonological competition (e.g., between captain
and captive when just the /kapt/ portion has been
heard), semanrtic representations will be in a rather
odd state: a blend of the semantic features of the
items in the phonologically activated competitor
set. This has the potential to interact with phono-
logical competition and to provide insights into
how context might influence form recognition.

This is an important consideration, as during the
current normal science phase of spoken word recog-
nition research, a handfu! of visual world paradigm
studies on semantic competition and contextual
constraints have appeared that are at odds with the
older research we reviewed earlier—and with each
other. First, consider evidence of semantic com-
petition. At the coarsest level, visual world stud-
ies show that semantic competitors include words
that are members of the same semantic category
(e.g., piano—trumpet, Huettig & Altmann, 2005),
semantic associates (e.g., ham—eges, Yee & Sedivy,
2006), and concepts that frequently co-occur in sit-
uations or events {(c.g., balloon—clown, Mirman &
Graziano, 2011). Just as greater phonological simi-
larity produces stronger phonological competition,
greater semantic similarity produces more seman-
tic competition (Mirman & Magnuson, 2009).
Importantly, these competition effects are truly
“semantic” in nature—simple lexical co-occurrence
is not sufficient to cause the effect: When hearing
lettuce, there is no evidence of activation of icebery,
even though the two words frequently co-occur
(Yee, Overton, & Thompson-Schill, 2009). A con-
cern with studying semantically related items in
the visual world paradigm is that competition may
be induced just by presenting pictures of related
items. A follow-up study conducted by Yee and
Sedivy (2006) addresses this possibility. Again, they
found semantic competition effects that resembled
(in terms of timing and magnitude) the phono-
logical competition effects seen in Figure 27.4. For
example, as subjects heard Jock, they were signifi-
cantly more likely to fixate a picture of a ey than an
unrelated item. In a second experiment, they tested
whether this could be due just to picture priming by
looking for phonologically mediated semantic acti-
vation. Instead of using lock as the target, they used
Jogs. The logic was that as the participant hears /ogs,
lock should be activated by phonological similarity,
and then should spread activation to key via seman-
tic associations. This is just what they found.™

Semantic competition can be driven by spe-
cific semantic features. For example, there is par-
tial acrivation of objects that are similar in shape
(e.g., rope—snake, Dahan & Tanenhaus, 2005; Yee,
Huffstedler, & Thompson-Schill, 2011), motor
actions (e.g., piano—rtypewriter, Lee, Middleton,
Mirman, Kalenine, & Buxbaum, in press; Myung,
Blumstein, & Sedivy, 2006), or function (e.g,
broom—sponge, Kalenine, Mirman, Middeton, &
Buxbaum, in press; Yee et al., 2011). In addition,
there appears to be a time course to semantic feature
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activation: Kalenine et al. found that features shared
by objects that are used together (e.g., broom—-
dustpan) are activated faster than general function
features (e.g., broom—sponge), Lee et al. found thac
structural action features are activated faster than
functional action features (i.e., “grasp” features
faster than “use” features), and shape features may
be activated faster than function features (Yee et al.,
2011).

The fact that people look to items with only
tangential connection to the bottom-up input pres-
ents us with yet another puzzle when we consider
visual world studies looking at sentential and other
constraints, which suggest that lexical competition
can be flexibly restricted. Dahan and Tanenhaus
(2004) used the visual world and found that sen-
tential contexts in Dutch like “never before climbed
a...” led to a strong and even anticipatory advan-
tage for the Dutch word for goat (bok) compared
to a phonological competitor (bot, Dutch for bone).
A manipulation of the speech file favoring bor was
able to modulate the result, demonstrating the
online interplay between sentential constraints and
derails of the speech signal. Chambers, Tanenhaus,
and Magnuson (2004) had subjects follow instruc-
tions to interact with real objects. When subjects
were told to pick up an egg and there were two eggs
available—one in the shell and a liquid one thar
had been cracked into a bowl—subjects looked at
both and needed clarification to proceed. But if the
instruction were to pour the egg, subjects did not even
look at the unpourable ege srill in the shell (similar
results were found as a function of the affordances
of implements; subjects holding a hook restricted
attention to “hookable” objects when they were told
to pick up some object!). Magnuson, Tanenhaus,
and Aslin (2008) used an artificial lexicon paradigm
to implement a stronger version of the Tanenhaus
et al. (1979) and Shillcock and Bard (1993) experi-
ments we reviewed earlier and found that strong
form-class expectations based on the pragmatics
of visual displays (whether bare noun reference
would suffice, or whether an adjective was required
for unambiguous reference) were able to wipe out
cross-form class competition (phonologically simi-
lar nouns and adjectives did not compete with each
other). Similarly, pragmatic expectations about
which objects will be referred to by a speaker appear
to influence lexical activation (Barr, 2008; Hanna,
Tanenhaus, & Trueswell, 2003). The puzzle here
is that on the one hand, the semantic competition
effects suggest promiscuous, automatic spreading of
activation over pathways sensitive to phonological
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and semantic relatedness, but at the same time,
strong sentential and pragmatic constraints seer,
able to prevent activation of individual items g
even classes of items. At first blush, the semanj;
effects appear to be a case of facilitation, but the
sentential/pragmatic constraint effects appear to be
inhibition. It may be that both kinds of ﬁndings
have to do with facilitation; sentential/pragmaric
constraints may just boost activation of compatible
items (see footnote 12). However, it is difficult ¢
intuit how such mechanisms would operate with-
out implementing them in a simulation model, and
it appears that progress on this front will require
implemented models. .

Similar findings are emerging at the interface
of words and sentences. There is growing evidence
that words activate in an anticipatory fashion based
on context and inferences about what will be heard
from properties of animate and inanimate objects
depicted in a visual scene (e.g., Altmann & Kamide,
1999; see Altmann & Mirkovic, 2009, for a review,
and Kukona, Fang, Aicher, Chen, & Magnuson,
2011, for details abour the time course of senten-
tial and lexical-themartic constraints). As with the
priming literature, understanding whether such
mechanisms are driven primarily by facilitation
or inhibition, and how lexical and sentential con-
straints interact, will require implemented models.

On our view, we are in the thick of the normal
science phase of research on spoken word recog-
nition. The field finds itself with a rough consen-
sus abour the data that need to be explained, the
computational theory of the input-output map-
ping, and the essential functions the mechanisms
of spoken word recognition must include. There
is vastly more agreement than disagreement about
these matters. However, a closer look at the data we
have just reviewed reveals some discomfiting incon-
gruencies between the empirical findings and our
current models. First, no current model can accom-
modate 2/l of the results we have just reviewed;
TRACE (McClelland & Elman, 1986) simulates a
surprisingly broad and decp array of form recogni-
tion phenomena at a fine-grained time scale, but it
cannot address meaning. The Distributed Cohort
Model (Gaskell & Marslen-Wilson, 1997, 1999) is
a learning model that simulates a combination of
form and meaning phenomena and reveals interest-
ing problems that emerge when such representa-
tions interact. However, it is unknown whether that
model can be extended to the range of phenomena
TRACE simulates. Furthermore, there are some
resules that extant models cannot accommodate.

One simple example is priming, whether phono-
Iogical, phonetic, or semantic. Priming seems like it
should be easy to accommodate in cognitive psycho-
Iogical models of language processing; it is a basic,
1ong—standing phenomenon that has motivated and
constrained theories in many cognitive domains—
how could priming be incompatible with current
theories of spoken word recognition? All the same,
most current theories of spoken word recognition
cannot accommodate it (we will discuss che one
counterexample, Goldinger [1998], later). Claims
that priming effects can be modeled by connection-
ist models of spoken word recognition (Luce et al,,
2000) typically boil down to the fact that simultane-
ous activations of prime, probe, and baseline items
(e.g., veen, bull, soft, where veer primes bull due 1o
high phonetic similarity at each phoneme) within
the model show a pattern of some sort of connec-
tion (e.g., simply that the prime and probe are both
active). Whar current simulation models are inca-
pable of is showing priming like that of human lis-
reners, where the prime has a postive or negative
impact on subsequent processing of the probe. This
may not seem like a crucial example, but it illus-
trates the fact that our theories and models may do
an even worse job of accounting for empirical facts
than we realize.

This leaves us with a consensus but without a
unified model. Instead, we have separate microtheo-
ries of form and meaning, activation and priming,
and so o, that nonetheless appear to be compatible
with one another in broad strokes because each is
consistent with general principles of cognitive psy-
chology. On top of these gaps, though, there are
more troubling anomalies looming—results that
seem truly incompatible with current theories and
that may require a new theoretical formulation.

- Waiting for the Revolution

The gaps we have just reviewed are minor in
comparison to a growing set of results that are truly
incommensurate with current theories. Kuhn (1962)
argues that scientific revolutions, or paradigm shifts,
are triggered by the accrual of so many anomalous
results that a dominant paradigm cannot continue
in the normal science mode of incorporating more
and more fine-grained details into an existing
theoretical framework. Normal science can with-
stand a number of anomalies; they can be ignored,
treated as curiosities, or so nearly compatible with
current theory that integration seems imminent.
Eventually, though, so many anomalies accrue that
a tipping point is reached. It would appear thar we

are nearing this point in spoken word recognition.
In ¢his section we present a selective review of the
most pressing anomalies.

Surface Details in the Speech Signal

We began this chapter with a discussion of the
simplifying assumption that the input to spoken
word recognition can be temporarily assumed to
be a string of phonemes output by a speech per-
ception mechanism. Such simplifying assumptions
are common throughout science and allow progress
at multiple levels of analysis, rather than a purely
bottom-up approach that does not progress until
all fundamental problems are cracked. However,
temporary simplifying assumptions can take on the
functional status of true theoretical assumptions
and hide constraints—ironically becoming compli-
cating assumptions (Magnuson, 2008). Let’s con-
sider how the phonemic input assumption has done
just that.

A fundamental finding in speech perception is
the categorical perception of many speech sounds
(Liberman, Harris, Hoffman, & Grifhth, 1957).
There tends to be a sharp boundary between pho-
nemic categories, such that a change in a crirical
dimension (e.g., voice onset time) is difficult to
detect within a category, but change of the same
magnitude that straddles the category boundary is
obvious. However, it has been known for a long
time that human speech perception #s sensitive
to within-category variation (e.g., Pisoni & Tash,
1974) and that that sensitivity can be observed in
spoken word recognition (Andruski, Blumstein, &
Burton, 1994; Marslen-Wilson & Warren, 1994).
Studies using the visual world paradigm have dem-
onstrated this sensitivity in great detail in speech
perception {e.g., McMurray, Tanenhaus, 8 Aslin,
2002), as well as exquisite sensitivity to subcategor-
ical (subphonemic) detail, such as coarticulatory
cues (Dahan, Magnuson, Tanenhaus, & Hogan,
2001). These results should have led directly to the
insight that the phonemic input assumption is just
plain wrong, and that the computational theory of
spoken word recognition cannot be comparrmen-
talized away from speech perception—especially in
light of well-known phonetic studies demonstrat-
ing, for example, that vowel durations differ sys-
temarically (albeit probabilistically) as a function
of word length (e.g., Peterson & Lehiste, 1960).
Salverda, Dahan, and McQueen (2003) finally
made this connection explicit in a visual world
study (see also Davis, Marslen-Wilson, & Gaskell,
2002, for related results using a priming paradigm).
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They confirmed thar, on average, vowel dura-
tions in longer words (e.g., hamster) were shorter
(by only abour 20 ms at an average speaking rate)
than in shorter words (e.g., ham), and then dem-
onstrated that listeners use subtle cues like these
immediately to constrain spoken word recognition
(e.g., the ham- of hamster leads 1o greater activa-
tion of hammer, which is compatible with cues to
word length present already in /z/, than the short
word, ham). On the one hand, building in a cor-
relation between word length and vowel duration
would be fairly easy in a model like TRACE; on
the other hand, such durations just scratch the
surface of the complex prosodic patterns to which
listeners are sensitive (see Salverda et al. for some
of these). Consider the implications for the embed-
ding problem if the initial segments in spoken words
essentially tell the listener how long the word they
are hearing will be; this substantially mitigates the
embedding problem (i.e., if vowel duration is con-
sistent with a two-syllable word, Aam should be less

active, reducing the magnitude of the embedding -

problem). Thus, simplifying assumptions about the
nature of the input hid subphonemic constraints
available in the speech signal.

This is just one example of surface details that
spoken word recognition is sensitive to. Another
is assimilation. In English, place assimilation can
straddle word boundaries, with actual place of artic-
ulation shifting with the context of an adjacent seg-
ment. For example, the sequence green boat is often
pronounced as a thyme or near rhyme of dream
boat, but this appears not to impede perception of
the intended word. If there is truly full assimilation
(e.g., Gaskell, 2003; Gaskell & Marslen-Wilson,
1998), this might be a problem situared at the level
of spoken word recognition. However, evidence that
characteristics of the intended segment shift only
partially toward the assimilating place (e.g., Gow,
2001, 2002, 2003a, 2003b) suggest a degree of
interaction between speech perception and spoken
word recognition that cannot be trivially accommo-
dated in current models, especially when the phone-
mic input assumption is in play.

Word segmentation is another place where the
phonemic input assumption may be complicating
rather than simplifying. Relatively easy to quantify
surface details—such as stress patterns—are not dif-
ficult to integrate with current frameworks (Norris,
McQueen, & Cutler, 1995). Mattys and colleagues
(e.g., Marttys, White, & Melhorn, 2005) have
been mapping out complex interactions between
knowledge-based (lexical) and signal-based cues to
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segmentation, the relative weights of which vary
with context. Again, aspects of these derails could
be built into a model like TRACE. But it does not
seem plausible that the full number and complex-

" ity of constraints Mattys and colleagues have docu-

mented could be hand-coded into such models. In
fact, attempting to do so would amount to replac-
ing the phonemic input assumption with another
simplifying assumption, albeit one that would be
more complex and realistic. That is, building in
such correlations with any simplified/abstract ana-
log to the acoustics of real speech is still a matter
of constructing a pretend signal, rather than grap-
pling with actual speech. Without tackling the sig-
nal, we will not know whart helpful constraints we
have hidden with the abstractions of our simplify-
ing assumptions.

A case where surface detail seems complicat-
ing rather than simplifying, though, is the great
sensitivity listeners exhibit to surface derails that
do nor secem to provide general constraints on
the signal-word mapping reported by Goldinger
(1998). Memory for and naming of a word heard
earlier in a session (e.g., in an old-new recognition
test) benefit from preservation of seemingly non-
essential dertails such as talker identity. Goldinger
(1998) proposed an episodic model of the lexicon,
where the storage of unanalyzed memory traces pro-
vides the basis for word recognition. While several
fundamental problems would have to be overcome
for this to be a viable model of word recognition
(see Magnuson & Nusbaum, 2007, and footnote
2), Goldinger’s simulations with an episodic model
(based on MINERVAZ2; Hintzman, 1986) provide a
potential starting point for understanding priming
and recognition within a single system.

Further need for some sort of flexible, active,
and context-dependent episodic learning based on
complex contingencies between talkers and sur-
face derails is illustrated by recent studies showing
rapid, but conservative, learning. Norris, McQueen,
and Cutler (2003) and Bertelson, Vrioomen, and
DeGelder (2003) reported rapid “perceptual reca-
libration” when ambiguous phonetic stimuli are
accompanied by some kind of disambiguating
context. Bertelson et al. used videos of the oral ges-
tures of speakers to disambiguate segments halfway
between /b/ and /d/. Norris et al. predicted that lexi-
cally disambiguated segments (Ganong, 1980) could
lead to lexically guided learning. They used segments
halfway between /f/ and /s/ that were lexically dis-
ambiguated as subjects did a lexical decision task
{e.g., in English, the ambiguous token in the context

of distre- would most likely be distress, but the same
ambiguous segment would most likely be /f/ in the
context of himsel-). In both studies, the contexts
drove learning that changed performance on sub-
sequent phonetic identification assessments. Thus,
phonetic-to-phonemic mappings are not static but
can change dynamically based on recent experience.
Later studies showed that such learning is robust
over time (25 minutes: Kraljic & Samuel, 2005; 12
hours: Eisner & McQueen, 2006) and re-exposure to
canonical, unambiguous tokens (Kraljic 8 Samuel,
2005). Perhaps most remarkably, this learning
appears to depend on history with a speaker and the
absence of a causal explanation for perturbed speech
production; Kraljic, Samuel, and Brennan (2008)
found thar learning is talker-specific and depends on
the firsc ucterances heard by a particular talker (early
unambiguous tokens are not overridden by later, lex-
ically disambiguated tokens) and that such learning
is blocked if a causal, external factor would explain
temporary deviance from canonical pronunciation
(such as a pen in the tatker’s mouth).

One last related phenomenon we will touch on
here is word learning in adults, which both high-
lights further the need to grapple with learning
and the need to integrate the cognitive psychol-
ogy of language with the cognitive neuroscience of
language (and eventually the neurochemistry and
genetics, etc.). Gaskell and Dumay (2003) pio-
neered a new learning paradigm where subjects are
exposed to word-like patterns (e.g., cathedruke) as
nonword foils in lexical decision over a period of 5
days. They found that eventually, these nonwords
began to act as though they were becoming lexical-
ized, as indicated by increased competition evident
when subjects processed similar real words (e.g.,
cathedral). Dumay and Gaskell (2007) explicitly
tested whether the advent of lexical competition is
dependent upon sleep-based consolidation. With a
classic sleep + delay versus no-sleep + delay approach,
they found that the emergence of competition does
depend on consolidation. Leach and Samuel (2007)
pointed out that this requires two different phases of
learning, and possibly two different forms of learn-
ing: lexical configuration is a matter of learning to
recognize a pattern, and this seems to emerge before
lexical engagement, when that pattern begins to
show evidence (via competition with existing lexical
items) of integration with the lexicon. While in this
chapter we have steadfastly stuck to our charge of
reviewing the cognitive psychology of spoken word
recognition, ambitious behavioral and neuroimag-
ing work on consolidation in lexical learning by

Davis and Gaskell (2009) at the intersection of neu-
roscience and cognitive psychology illustrates that
maintaining boundaries berween these domains is
becoming less tenable every day. We only have time
to mention in passing the growing need for theories
and models of spoken word recognition to respect
computational constraints emerging from the cog-
nitive neuroscience of language, and the fact that
this represents another source of Kuhnian crisis for
current theories.

Revolutionary Frameworks?

In closing, we sce three avenues as most promis-
ing for pushing the field beyond the tipping point
and to new theoretical frameworks: (1) the need tw
grapple with the speech signal itself, (2) integra-
tion of the study of spoken word recognition with
descriptively higher levels of language processing,
(3) the need for theories and models to grapple with
learning across the life. span, including language
development in childhood and rapid, flexible learn-
ing in adults, and (4) the need to respect neuro-
biological constraints on mechanisms for language
processing. Two existing approaches might provide
paths forward on some of these.

The first is the adaptive resonance framework of
Grossbergand colleagues (e.g., Grossberg, Boardman,
& Cohen, 1997; Grossberg, Govindarajan, Wyse,
& Cohen, 2004; Grossberg & Myers, 2000), who
have ignored the simplifying assumptions embraced
elsewhere in the field and have stubbornly refused
to abandon the speech signal or neurobiologically
realistic learning models. A pessimistic view of this
work would be that progress has been slight, lead-
ing thus far neither to anything like the breadth of
the TRACE model nor o a plausible developmental
model. As we have discussed, simplifying assump-
tions about the input signal can actually complicate
the problem of spoken word recognition. Working
with the signal is necessary both in terms of demon-
strating that our models could actually work with
the signal whose perception we intend to model,
and in uncovering further constraints our simplify-
ing assumptions have hidden. Similar benefits may
also emerge from realistic neural modeling.

'The second promising framework is a connection-
ist model that integratés the development of speech
perception and speech production (Plaut & Kello,
1999), using acoustic and articulatory representa-
tions that are still abstractions bur are tremendously
more realistic than TRACE (McClelland & Elman,
1986), the next best simplified approach in cur-
rent models, providing a waypoint perhaps between,
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current approaches and adaprive resonance. The
model learns to recognize words based on “adult”
input and learns to control its articulatory apparatus
by attempting to mimic the sound patterns in that
input. More generally, it may be time for theories
and models of spoken word recognition to move
away from stipulated representations to emergent
representations (McClelland, 2010; McClelland et
al., 2010).

But, of course, a framework encompassing learn-
ing is even more important when we turn our atten-
tion to language development. As we suggested
carlier, models of adult “endpoints” are invaluable
tools for making progress on understanding spoken
word recognition (even if endpoints are another
example of a useful but misleading simplifying
assumption, given the results for adult plasticity we
have just reviewed), but full underscanding of lan-
guage processing will require developmental models.
Plaut and Kello did not develop the model beyond
this first report, but a framework of this sort may be
just what is needed to push the field forward.

Notes

1. Typical speaking rates range from approximately 12 pho-
nemes per second (moderate) to 30 (fast) phonemes per second
(Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967).
Even though 12 phonemes per second is already three to four
times the rate at which sequences of arbitrary sounds can be
perceived (Warren, Obusek, Farmer, & Warren, 1969), word
recognition remains stable at unusually fast rates up to 50-60
phonemes per second. ;

2. Although the field continues to be known as “spoken
word recognition,” we will see that current theories largely eschew
the notion of a “magical moment” (Balota, 1990) where the sys-
tem enters a state of one word being recognized, embracing in-
stead notions of change over time in relative activations of lexical
representations in memory (e.g., McClelland & Elman, 1986) or
Bayesian probability estimates that particular words have been
or are being heard (e.g., Norris & McQueen, 2008). For better
or worse, we will follow standard practice of using “spoken word
recognition” as a catchall term to indicate processes intervening
between speech perception and sentence processing,

3. Whether one must fully commit to abstract or episodic
representations is a complex issue beyond the scope of this chap-
ter. See Magnuson and Nusbaum (2007) for a discussion of the
possibility that both support speech perception and word rec-
ognition.

4. Note that a more conventionalway of reviewing spoken
word recognition is to divide the problem is divided into three
functions: access, selection, and integration (e.g., Dahan &
Magnuson, 2006; Frauenfelder & Tyler, 1987; Marslen-Wilson,
1987). Access, or initial contact, is how the speech signal is
mapped to phonological (or possibly other) representational
forms that are the key to accessing lexical entries. The sclec-
tion function identifies the lexical item with the best fit to the
bottom-up input, possibly constrained by top-down context.
The integration function must output a form thar can be the
basis for the syntactic and semantic processing. While we agree
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these are necessary functions, we do not view them as necessarily
independent, nor even distinct.

5. Or rather, many of the basic facts reemerged. Bagley
(1900) reports the results of a research program that Presaged
much of the basic work at the intersection of speech perception
and spoken word recognition of the 1970s and 1980s, including
ingenious modifications (“mutilations”) of wax drum recordings
for manipulation of spoken words. In the interest of concisiop
and utility, we will focus on recent work with modern technique,
even when Bagley’s work presents an interesting precedent. [y
rigued readers should see the comparison of Bagley’s methods
and results with those of 1970s and 1980s psycholinguists by
Cole and Rudnick (1983).

6. We must mention two things here. First, these latter two
problems (resolving phonological patterns and segmenting pho.-
nemes) are problems typically deferred to speech perception spe-
clalists, via the simplifying assumption that the input is a series
of parsed phonemes, as reviewed earlier. Second, itis nota given
that the speech signal must be parsed into phonemes before it
can be mapped onto words, even though almost all theories of
spoken word recognition assume there is some level of sublexical
representation mediating the mapping from acoustics to words;
for example, Klatt (1979) proposed a theory in which acoustic
patrerns (spectra) were mapped directly to words.

7. Note that this avoids the problems with interaction that

led to the abandonment of top-down interaction in the Cohort
Model (Marslen-Wilson, 1987, reviewed above). Even without
interaction, the notion of the recognition point in the Cohort
Model has serious problems. We have no trouble realizing we
have not just heard a word when we hear banisfer, even though
we hit the uniqueness point for banister at the /s/—pushing Co-
hort to predict recognition of banister. If we view this as a case
where a word has reached a high degree of activation relative
to other words, rather than reaching an all-or-none recognition
state, we avoid this problem. High activation allows a listener to
expect a word and to perform as though it has been recognized,
but without absolute commirment to that word.

8. The interested reader can test this for herself using
JTRACE (Strauss et al., 2007); even if you reduce the lexicon to a
single pair, such as artist and art, there is still an carly short-word
advantage because each 4r#ist node receives more inhibition from
overlapping a7t nodes, and the only way to eliminare the effect
completely is to turn off lateral inhibition. A short-word advan-
tage persists even if you reduce the lexicon to one long word and
one unrelated short word (e.g., #rtist and blue) and compare the
recognition time for the two words (again, you can eliminare the
bias by turning off lateral inhibition).

9. An early version of this task was reported by Cooper
(1974), but its potential was not appreciated at the time. Recent-
ly, a version was developed that tracks hand movements instead
of eye movements and provides a different perspective on time
course {Spivey, Grosjean, & Knoblish, 2005).

10. Note that 200 ms is the mean lag, which means that
there are faster and slower initial fixations. See Altmann and
Kamide (2007; also Altmann, 2011) for assessments of saccade
latency distributions.

11. We are using the term probabilistic phonotactics here
to capture the general idea that words can vary in just how
word-like they sound, with more common sequences soﬁnding
more word-like. This term also has been given an operational
definition in spoken word recognition research as well, Vitevitch
and Luce {1999) define this as a sum of diphone probabilities
within a word (so not exactly a probability). While this is strongly
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correlared with neighborhood density, Vitevitch and Luce have
dcmonstratcd that in a task where attention is manipulated to a
sublexical locus (by presenting many nonwords in a naming task,
for example), phonotactic probability facilitates processing.

12. Indeed, McQueen et al. (2010) failed to replicate the
findings of Magnuson et al. (2003a) using the original materials.
Using better marerials provided by Magnuson et al., McQueen
<t al. mostly found null effects, as well as one reliable effect in
the same direction as Magnuson et al. and one in the opposite
direction, which they argue depended on perceprual learning
pased on the types of items included in practice tials. While
positive resules still outnumber negative ones (see Magnuson
et al., 2003b, for a scorecard), it is clear that this experimental
Pgradigm is fragile, and that resolving this debate may require a
different form of evidence.

13. There is a puzzle lurking here. After seeing or hearing
one item and then responding to a semantically related item,
we typically observe classical positive priming: lexical decision
or naming responses to the second item are speeded relative to
responses to that item when preceded by an unrelated item.
But inhibitory priming is observed for phonological relatedness
in such tasks (Luce et al., 2000). The puzzle emerges when we
consider what happens in the visual world paradigm. The pres-
ence of phonologically related items results in apparent compe-
rition; fixations are diverted to the competitor, and target fixa-
tions are proportionally depressed. This is interpreted both as
evidence for activation of the competitor and inhibition of the
rarget. When a semantic associate is present, the same pattern
is observed. However, this may be a case where the paradigm
masks the true effect; if the semantic associate is activated, it
will attrac fixations by virtue of that activation, but it may not
actively inhibit activation of the targer. This might also sug-
gest the caution is warranted in interpreting the phonological
case as demonstrating both competitor activation and target
inhibition. All the same, we shall follow the literature and refer
to both phonological and semantic cases as instances of com-

petition.
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