CHAPTER 5

Computational Models of Spoken
Word Recognition

James S. Magnuson, Daniel Mirman, and Harlan D. Harris

1 Preliminaries

A broad distinction can be drawn in psy-
cholinguistics between research focused on
how input signals activate representations
of linguistic forms, and how linguistic forms
are used to access or construct conceptual
representatidns. Words lie at the junction,
but do more than simply provide an inter-
face between signals and higher-level struc-
tures. Theories in psycholinguistics (e.g.,
MacDonald, Pearlmutter, and Seidenberg,
1994; Trueswell and Tanenhaus, 1994) and lin-
guistics (e.g., Pustejovsky, 1995) have ascribed
increasing syntactic and semantic knowledge
and function to the lexical level. This makes
theories of spoken word recognition (SWR)
key in explaining not just how word forms
are recognized, but also in understanding
levels upstream (sublexical) and down-
stream (conceptual, sentential, etc.). While
theories of SWR typically take the narrow
focus of mapping from phonemes to sound
patterns of words, a growing body of empir-
ical results (consistent with the increasing
role of the lexicon in linguistic and psycho-
linguistic theory) suggests that SWR is not
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so neatly compartmentalized. For exam-
ple, subphonemic details in the speech
signal affect lexical activation (Andruski,
Blumstein, and Burton, 1994; Davis, Marslen-
Wilson, and Gaskell, 2002; Salverda, Dahan,
and McQueen, 2003), revealing that sublexi-
cal details are preserved at least to the level
of lexical access. Lexical context appears
to influence sublexical perception directly
(Elman and McClelland, 1988; Samuel, 1981;
but see discussion of controversies on this
point below), and syntactic context simi-
larly influences lexical activation (Shillcock
and Bard, 1993; van Berkum et al., 2005).
Determining what representations are
active during any cognitive process is dif-
ficult, since many of those representations
may no longer be active by the end of the
process. The problem is compounded by
the nature of the speech signal. The tran-
sient acoustic events that make up spoken
words must be mapped rapidly onto words
in memory, within the limits of echoic and
working memory. SWR is further com-
plicated by the many-to-many mapping
between acoustics and linguistic catego-
ries (Fowler and Magnuson, this volume)
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and the absence of invariant cues to word
poundaries (Samuel and Sumner, this vol-
ume), placing speech perception and SWR
among the most challenging problems in
cognitive science.

In tackling these problems, theories of
SWR generally agree on three principles
(Dahan and Magnuson, 2006). First, as a word
is heard, multiple lexical representations are
activated. Second, activation depends on the
degree of fit between a lexical item and the
incoming speech, and prior probability (fre-
quency of occurrence). Third, recognition
is guided by competition among activated
representations. Each principle is quite gen-
eral, and allows for considerable variation in
specifics. Theories differ particularly in their
similarity metrics and/or bottom-up activa-
tion mechanisms (which determine degree
of fit), information flow (e.g., only bottom-
up or top-down as well), and the nature of
the competition mechanisms they assume.

Different assumptions about these prin-
ciples lead to different predictions about
word recognition. Current theories are gen-
erally guided by computational models, which
minimally include mathematical, verbal-
algorithmic, and simulation models.' In the
next section, we will give one example of
each of the first two types, and then review
several simulation models, introducing addi-
tional distinctions among model types as
needed. Our review necessarily will be brief
and selective, with models chosen to illus-
trate approaches and principles, For more

1 We will stretch computational model to mean for-
al model; any formalism that describes a mapping.
This definition is broad enough to include nonim-
plemented descriptions of such a mapping process
(verbal-algorithmic), as well as simple mathematical
models. Note that there is also unfortunate poten-
tial for confusion over the common usage of compu-
tational model to refer to this range of approaches,
and the most abstract of Marr’s (1982) levels of
information processing theories. A theory at his
computational level describes a computed function
in terms of input, output, and constraints on the
mapping between them, in contrast to theories at
the algorithmic and implementational levels (akin
roughly to software and hardware, respectively).
Mathematical models commonly reside at Marr’s
computational level, while verbal-algorithmic and
simulation models commonly reside at his algorith-
mic level,

comprehensive reviews, see Protopapas
(1999) and Ellis and Humphreys (1999). We
will then review a recent debate in SWR
that hinges on subtle predictions that fol-
low from computational models but have
proved elusive in empirical tests. The debate
provides useful illustrations of principles of
model testing and comparison. We will close
the chapter with a discussion of what we
see as the most pressing issues for making
progress in theories of SWR, and the most
promising current modeling approaches.

2 A selective review of SWR models
2.1 Mathematical models

The most influential mathematical model of
SWR is the Neighborhood Activation Model
(NAM; Luce, 1986; Luce and Pisoni, 1998),
which crystallizes the three key SWR prin-
ciples reviewed above into a simple, but
powerful, mathematical form. NAM is also
the only SWR model able to generate item-
specific and pair-wise competition predic-
tions for thousands of words easily. Luce
and Pisoni discuss potential connections
with simulation models like TRACE (see
Section 2.3) and have proposed PARSYN
as a simulating instantiation of NAM (Luce
et al., 2000), but NAM itself does not spec-
ify any algorithms or mechanisms. Rather, it
combines general principles and constraints
on SWR into a mathematical form that pre-
dicts relative ease of lexical access.?

This simplicity also places NAM at the
fundamentalist end of a fundamentalisi—
realist continuum of models (Kello and
Plaut, 2003). Fundamentalist models isolate
key theoretical assumptions and implement

2 While PARSYN is consistent with NAM, as we
will discuss, NAM's power is in its simplicity and
remove from processing details as a choice model.
‘We see PARSYN as complementary to NAM rather
than a direct extension, While we are using the label
“mathematical” to distinguish NAM from verbal-
algorithmic and simulation models, note that this
is a weak distinction, as complete mathematical
descriptions of processing models may or may not
be tractable, The key point here is the simplicity of
the model and its relation to Marr's (1982) compu-
tational level of information processing theories.
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them with as little baggage as possible,
with the goal of making transparent tests
of the assumptions. Realist models build
in as much detail as possible, with the goal
of accounting for a broad and deep range
of phenomena, often with the goal of see-
ing whether the complexity of the model
engenders emergence of unexpected (posi-
tive or negative) behavior.

How does NAM formalize the three
core principles of SWR? First, it addresses
multiple activation and similarity with a
global similarity metric that specifies which
words will be activated as a word is heard,
and how strongly they will be activated.
The most familiar NAM metric uses a one-
phoneme DAS (deletion, addition, or substi-
tution) threshold: Words are neighbors if
they differ by no more than one phoneme,
whether by deletion (cat: at), addition (cat:
scat, cast, cattle), or substitution (cat: bat, cot,
cab). More subtle metrics based on empir-
ical measures of sublexical similarity (e.g.,
perceptual confusion data) can also be used
to compute pair-wise positional similarity
over all words in the lexicon (where over-
all similarity of two words is the product of
phoneme-by-phoneme similarities). While
the more complex metrics do make distinct
predictions, such as the priming of veer by
bull (given high similarity at each phoneme;
Luce et al,, 2000), the two metrics make
sufficiently similar predictions that the one-
phoneme metric is most frequently used.

Once the neighborhood of a word is
defined (or computed, in the case of graded
similarity metrics), a word’s frequency-
weighted neighborhood probability can be
computed. We present a slightly modified
version of the Luce and Pisoni (1998) form in
Equation 1, where FWNP, is the frequency-
weighted neighborhood probability of target
word t, f, is the prior probability (typically,
the log frequency of occurrence per million
words in a corpus) of a target word ¢, and s,
is the similarity of the target to itself (1.0).
In the denominator, for every word, w, in
the lexicon (including the target), f, is the
frequency of word w, and s,, is the similar-
ity of word w with target . Note that if a
threshold rule (like the DAS rule) is not

used to define neighbors, the set of potential
neighbors includes every word in the lexi-
con, though many words will have similari-
ties to ¢ near o. Note also that denominator
includes the target, t; even when a threshold
is used, ¢ will be a neighbor of itself.

f
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This is the most general form of the rule.
When the DAS definition of neighbor is
used, we can simplify further by dropping
the s terms, as items either have similarity
of 1.0 (meets DAS definition of neighbor) or
0.0 (not a DAS neighbor).

NAM addresses prior probability by
weighting each neighbor in the metric by its
log frequency. NAM addresses competition
indirectly, with a choice rule that approxi-
mates lexical competition. Ease of recog-
nition of a target word is predicted by the
ratio of its log frequency to the sum of all
other words’ similarities to the target (o or 1
for the DAS rule) weighted by each item’s
log frequency. Since neighborhood den-
sity (summed frequency-weighted neigh-
bor similarities) includes the target (with
self-similarity of 1), frequency-weighted
neighborhood probability can be stated
more simply as the proportion of the neigh-
borhood frequency contributed by the target
word. NAM predicts that if two words are
matched on neighborhood, the one with
higher frequency will be recognized more
quickly, because it contributes a larger por-
tion of its neighborhood density. If two
words are matched on frequency, the one
with lower neighborhood density will be
recognized more quickly, again because that
word’s frequency represents a greater pro-
portion of its neighborhood density. Note
that the temporal grain size of the model is
lexical — it simply predicts the recognition
facility of entire words, and does not predict
sublexical processing details.

This simple model is surprisingly pow-
erful. NAM accounts for about fifteen
percent of the variance (beyond word fre-
quency alone) in tasks like lexical decision
and naming (Luce, 1986; Luce and Pisoni,

FWNP, =

1998). The next best predictor is frequency
alone — which only accounts for about five
_ percent of the variance, Significant effects
_ are commonly found in factorial manipu-
_ 1{ations of neighborhood density, and again,
_ the complex similarity metric makes sur-
prising pair-wise priming predictions that
have been borne out empirically (Luce
et al., 2000). NAM has had a large impact on
theories and the practice of SWR research
(studies of SWR now commonly control
neighborhood density).

NAM can be considered a general frame-
work for choice models of SWR, or as a
specific, testable model when paired with a
particular metric, While the model is strongly
associated with the metrics used by Luce and
colleagues and the competitor set predictions
that follow, using other similarity metrics in
the NAM framework would be an excellent
strategy for making further progress on iden-
tifying general constraints on SWR.

2.2 Verbal-algorithmic models

In wverbal-algorithmic models, predictions
that follow from theoretical assumptions are
described as an ordered series of processes
or computations. The preeminent example
in SWR is the Cohort model developed by
Marslen-Wilson and colleagues (Marslen-
Wilson and Tyler, 1980; Marslen-Wilson and
Welsh, 1978). The Cohort model illustrates
the power of a well-specified verbal-algorith-
mic model, as it makes many testable predic-
tions and paved the way for the simulation
models we describe next. Cohort differs from
NAM in three key ways. First, of course, it is a
verbal-algorithmic formulation of processing
mechanisms that could support SWR rather
than a mathematical formulation of general
principles. Second, algorithmic choices lead
to a similarity metric that differs consider-
ably from NAM'’s. Third, it grapples explic-
itly with challenges of processing the speech
signal over time, which allows it to gener-
ate qualitative time-course predictions and
address segmentation of fluent speech.

The original Cohort model was formulated
to account for constraints that emerged pri-
marily from experiments that revealed that
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SWR can occur remarkably early, prior to
word offset, depending on possible competi-
tors in the lexicon and higherlevel context
(Marslen-Wilson and Welsh, 1978). Cohort
built on the activation metaphors intro-
duced in Morton’s (1969) Logogen theory
and broke SWR into three stages: access (ini-
tial contact of bottom-up perceptual input
with lexical representations), selection (win-
nowing the activation cohort), and integration
(retrieving syntactic and semantic proper-
ties of a selected word and checking com-
patibility with higher levels of processing).
The key theoretical constraints proposed for
models of SWR were multiple access (all
lexical items consistent with the input are
activated), multiple assessment (the acti-
vated items are mapped onto the signal and
top-down context in parallel), and real-time
efficiency (i.e., a model should make optimal
use of available information).

This last constraint is central. Rather than
waiting for the best candidate to emerge by
simple matching of phonemes to lexical rep-
resentations, the model posits active removal
of words from the recognition cohort (the
set of activated candidates). Thus, as a word
like beaker is heard, initially all words begin-
ning with /b/ would be activated. When /i/ is
heard, all items beginning with /bi/ (beaker,
beetle, bead, etc.) remain in the cohort, but
wotds that mismatch (baker, batch, etc.) are
removed. In the original model, a top-down
mismatch (incompatibilities between the syn-
tactic or semantic properties of the word and
sentential context) could also remove an item
from the cohort, making “Cohort I” an inter-
active model; although the model assumed
bottom-up priority (top-down knowledge
did not prevent items from entering the
word-initial cohort, it only helped remove
them), bottom-up processing was constrained
directly by top-down knowledge.

These principles combine to predict
that words will often be recognized prior
to word offset: Assuming clear speech as
input, a word will be recognized prior to
its offset if there is a unique completion
prior to word offset or if context provides
sufficient listener confidence in the as yet
incomplete word. A key innovation in the
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Cohort model was its implicit segmentation
strategy. Utterance onset marks the onset
of the first word in a series. As one word
is recognized, its offset marks the onset of
the next item. The basic principles of the
Cohort model, and in particular, the notion
that segmentation would emerge from con-
tinuous mapping of phonemes to words,
have motivated a tremendous amount of
research and insight into SWR and paved
the way for subsequent models.

The model was revised slightly (Marslen-
Wilson, 1987, 198g); “Cohort II” assumes
selection must be autonomous from inte-
gration. This repairs problems with some
predictions of Cohort I (e.g, predicting
great difficulty recognizing words with low-
probability relative to a context, such as I
put on my hiking beetle). The grain of input
was increased from phonemic to featural to
allow for a small degree of mismatch tol-
erance (about one feature), and activation
was predicted to be related to goodness of
fit weighted by word frequency.

We will turn pow to simulation mod-
els, which have largely followed from the
empirical findings of Marslen-Wilson and
colleagues, and the processing principles
articulated in the Cohort model.

2.3 Simulation models

Mathematical and verbal models can gen-
erate specific predictions when their under-
lying assumptions can be combined in a
straightforward way (e.g., when stages of
processing are clearly ordered and informa-
tion only flows forward), especially if they
do not address the fine-grained time course
of lexical activation. When processing steps
cannot be easily ordered or are expected to
interact, or fine-grained time course predic-
tions are desired, verbal models become
unwieldy, and a mathematical model may be
intractable or simply very difficult to derive
analytically. In such cases, simulations with
an implemented processing model (such
as a neural network or production system)
may be needed.

Simulation presents advantages but
also challenges. While all models make

simplifying  assumptions, implementing
a model requires explicit choices about
inputs, outputs, and details that may not
be part of any underlying theory, but are
needed to make a simulating model work.
Grappling with such details in order to cre-
ate a simulation model may identify incor-
rect or incompatible assumptions that
appeared reasonable in a verbal or mathe-
matical model, or may reveal that aspects
of human behavior emerge in unanticipated
ways from the model. In this section, we
review a handful of simulation models cho-
sen to illustrate important developments
in SWR modeling. Specifically, we review
two hand-wired and four learning models.
Parameters in hand-wired models are set by
a researcher on the basis of (e.g., phonetic)
principle, intuition, trial and error, or algo-
rithmic search. More important than where
the parameters come from is the fact that
they are fixed by the modeler for a given
simulation rather than learned.

2.3.1 HAND-WIRED MODELS

2.3.1.1 Trace McClelland and Elman
(1986)3 provided the first major implemented
processing model of speech perception and
SWR. It remains one of only a few realist
(Kello and Plaut, 2003) models of SWR (see
also Klatt, 1979, and Plaut and Kello, 1999,
discussed later in this chapter), and has
by far the greatest depth and breadth of
empirical coverage. TRACE extended the
connectionist interactive activation frame-
work (McClelland and Rumelhart, 1981)
from reading to speech and was explicitly
motivated by a desire to build and improve
upon Cohort (McClelland and Elman, 1986,
pp. 52-3). The model has three layers of
units: featural, phonemic, and lexical (see
schematic in Figure 5.1). Feature nodes are
activated by input that roughly represents
acoustic-phonetic properties of speech
sounds by using nine acoustic-phonetic fea-
ture continua, each represented by a bank

3 Technically, we are discussing TRACE 1, TRACE
I (Elman and McClelland, 1986) was focused on
the speech-to-phoneme side of the model, but was
never linked to TRACE IL
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influences perception via
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Phoneme decisions

I

Words

Phonemes

Autonomous
Lexical level influences
post-perceptual phoneme

Top-down information Influences
perception via on-line feedback
from context units, and feedback
for learning from backpropagation
(generic SRN}

can use either.

of seven units. Phoneme patterns are spread
out over time, with features ramping on
and off over eleven time steps (each cor-
responding to about ten msecs). Because
phonemes spread over many steps, but pho-
neme centers are only six steps apart, the
input includes a coarse analog of coarticula-
tion: On either side of a phoneme center,
information about the current phoneme is
added to that for the preceding or following
segment, making the pattern for each pho-
neme context-dependent.

Feature nodes send activation forward to
the phoneme layer, which consists of banks
of phoneme templates aligned at multiple
time slices (see more detailed schematic
in Figure 5.2). This reduplication of units
allows TRACE- to handle the temporal
extent of speech input by spatializing time.
Phoneme templates are maximally acti-
vated by a specific feature pattern aligned
with them in time. Temporally overlapping
phoneme units compete by lateral inhi-
bition, such that ambiguous inputs will

Sincluding form and meaning in
SRN output affords predictions
about phonological-semantic
interactions

feedback (TRACE) decisions (Merge)
Output Phono-lexical || Semantic-lexical
e.g., lexical forms

T 1-to-1 copy \/ 1-to-1 copy

Hidden |-~ Cﬁﬁ,’,’icf};'f Hidden _\c;dr;giog;r;s Acoustics Articulation
TN etedely I stepdelay | etons] | v forward model
e.g., feam?;lst/phones Context > Features Context d Adult s;{e';m\ "Child’}speech
Simple Recurrent Network Distributed Cohort Plaut & Kello, 1999

SWR embedded within a
learning model of speech
production and
comprehension

Figure 5.1. Schematics of five of the model types reviewed in this section. TRACE and Merge use
localist representations; Distributed Cohort and Plaut & Kello use distributed representations; SRNs

partially activate multiple phoneme units.
However, competition will generally lead
to a clear “winner” for each phoneme in the
input (i.e., a phoneme unit that is substan-
tially more activated than any others for its
stretch of time).

The same scheme connects phonemes
to words. Lexical templates are dupli-
cated across time and are maximally acti-
vated when properly ordered phoneme
units aligned with the template are maxi-
mally activated. Lexical units also compete
with each other through lateral inhibition,
with incomplete or ambiguous phoneme
sequences partially activating multiple word
units, and competition resolving ambiguity.
A crucial feature of TRACE’s architecture is
feedback connections from lexical units to
their constituent phoneme units (phoneme-
to-feature feedback is typically disabled to
speed processing, McClelland and Elman,
1986, p. 23). This feedback makes TRACE
interactive (higher levels influence their
own sources of input) and is one of the most
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Figure 5.2. More detailed schematic of the TRACE model (adapted from Strauss et al., 2007) only
showing four phonemes and two words. TRACE solves alignment and segmentation problems by
reduplicating each word and phoneme node at multiple temporal alignments. Arrows stand for
forward and backward connectivity (note the absence of phoneme-feature feedback, which is off
by default in the model, but can be turned on). Nodes at low levels feedforward to larger units that
contain them (e.g., featural patterns corresponding to voicing activate voiced phonemes, such as /b/;
/b/ feeds forward to words that contain /b/), and nodes at higher levels feedback to the nodes from
which they receive feedforward activation. Connections indicated with filled circles are inhibitory;
nodes can inhibit other nodes at their own level (“lateral inhibition”) if they overlap with them

temporally.

controversial aspects of the TRACE model
(discussed later in this chapter; for recent
debate see McClelland, Mirman, and Holt,
2006; McQueen, Norris, and Cutler, 2006;
Mirman, McClelland, and Holt, 2006a).

TRACE differs from Cohort in that it
eschews explicit consideration of mismatch
or word boundaries, though it is implicitly
sensitive to both. Activation in TRACE is
based on continuous mapping of bottom-up

matches to lexical representations. A
bottom-up match to a lexical representa-
tion will send activation to that word even
if there was an earlier mismatch (Allopenna,
Magnuson, and Tanenhaus, 1998, capture this
distinction with the terms alignment and con-
snuous mapping models, where alignment
models, such as Cohort, explicitly code mis-
matches relative to word onset). However,
lateral inhibition makes the system sensi-
tive to mismatches and, implicitly, to the
position of the mismatch and details of the
competition neighborhood. For example, an
early mismatch is more penalizing than a
late mismatch (given candle as input, nodes
for candy or even camera or cabin will be
activated more strongly than handle). This
is because by the time the input overlaps
with, for example, a rhyme, items overlap-
ping at onset are already activated, and the
rhyme must overcome lateral inhibition
from the target and its onset cohort. Thus,
the competitor set predicted by TRACE is
intermediate between Cohort’s and NAM'’s:
Onset overlap is an advantage, but items
with initial mismatch may still be activated
(an effect that is increased if there is uncer-
tainty/noise in the input). Allopenna et al,
(1998) found close fits between TRACE'’s
predictions and the time course of phono-
logical competition in human SWR (see
Section 3.3).

TRACE depends on a fairly large set of
parameters, such as the strength of bottom-
up and top-down connections. Unlike most
simulation models, in which free parame-
ters are fit to data, the TRACE parameters
were fixed by McClelland and Elman, and
have been used since then with only small
changes. In the original paper, TRACE
accounts for more than a dozen aspects
of human speech perception and SWR,
including categorical perception, segmen-
tation of fluent, multiword utterances, and
lexical and phonotactic effects on phoneme
recognition. Recent work has shown that
TRACE also provides an excellent model of
the fine-grained time course details of SWR
(Allopenna et al., 1998; Dahan, Magnuson,
and Tanenhaus, 2001; Dahan, et al.,, 2001
Spivey, Grosjean, and Knoblich, 2005).
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McClelland (1991) made an important
refinement to TRACE - adding intrinsic
noise — that allowed it to account properly
for joint effects of context and stimulus
(see Section 4.2).

Two aspects of TRACE have fueled the
development of alternative models. The first
is that the strategy of reduplicating pho-
neme and word templates to solve the tem-
poral extent problem is arguably inelegant
and implausible (cf. McClelland and Elman,
1986, p. 77). The second is the theoretical
assumption of interaction (lexical-sublexi-
cal feedback, which we discuss in detail in
Section 4).

2.3.1.2 Shortlist/Merge Shortlist (Norris,
1994; Norris, McQueen, and Cutler, 1995)
is a fundamentalist simulation model that
combines aspects of autonomous, feedfor-
ward models like Race (Cutler and Norris,
1979) and Cohort II with the competition
dynamics of TRACE. A primary motiva-
tion in the development of this model was
to keep positive characteristics of TRACE
(e.g., competition dynamics) while avoid-
ing weaknesses (e.g., the large number of
nodes and connections due to reduplica-
tion of nodes over time). In the first stage of
processing, bottom-up activation generates
word candidates aligned with each phone-
mic step of input (the bottom-up activation
was originally intended to be from a simple
recurrent network (SRN); in practice, a dic-
tionary lookup is used). The best candidates
(up to thirty) at each phonemic input step
form the shortlist at that position. The items
from all shortlists are wired together into an
interactive-activation competition network
as each new phoneme is heard, and items
that overlap in time inhibit one another (see
Figure 5.3).+

Shortlists are determined by match scores.
Words get one point for every phonemic

4 Shortlist is often incorrectly described as having a
single shortlist, with all items inhibiting each other.
Instead, there are shortlists aligned at each input
position {making the potential size of the inter-
active activation network sl: s = maximum size of
each shortlist, which is thirty by default; [ = phone-
mic length of the input). Only items that overlap in
time inhibit each other. See Figure 5.3.
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Figure 5.3. Lexical competition in Shortlist.
The shaded box at the bottom shows the input
(“ship inkwell”). As the input is presented to
the model, shortlists of items with positive
match scores are constructed for each phoneme
position (up to a maximum of thirty items per
position). Arrows indicate aligned shortlists. For
most positions in this figure, only a single item
from the shortlist is shown. Larger subsets of
the complete shortlists are shown at positions
one and four (shaded groups). Items compete
with other items that overlap with them at any
position — including items in other shortlists. All
inhibitory connections are shown. Only word
pairs that do not overlap temporally do not have
inhibitory connections. The shortlists shown
are an idealization of what might be active at
word offset, but are not taken directly from a
simulation.

match, and -3 for every mismatch. To enter
a shortlist, a word’s score must be among
the top thirty at a particular position. The
mismatch penalty is so strong that the met-
ric functions much like an alignment metric,
allowing primarily onset-overlapping words
into the shortlists. For example, when the
input is cat, words beginning with /k/ are

candidates at the first phoneme position
when the first phoneme has been presented.
When the second phoneme is presented, the
shortlist at the first phoneme position is nar-
rowed to words beginning with /kae/, and
words beginning with /ae/ are candidates at
the second phoneme position. At the third
phoneme, words beginning with /kaet/ are
candidates for the first phoneme short-
list, words beginning with /aet/ are candi-
dates for the second phoneme shortlist, and
words beginning with /t/ are candidates for
the third phoneme shortlist. For words that
rhyme or otherwise mismatch the input to
enter the competitor set, the competition
neighborhood must be sparse and the input
word must be long. That is, for an initial
mismatch to be overcome, a rhyming word
would have to match at the next four posi-
tions to arrive at a positive score and have
some chance of entering the shortlist; for
example, given /kaet*lcg/ [catalog], /baet?l/
[battle] could enter the first phoneme short-
list after /I/ is presented (assuming there
were not already thirty words in that short-
list with match scores greater than one). A
unique and crucial feature of Shortlist is the
use of stress to constrain entry into short-
lists (Norris et al., 1995; Norris et al., 1997).
This feature could (and should) be added to
other models.

This division of labor between lexical
search and competition allows Shortlist to
use many fewer connections than TRACE.
Shortlist is sometimes claimed to require
fewer nodes than TRACE as well, but this
depends on the nature of the lexical search
mechanism. If an SRN were used, the entire
lexical search network would have to be
replicated at each input step — since a new
lexical search is generated for every input
position as each phoneme is presented.
This would result in at least the same num-
ber of lexical representations as in TRACE.
However, since SRNs also predict a variety
of lexical competition effects (Magnuson,
Tanenhaus, and Aslin, 2000), there would
appear to be no need either for multiple
SRNs aligned with each phoneme, or for
an interactive activation network — a single

SRN would simultaneously provide lexical
search and competition.s

Shortlist is a fundamentalist implemen-
tation of the theoretical principle that word
recognition can be achieved efficiently with
2 modular division of labor between initial
access and selection via competition, It is a
fundamentalist model because it incorpo-
rates only details necessary for testing those
primary assumptions. The Merge model
(Norris, McQueen, and Cutler, 2000) is a
separate but related fundamentalist model
that is also purely feedforward. Merge is
consistent with the Shortlist framework, but
was designed to examine whether lexical
effects on phoneme decisions can be pre-
dicted without lexical-phonemic feedback
by adding postlexical phoneme decision
nodes (see Figure 5.1). Merge is meant to be
roughly equivalent to the competition net-
work of Shortlist, though it is greatly sim-
plified. Merge has only been demonstrated
with a few phonemes and words — up to four
words and around six phonemes, depending
on the simulation. While the input to the
model has a subphonemic grain — phonemes
ramp on over three time slices — the archi-
tecture does not encode temporal order.
Word units have undifferentiated connec-
tions from phonemes, such that the inputs
dog, god, odg, ogd, dgo, and gdo would all
activate lexical units for dog or god equally
well. All the same, the model qualitatively
accounts for several results that previously
had been thought to require interaction (see
Section 4).

New Bayesian versions of Shortlist and
Merge have been proposed (Shortlist B
and Merge B; Norris and McQueen, 2008).
Shortlist B resides at Marr's (1982) compu-
tational level of information processing the-
ories, providing a description of a putatively

5 Similarly, Scharenborg, Norris, ten Bosch, and
McQueen (2005) proposed a Shortlist-inspired
model that works on real speech input and replaces
Shortlist’s modular lexical-lookup and competition
components with ASR mechanisms (e.g., rank-
ordered hypothesis generation). This “speech-based
model” (SpeM) represents a very promising devel-
opment, though further tests of generalization and
psychological tractability will be required.
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optimal mapping from speech input to
spoken words. It has an unusually fine grain
for a computational-level theory: Diphone
confusion probabilities from a gating task
are used to construct phoneme likelihoods
at a subsegmental grain. Those likelihoods
are conditioned on lexical knowledge and
potentially other context, but with the stip-
ulation that the mechanism for combining
these information sources must operate
without feedback. This is not a stipulation
commonly found in Bayesian approaches to
perception; for example, Rao (2004, 2005)
demonstrates how Bayesian inference can
be implemented in a neural architecture
employing feedback, affording optimal
combination of top-down and bottom-up
information sources, and close fits to behav-
ioral data. Movellan and McClelland (2001)
have also proven that the interactive acti-
vation framework of a model like TRACE
can implement an optimal Bayesian pro-
cess. Nonetheless, the approach taken with
Shortlist B has the potential to generate
extremely precise predictions and may lead
the way to new approaches. We return to
the controversial question of whether feed-
back occurs in speech perception and SWR
in Section 4.

2.3.2 LEARNING MODELS

2.3.2.1 Simple recurrent networks SRNs
(Elman, 1990) have been applied to SWR
with limited coverage. A basic SRN consists
of four sets of units: input, hidden, output,
and context (see Figure 5.1). There are feed-
forward connections from input to hidden
units and from hidden to output units, as in
a standard feedforward network. The context
units contain an exact copy of the hidden
units at the previous time step and are fully
connected to the hidden units (or, equiva-
lently, each hidden unit has a recurrent con-
nection to all other hidden units with a delay
of one cycle). This innovation of recurrence,
or feedback, provides the network with a
limited potential memory for previous time
steps. All of the connections (except hidden
context, which are one-to-one copy con-
nections) are trained via backpropagation
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(where actual input is compared to observed
output, and connections receive “blame” for
the discrepancy based on how much of the
error they contributed, and their weights are
changed proportionally; Rumelhart, Hinton,
and Williams, 1986). A typical approach is to
present a sequence of input vectors corre-
sponding to a sequence of single phonemes
and set the desired output to be the next
phoneme or the current word. Depending on
the nature of the training set and the size of
the network, SRNs can develop sensitivity to
fairly long stretches of context, While a com-
mon approach is to use a series of phonemes
as input and localist lexical nodes as output,
one can of course use distributed represen-
tations, or change the task to predicting the
next phoneme, or even the previous, current,
and next phonemes. These choices have a
significant impact on what the model learns.
Norris (1990) reported SRN simulations
in which words in a small lexicon that over-
lapped at onset activated each other, but
words that mismatched at onset and over
lapped at offset did not, consistent with
predictions of the Cohort model. Although
this is a logical result, given the model has
explicit access to ordered input, Magnuson
et al. (2000) showed that it depends on the
training regimen. If the model is given per-
fectly clear inputs and is trained until error
rate asymptotes (the procedure followed
by Norris), it will only show onset competi-
tion. If instead training continues only until
every word in the lexicon is “recognized”
correctly using a simple, minimal threshold
(only about one-fifth as much training), the
network exhibits thyme effects and will also
learn new words more easily and be more
tolerant of noisy inputs. Furthermore, early in
training, the model shows roughly equivalent
rhyme and cohort competition; adults learn-
ing novel neighborhoods of words show the
same progression (Magnuson, et al., 2003).
There is disagreement about the nature
of the architecture of SRNs. Some claim
that SRNs are not interactive (Cairns et al.,
1995; Norris, 1990), since the input units are
not influenced by the output level. Others
disagree (e.g, Magnuson, et al, 2003a;
McClelland et al., 2006) on the basis that

recurrent connections allow context to
have a direct influence on the earliest stage
of processing (since feedback from context
is mixed with bottom-up input at the hid-
den unit level), even if the mechanism does
not include feedback from explicitly lexical
nodes. Specifically, the input to the hid-
den layer at each time step is the current
bottom-up input and an exact copy of the
hidden unit states from the previous time
step; the latter are the result of multiplying
the previous input and context by the hid-
den unit weights, so the input includes the
output of the first of the two feedforward
transformations the model performs.

In summary, SRNs avoid problems of
TRACE (reduplicated units, inability to
learn), and have the potential to be the basis
of a “next generation” of models. Indeed,
the next two models are based on this
architecture,

2.3.2.2 Distributed Cohort Model (DCM)
Gaskell and Marslen-Wilson (1997) began
pushing beyond the typical focus on sound
form recognition by incorporating simul-
taneous semantic representations in their
model. The input (binary phonetic fea-
tures), hidden, and context layers followed
standard SRN design. Their innovation was
the use of two output layers: phonology
(phonological form) and lexical semantics
(an arbitrary, sparse binary vector; see Figure
5.1). Gaskell and Marslen-Wilson (1999)
argued that distributed representations and
simultaneous activation of phonological and
semantic dimensions of words provide fun-
damentally different ways of thinking about
competition. In localist models such as
TRACE, when the input supports two lexi-
cal items, there is explicit activation of both
representations (different nodes at the lexi-
cal layer) and explicit competition between
them (through mutually inhibitory connec-
tions between the lexical units). In a distrib-
uted model, all items are represented with
the same set of nodes; thus, both activation
of and competition between multiple repre-
sentations is implicit in the blend formed by
the competing patterns.

Gaskell and Marslen-Wilson (2002)
tested a prediction that follows from this

_conceptualization. Given a word fragment
with semantically unrelated phonological
completions (e.g., /kaept/ can begin captive
or captain), the system can settle on a phono-
logical pattern, but semantic activations will
be a blend of the semantics for the phono-
logical competitors. Thus, such a fragment
should produce phonological (repetition)
priming, but not semantic priming. In con-
trast, if few completions are possible (e.g.,
/garm/ can only begin garment), the sys-
tem will settle on single phonological and
semantic patterns, and both phonological
and semantic priming should be observed.
This is precisely what Gaskell and Marslen-
Wilson found.

Gaskell and Marslen-Wilson (2002)
claimed that only a distributed model could
account for such differential activation,
though it appears DCM does so by virtue of
including both phonological and semantic
outputs, not by virtue of using distributed
representations. If semantic representations
were added to TRACE (e.g,, if the phoneme
layer simultaneously fed to the current lexi-
cal [phonological form] layer, and to a layer
of semantic primitives that fed forward to
a second lexical [semantic form] layer), it
would make similar predictions: /kaept/
would activate mutually reinforcing units
(captain and captive) on the phonological
side, predicting strong phonological prim-
ing, but /kaept/ would activate disparate
semantic representations and predict weak
semantic priming. Although localist and dis-
tributed models may not make conflicting
predictions for currently known empirical
results, there are strong arguments for pre-
ferring distributed to localist representa-
tions (Masson, 199s; Plaut et al., 1996) and
the DCM represents a crucial step in that
direction among SWR models.

2.3.2.3 PKgg Plaut and Kello’s (1999)
model is perhaps the most ambitious model
of SWR yet proposed, and it is embedded
within a comprehensive model of the devel-
opment of speech production and speech
comprehension (see Figure 5.1). The model
learns to control a set of articulatory param-
eters to generate acoustics based on “adult”
input (well-formed acoustics) and self-input
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(acoustic results of its own articulations).
The acoustics are fairly close analogs of
the speech signal (formant frequencies and
transitions, frication, plosiveness, loudness,
and the visual feature of jaw openness).
The model learns a bi-directional mapping
between acoustics and articulations and the
mapping from both of these phonological
representations to an arbitrary set of seman-
tic patterns. The first report was extremely
promising; in the domains tested, the model
exhibited a range of desirable learning and
processing behaviors. We hope development
of this model continues, as we find that it
provides the most promise for significant
progress in modeling the development of
speech production and comprehension.

2.3.2.4 Adaptive Resonance Theory (ART)
ART is a powerful connectionist learning
framework. Inputs are initially mapped to
early representations in a working memory
stage. These then map (through bi-direc-
tional links, allowing feedback) to list chunks
(combinations of lower-level units that have
co-occurred over learning). Chunks of equal
length inhibit each other and longer chunks
mask smaller chunks contained within them.
The framework has allowed for an impres-
sive array of fundamentalist models (separate
models for processing aspects of real speech
[ARTSTREAM; Grossberg et al., 2004], pho-
nological patterns [ARTPHONE, Grossberg,
Boardman, and Cohen, 1997], and word seg-
mentation [ARTWORD, Grossberg, and
Myers, 2000]), which suggests great promise
for a comprehensive, realist model, but such
a model has not yet been reported (see also
Goldinger and Azuma, 2003, for suggestions
of how Goldinger’s [1988] episodic lexicon
model might be combined with the ART
framework).

An intriguing aspect of ART’s processing
assumptions is that its version of top-down
feedback cannot cause hallucinatory repre-
sentations. A 2/3 rule means that weak inputs
(e.g., phonetic features corrupted by noise)
can be strengthened once recognized by
higher levels of processing, but completely
absent inputs cannot be created from noth-
ing. As we discuss later in this chapter, a
common criticism of feedback in TRACE
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is that it could make the system hallucinate
(Norris et al., 2000). Although, in practice,
misperception in TRACE seems generally
similar to misperception in humans (Mirman
et al.,, 2005) and the default TRACE param-
eters also give it strong, bottom-up priority,
future modeling efforts might benefit from
nonsymmetrical feedback rules such as
those implemented in ART.

3 Evaluating and comparing models

The recent history of SWR includes dis-
agreements about whether particular models
succeed or fail to account for various phe-
nomena. There has been a salient absence
of agreed upon principles for gauging model
success or failure and for comparing models.
‘We will argue that assessing sticcess requires
(1) clear linking hypotheses (links between the
tasks performed by human subjects and the
measurable properties of a model), and (2)
attributing a success or failure to one of four
levels (in decreasing order of importance):
theory, implementation, parameters, and
linking hypotheses. After introducing these
issues, we will illustrate them with recent
examples from the literature and propose
a set of candidate principles for assessing
success and comparing models. These prin-
ciples will frame a larger discussion of the
feedback debate in Section 4.

3.1 Linking hypotheses

The first question for comparing model
behavior to human behavior is how to link
properties of the model to the task per-
formed by human subjects. The simplest
approach is to look for qualitative similar-
ity between a model and human data. For
example, if lexical node activations correlate
inversely with human response times and
error rates in some task, it is reasonable to
accept this as a model success, though this
is a weak standard. One would do better to
ask whether the model also provides good
quantitative fits, and whether the fits are to
condition means or individual items (e.g.,
does it predict errors on the correct class

of items, or depending on the task, does it
predict appropriate errors?). As the quanti-
tative fit and grain of prediction increases,
so should the standard for success. The stan-
dard can be strengthened further by exam-
ining how closely the model’s task resembles
the human subjects’ task by establishing
explicit linking hypotheses: concrete oper-
ational definitions tying features of model
performance to human behaviors and tasks,

Linking hypotheses typically receive little
attention. However, one cannot say a model
has failed unless one has first appropriately
linked (a) model performance to human per-
formance, (b) stimulus materials for human
subjects to model materials, and (c) task con-
straints faced by humans to task constraints
on models (e.g., through choice models).

3.2 Model successes and failures: levels of
analysis

A model success or failure can be linked
to one of four levels of decreasing impor-
tance: theory, implementation, parameters,
or linking hypotheses. As we have just dis-
cussed, a failure or success due to improper
linking hypotheses is not informative in the
same way that an experimental failure due
to improper operational definitions is not
informative. A failure at the level of theoret-
ical assumptions is of greatest interest and
holds the greatest possibility for progress
(i.e., theory falsification). Before a model
failure can be attributed to underlying theo-
retical assumptions, one must establish that
the failure cannot be attributed to imple-
mentational details or to parameter settings.
Implementational details include factors
such as input representation, numbers of
units in a neural network model, and details
of processing dynamics (e.g, activation
functions). Parameter settings play a critical
role in simulating models, so, for example,
if TRACE model simulations suggest com-
petitors are inhibited too much, one cannot
conclude that lateral inhibition is funda-
mentally flawed without testing different
values of lexical inhibition, phoneme inhi-
bition, bottom-up excitation, and so forth.
Likewise, in a learning model, performance

ay change radically as a function of amount
f training, as we mentioned earlier in our
discussion of SRNS.

_ Parameters are of particular importance, as
there have been suggestions that a model as
complex as TRACE should only be tested with
minor deviations from the original parameter
cet, It is true that if different parameter sets
are used to model different results, the model
loses its generality — the breadth of model
successes cannot be attributed to underly-
ing theoretical assumptions if each success
requires different parameters. On the other
hand, equating a model with a parameter
set produces a similar problem: The model
Joses generality because the constraints of the
parameter set are placed on a par with under-
lying theoretical assumptions. The simple
alternative is not to limit model explorations
to a “standard” parameter set, but the onus
is on the modeler to test whether parameter
changes needed for one phenomenon prevent
the model from fitting results it was known to
fit with the previous settings.

We will now review a case in which
proper linking hypotheses provide insight
into how task constraints shape behavior,
and other cases in which apparent model
failures were actually due to improper link-
ing hypotheses. Then we will turn to can-
didate principles for gauging success and
comparing two models.

3.3 Improving models with linking
hypotheses

An interesting outcome of the use of simu-
lation models is that for more than a decade,
models made predictions at a finer grain than
could be tested with standard psycholinguis-
tic tasks. Models like TRACE (McClelland
and Elman, 1986) make explicit predictions
about the parallel activation of similar items
and the time course of competition between

6 This is no small burden when a model has been
shown to account for a wide range of results.
However, tools like jTRACE (Strauss, Harris, and
Magnuson, 2007) and others listed in the appendix
allow one to automate large numbers of simulations
in order to explore the robustness of previous simu-
lations throughout parameter spaces.
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them. For example, Panel B of Figure 5.4
shows the complex pattern of activation
and competition among TRACE’s lexical
nodes for items like beaker, beetle, speaker,
and carriage when the input is an item like
beaker.

Fine-grained lexical activation predic-
tions began to be testable with the advent
of the “visual world” eyetracking paradigm
(Tanenhaus et al., 1995). In this paradigm,
participants see multiple objects and their
eye movements are tracked as they follow
spoken instructions to perform visually
guided movements (e.g., “click on the bea-
ker”}. At any instant, participants can fix-
ate only one object, but time course can be
estimated from average fixation proportions
over time. Panel A of Figure 5.4 shows data
from Allopenna et al. (1998), who presented
subjects with displays of four items like (on
critical trials) beaker, beetle, speaker, and car-
riage, and examined fixations as subjects fol-
lowed an instruction like click on the beaker.
While there is an obviously strong qualita-
tive fit between the data and the TRACE
activations in Panel B, Allopenna et al. estab-
lished a closer link by linking model time
to real time (by relating average phoneme
duration in real speech materials to TRACE
cycles per phoneme) and, more important,
by explicitly considering task constraints
on human subjects (Panel C). Subjects had
four possible fixation outlets — the pictures
on the screen. Allopenna et al. assumed
that bottom-up lexical activation was not
restricted to the displayed items, and based
lexical activation on activation and com-
petition in the entire TRACE lexicon. To
incorporate the four-choice task constraint,
they computed response probabilities based
only on the activations of the four displayed
items (using a variant of the Luce [1959]
choice rule). With one free parameter (a
multiplier used in the choice rule?), this

7 The best fits used a parameter that changed over
time to reflect greater confidence as bottom-up
evidence increased. With this parameter (k) set
to a constant value of seven, competitor fits were
reduced slightly. In later work, a constant value of
seven provided excellent fits {Dahan, Magnuson,
and Tanenhaus, 2001; Dahan et al., 2001).
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(a) Allopenna et al. (1998) data (b) Transformed TRACE activations
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Figure 5.5. The relationships of similarity metrics. Neighbors
differ from each other by a single phoneme. Cohorts overlap at
onset. Often, the overlap threshold is 200 msecs or approximately
the first two phonemes. Less often, overlap in the first phoneme

is the threshold (delineated by the dotted curve). The shaded
region indicates items that are both neighbors and cohorts. TRACE
predicts strongest activation for items that are both (two-phoneme
overlap) cohorts and neighbors, then for (two-phoneme overlap)
cohorts, then other neighbors, and little activation of items
overlapping in a single onset phoneme (though greater activation is
predicted for items like cut with a single mismatch versus cub with
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Figure 5.4. Comparison of eyetracking data (A}, TRACE activations (B), and TRACE activations
transformed into predicted response probabilities via explicit linking hypotheses (C). Adapted from

Allopenna et al. (1998).

linking hypothesis greatly improves fit — by
taking into account task constraints faced
by human subjects and simultaneously pro-
viding a “placeholder” model of the decision
process (in the sense that it is obviously
incomplete). It also suggests the possibility
that TRACE activations may surprisingly
closely approximate human lexical activa-
tions, as a very simple linking hypothesis

taking task constraints into account results
in high model-data fits (and this same link-
ing hypothesis allows close fits of changes in
looking behavior when cohort competitors
are present or absent; Dahan, et al., 2001).
Allopenna et al. calculated fit with 72 (do
human and model proportions rise and fall
together?) and root mean squared (RMS)
error (are the actual values close?); 2 was

two mismatches).

high and RMS was low.* The Allopenna et al.
(1998) study provided partial resolution to a
paradox having to do with similarity metrics
(see Figure s.5). In tasks like cross-modal
semantic priming (e.g, Marslen-Wilson,
1990), there is strong evidence for onset
(or cohort) competition (e.g., hearing bea-
ker primes insect, an associate of beetle, as
beetle is strongly activated by phonological
similarity to beaker and then activates insect
via spreading semantic activation), but not
for rhyme competition (beaker would not

8 Dahan et al. (20013; 2001b) extended these linking
hypotheses to studies of frequency and subcategori-
cal mismatch. The simple assumptions about the
role of the visual display allow accurate predictions
of changes in target fixations depending on whether
a competitor is present in the display. Norris
(z005) suggests that computing response probabil-
ities corresponds to predicting that subjects’ eyes
instantaneously flit between objects (that is, that
each trial must have the same continuous form
as the central tendency). However, in choice the-
ory, a response probability implies a distribution of
responses. Magnuson (2008b) provides simulations
demonstrating that a one-parameter stochastic eye
movement model quickly recovers the underlying
distribution.

detectably prime stereo, an associate of
speaker). In contrast, NAM's similarity met-
ric includes rhymes, and NAM provides
the best available predictions for large sets
of items (accounting for about fifteen per-
cent of the variance in SWR tasks). TRACE
makes an intermediate prediction: Onset
competitors have an advantage because they
receive substantial bottom-up activation
without strong inhibition during the early
part of the word. Rhymes are predicted to
be activated, but to be at a significant disad-
vantage: By the time they have bottom-up
support, the target and onset competitors
are sending strong inhibition. Since the
eyetracking data matches TRACE's predic-
tions so closely, this suggests that rhymes
are activated, but more weakly than onset
competitors. In cross-modal semantic prim-
ing, effects depend on phonologically based
activation spreading semantic activation. If
rhyme activation is weak, it is not surprising
that it is difficult to detect it in a mediated
task. This case illustrates the symbiotic role
of models; this level of resolution of the par-
adox could only have been attained by use
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of both quantitative empirical methods and
an implemented model with an intervening
linking hypothesis.

3.4 Linking to human materials and task
constraints

Marslen-Wilson and Warren (1994) exam-
ined the role of lateral inhibition as a com-
petition mechanism in TRACE by creating
cross-spliced versions of a word like net that
combined the initial CV of one word and
the final C of another (e.g., the initial CV
of neck plus the final C of nef) or the ini-
tial CV of a nonword (nep) and the final C
of the word (net). These cross-spliced items
included misleading coarticulatory (subcat-
egorical) information about the final C. The
baseline item was the initial CV of the target
spliced onto the final C of another recording
of the same word. The three conditions were
labeled WiW1 (CV of one recording of net
spliced onto the final C of another recording
of net), Wa2Wi (neck + net), and N3W1 (nep +
net). Marslen-Wilson and Warren’s simula-
tions indicated that TRACE predicted the
following response time pattern: WiW1 <
N3W1 < WaWi (with a large increase for
W2W1i), but human lexical decision data
showed the pattern WiW1 < N3W1 ~ W2Wi.
Marslen-Wilson and Warren attributed this
discrepancy to lateral inhibition in TRACE,
which they argued was too strong. Norris
et al. (2000) ran simulations with Merge
and a radically simplified interactive activa-
tion model (the six-phoneme and four-word
Merge model with lexical feedback). Merge
successfully predicted the response time
pattern, as did their interactive analog, but
only if it was made to cycle multiple times
at each input step, effectively increasing the
amount of inhibition that occurred prior to
a decision. So Marslen-Wilson and Warren
argued TRACE had too much competition,
while Norris et al. argued that competition
in TRACE was too slow.

Dahan et al., (2001) revisited this para-
digm with eyetracking paired with TRACE
simulations (see Magnuson, Dahan, and
Tanenhaus, 2001 for more simulation

details). Contrary to the lexical decision
data, they found that fixation trajectories
fit the pattern WiW1 < N3W1 < W2Wi
(though the pattern was not as extreme as
in the Marslen-Wilson and Warren simula-
tions). Magnuson et al. explained the dis-
crepancy between the eye movement and
lexical decision data by assuming a “yes”
response could be triggered if the activa-
tion of either W1 or Wa reached a threshold.
This would decrease average response time
for W2W1, assuming the activation of W2
(neck) generates infrequent “yes” decisions.
In separate lexical decision simulations
based on eye movement time course and
TRACE activations, there were ranges of
parameters where this simple assumption
leads to correct RT predictions (WiW1 <
N3Wi1 ~ W2Wh). Contrary to the Marslen-
Wilson and Warren and Norris et al. simu-
lations, new TRACE simulations correctly
predicted the data at a very fine grain.
Dahan et al. explained the discrepancy
between their TRACE simulations and
Marslen-Wilson and Warren’s by deduc-
ing that the latter cross-spliced the TRACE
stimuli much too late. Dahan et al. cross-
spliced at the latest position possible that
still Jed to the correct recognition of the
intended final target. When the splicing is
done as late as that reported by Marslen-
Wilson and Warren, Wz is recognized rather
than W1 given W2W1, and W is also recog-
nized in a nonword condition (W2N1). If
this happened with human subjects, the
materials would be scrapped and replaced.
This illustrates an important principle: The
same care that is taken with materials for
human subjects must be taken with model
testing in order to ensure adequate analogs
between human and model conditions. The
lexical decision simulations demonstrate
that linking hypotheses can radically alter
the apparent success or failure of a model.

3.5 Intuition and logic versus simulation

Consider the following predictions about
TRACE and SWR in general. If word fre-
quency has a prelexical locus, it should

have a constant effect, detectable in both
fast and slow word recognition responses. If
frequency has a postlexical decisional bias,
frequency effects might disappear when
subjects respond very quickly — before they
hit the stage where frequency is integrated
with lexical activation. Connine, Titone, and
Wang (1993) found that indeed, frequency
effects tend not to be detectable in fast
responses and concluded that in a model
like TRACE, such a result could only occur
if frequency were a postlexical bias. Dahan,
Magnuson, and Tanenhaus (2001) augmented
TRACE with three frequency mechanisms:
postlexical (frequency applied in the choice
rule rather than activations), resting lev-
els (each word’s actjvation in the absence
of input was proportional to frequency),
and bottom-up connection strengths (pho-
neme-word connections were proportional
to word frequency). The intuitive expecta-
tion was that the latter two would lead to
similar predictions and both would differ
from the first.

Dahan et al. (2001) compared time
course predictions from TRACE to fine-
grained time course measurements of fre-
quency effects using eyetracking and the
visual world paradigm. Empirically, human
listeners showed a continuous influence of
frequency that increased as more of a word
was heard. Contrary to Connine et al’s
(1993) predictions, all three frequency-
augmented versions of TRACE could fit
the human fixation proportion data fairly
well. Also surprisingly, the resting level and
postlexical mechanisms made virtually iden-
tical predictions with a constant frequency
influence. (To predict a late influence, the
postlexical account would require an addi-
tional parameter specifying when frequency
should be applied.) The bottom-up connec-
tion weight mechanism predicted that the
effect would be proportional to the amount
of evidence, and provided the closest fit to
the human data (especially the early time
course). This mechanism would account for
the Connine et al. results as a matter of task
sensitivity: If you sample early in process-
ing (with fast decisions) the magnitude of
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the frequency effect would be small. If the
sensitivity of the task used were low (as it
arguably is in lexical decision), a null result
in early responses would not be surprising,

This example demonstrates the value
of simulations with complex models over
intuition-based expectations. Whenever
possible, expectations should be verified
with model simulations (see the Appendix
for a list of tools that can be used for SWR
simulations).

3.6 Comparing models

Assuming two models account for overlap-
ping phenomena, how should we compare
them? First, if one appears to fail on some
phenomena, the level of the failures must
be identified, as we have just discussed. If -
the failures can be argued to be nontriv-
ial, and all else is equal about the models,
one has a basis for preferring the one with
fewer failures. However, if all else is not
equal (e.g., one model uses more realistic
input or mechanisms, or one requires dif-
ferent parameter settings for different phe-
nomena), one should prefer the model with
greater realism, greater depth and breadth
of coverage, or greater parameter stability.

A recent trend in model analysis has
been to distinguish between models that fit
empirical data because of inherent proper
ties of the model from models that fit only
because of specific parameter settings. The
standard test of model performance is to
compare model and human behavioral data
under one specific set of parameter values
(or a small range of values). However, a
model may be flexible enough to fit any pos-
sible data. Ideally, model behavior should be
fairly stable over parameter changes and the
optimal parameter range should account for
a relatively large set of behavioral data (i.e.,
parameter changes should not be required
for each new behavioral data pattern).

Pitt and his colleagues have recently
developed a method (called Parameter
Space Partitioning, or PSP) for comparing
models based on their performance across
their parameter space (Pitt et al., 2006).
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PSP examines the range of qualitative data
patterns (e.g., an ordering of RTs in differ-
ent conditions) that a model is capable of
producing and computes a partitioned map
of parameter space in which each partition
corresponds to a qualitatively different data
pattern generated by the model. This allows
one to assess whether a good fit by the
model is due to intrinsic properties that fol-
low from the theoretical assumptions of the
model, or merely to particular parameter
settings. To conclude that a model is reason-
ably constrained (and cannot predict arbi-
trary data patterns), the following should
hold: (a) the model should produce rela-
tively few data patterns across the param-
eter space; (b) the empirically observed
pattern (human data) should correspond to
a relatively large proportion of the parame-
ter space; and (c) most other data patterns
the model can produce should be similar to
the empirically observed data pattern, with
relatively smooth changes in patterns from
partition to partition (rather than radically
different patterns).

Parameter space partitioning offers a
powerful tool for testing and comparing
models. However, its results are only as
good as the characterizations of models and
problems it is given. For example, PSP is
extremely computationally intensive, which
limits the complexity of models to which
it can be applied. When Pitt et al. set out
to compare the TRACE and Merge mod-
els, they used a “toy” implementation of
TRACE like that used by Norris et al. (2000)
(with phonemic input and only a subset of
TRACE'’s phonemes, a very small lexicon,
and no ability to represent temporal order).
This implementation might better be char-
acterized as an extreme fundamentalist ver-
sion of an interactive model, as it has little in
common with TRACE aside from feedback.
Similarly, they focused on tests of lexically
mediated phoneme inhibition (reviewed in
Section 4.2), but based the human behav-
ioral standards on a report by Frauenfelder,
Segui, and Dijkstra (1990), which has several
problems (Mirman et al., 2005; see Section
4.2), thus undermining their model analysis.
Nonetheless,ifcandidatemodelsare correctly

implemented and human performance is
correctly characterized, global qualitative
model evaluation approaches such as PSP
can offer important new insights into pro-
cesses underlying SWR.9

3.7 Conclusions

Currently, there are no generally agreed
upon principles for evaluating individual
models or comparing two models. Table 5.1
lists a candidate set of heuristics for model
evaluation and comparison (Jacobs and

Grainger, 1994 provide a more detailed set of

principles). However, comparing two mod-
els is more difficult than one might expect,
especially if they differ in realism and
empirical coverage. To illustrate this, we will
review a currently central debate in SWR as
an example of how model comparison takes
place in the literature,

4 The feedback debate

Proponents of interaction in SWR (feed-
back connections from lexical to sublexical
representations) argue that feedback (a) is
a logical way to account for the many lex-
ical effects on sublexical tasks that have
been reported in SWR (for examples, see
McClelland et al., 2006 and Mirman et al,,
2006a), (b) makes a model robust to exter-
nal or internal noise, and (c) provides an
implicit representation of sublexical prior
probability at multiple scales (e.g., biphone,
triphone, ...n-phone). Proponents of auton-
omous architectures — those with only feed-
forward connections — argue (a) feedback is
unnecessary to account for lexical effects,
(b) it cannot improve recognition, and
worse, (¢} feedback precludes truly verid-
ical perception and predicts perceptual
hallucination.

Proponents of the autonomous view
have argued against feedback in two ways.
First, they argued that all observed lexical
effects on sublexical tasks can be explained

9 PSP tools are available from: http:/faculty.psy.
ohio-state.edu/myung/personal/PSP_PAGE.html.

postlexical integration of lexical and
ublexical information (Norris et al., 2000).
More recently, Norris and McQueen (2008)
have argued that lexical and other contexts
should influence word recognition under
certain conditions, but only by means of
a Bayesian decision process that has pre-
‘perceptual access to context-conditioned
probabilities (via an as yet unspecified
mechanism). What is required to falsify
the autonomous position is empirical data
showing lexical influence on predecisional
sublexical processing. This has turned out to
be a nontrivial enterprise in terms of devel-
oping experimental paradigms that propo-
nents of both views would find convincing
(for discussion see Dahan and Magnuson,
2006; McClelland et al., 2006; and McQueen
et al., 2006). Here, we will focus on model-
specific issues that have been important in
this debate.

41 What good can feedback do?

Norris et al. (2000; also Norris and McQueen,
2008) assert that feedback cannot possibly
aid recognition. It can neither speed pro-
cessing nor improve accuracy. Since there is
no way to increase the information available
in the signal, a system could not do better
than simply activating the word with the
best bottom-up fit to the signal. One piece
of evidence they cite as support comes
from TRACE simulations (Frauenfelder and
Peeters, 1998; FP98) in which the usefulness
of feedback was studied by comparing per-
formance with feedback on and off. For the
twenty-one words tested, about half were
recognized more quickly with feedback, and
about half were recognized more quickly
without feedback. Thus, even in TRACE,
the flagship interactive model, feedback
seemed not to improve recognition.
Magnuson, Strauss, and Harris (2005)
revisited this result with three motivations.
First, the general argument about the use-
fulness of feedback can be challenged on
logical grounds (since, for example, words
provide an implicit coding of prior proba-
bility for sublexical phoneme sequences).
Second, the FPg8 simulations do not
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address a central motivation for feedback
in interactive systems: Feedback makes a
system robust against internal or external
noise. That is, feedback is useful because it
affords context sensitivity by implicitly cod-
ing prior probabilities of causes (phonemes,
words, etc.), which can be especially useful
given uncertain input. Given a sequence of
phonemes including noise or ambiguity, the
system could perform more quickly and/or
accurately if it allowed context (lexical, syn-
tactic, discourse, etc.) to help disambiguate
the input as soon as possible. Third, the FPg8
simulations only used a small set of words
with particular properties {(seven phonemes
long, with a uniqueness point at the fourth
segment). These were chosen for other sim-
ulations presented in the same chapter, but
are not representative of the lexicon.
Magnuson et al. tested performance with
and without feedback on a large (go1-word)
lexicon with several levels of noise added
to the input. At every level of added noise,
average accuracy and recognition time were
better with feedback on. Without noise,
nearly seventy-five percent of the lexical
items were recognized more quickly with
feedback on. Cases in which words were
recognized more quickly without feedback
resulted from complex neighborhood char-
acteristics; however, when noise was added,
feedback preserved accuracy even for these

" items.

Another benefit of feedback is that it
allows top-down knowledge to guide tun-
ing or recalibration of the perceptual system
when there are systematic changes in the
input; for example, adjusting to a speaker
with an unfamiliar accent. There is strong
behavioral evidence that listeners use lexi-
cal information to tune the mapping from
auditory to phonemic representations
(Kraljic and Samuel, 2005, 2006; McQueen,
Cutler, and Norris, 2006; Norris et al., 2003).
However, Norris et al. (2003) describe the
possibly game changing insight that one
must be careful to distinguish between
online feedback (as in TRACE) and feedback
for learning (as in backpropagation). They
argue that feedback for learning provides
the necessary basis for precompiling context
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sensitivity into forward connection weights,
and suggest that if it turns out that online
feedback exists, it may only be an epiphe-
nomenon of the need for feedback for learn-
ing. Mirman et al. (2006b) note that both
sorts of feedback are a natural consequence
of the assumptions of interactive architec-
tures. All the same, this interesting distinc-
tion may be the key to resolving the debate
(Magnuson, 2008a).

4.2 Lexically mediated phoneme inhibition

A recurring theme among criticisms of
feedback is that it would cause distorted or
inaccurate perception at prelexical levels.
Massaro (1989) argued that lexical feedback
distorts the representation at the phoneme
layer, causing TRACE to fail to fit data from
experiments that separately manipulate
auditory and lexical support for the identity
of a phoneme. However, subsequent work
showed that if intrinsic variability is imple-
mented, feedback does not distort prelexical
processing (McClelland, 1991), and an exten-
sion of this work proved that interactive
models can implement optimal Bayesian
inference for combining uncertain informa-
tion from independent sources (Movellan
and McClelland, 2001).

A related prediction is that if the acoustic
input contains a lexically inconsistent pho-
neme (for example, if the /k/ in arsenic is
replaced with /t/ to make arsenit), lexical
feedback would cause a delay in recognition
of the acoustically present phoneme. Two
sets of experiments failed to find evidence
of lexically induced delays in phoneme rec-
ognition (Frauenfelder et al., 1990; Wurm
and Samuel, 1997), providing a key moti-
vation for the development of the auton-
omous Merge model (Norris et al., 2000).
Mirman et al. (2005) showed that these
experiments had conflated the manipulation
designed to show lexical inhibition effects
with the lexical status and neighborhood
structure of target items at the point of the
lexically inconsistent phoneme target. The
TRACE model predicted lexical inhibition
when these factors were controlled, but not
under the previously tested conditions, and

behavioral tests were consistent with these
predictions. Thus, lexical feedback can slow

phoneme recognition.

Proponents of the autonomous view

have argued that models with lexical feed-

back would “hallucinate” lexically consistent

phonemes not present in the input (Norris
et al., 2000; Norris and McQueen, 2008). This

overstates the potential for hallucination in
TRACE (as the “trace” preserves details of

malformed input and model behavior differs
greatly given well- and malformed input;
McClelland and Elman, 1986, e.g., figures
7-11). In addition, the hallucination claim
is typically described as a thought experi-
ment that falsifies interactive feedback, but
this underestimates actual human misper-
ception: In lexical inhibition tests (Mirman
et al., 2005), listeners exhibited a tendency
toward lexically induced misperception and
this finding is consistent with other contex-
tually appropriate but illusory perceptions
of speech such as failures to detect mispro-
nunciations (Cole, 1973; Marslen-Wilson
and Welsh, 1978), hearing noise-replaced
phonemes (“phoneme restoration;” Samuel,
1981, 1996, 1997; Warren, 1970), and similar
findings from other modalities, such as illu-
sory visual contours (Lee and Nguyen, 2001).
In sum, the pattern of phoneme identifica-
tion phenomena in the literature, including
lexically induced delays and errors, is con-
sistent with direct feedback from lexical to
prelexical processing,

4.3 Lessons from the feedback debate

The feedback debate continues with
researchers on both sides providing new
behavioral and computational arguments
supporting their view (McClelland et al.,
2006; McQueen et al,, 2006; Mirman et al.,
2000a). Nonetheless, the debate illustrates
the critical two-way connection between
model simulations and behavioral data:
Simulations need to fit the behavioral data
and make predictions for new behavioral
experiments. For this connection to work,
simulation materials and linking hypoth-
eses need to be matched to behavioral
experiment materials and task constraints

and intuitive model predictions need to
be tested with empirical simulations. In
L, ddition, resolving the debate may require
integration with other domains of cogni-
tive science (e.g., theoretical neuroscience;
Friston, 2003; Magnuson, 2008a) and broader
scope analyses (e.g., the importance of inter-
active feedback for learning).

5 Crucial questions and directions for
progress

. Current computational models of SWR the-
_ ories require assumptions about the input
_and output and implementations of three
core principles: multiple activation, simi-
larity and priors, and competition. Progress
may require us to reconsider where SWR
begins and ends. SWR can be construed
narrowly, as mapping strings of phonemes
onto sound forms associated with words,
or as broadly as mapping from the acoustic
signal to a comprehensive set of phonologi-
cal, grammatical, and semantic characteris-
tics as part of the processes of recognizing
larger structures like sentences (cf. Dahan
and Magnuson, 2006}, Whether you adopt
a narrow view, broad view, or something in
between has dramatic implications for your
processing theory. The conventional view
is that adopting the simplifying assump-
tions of the narrow view allows us to break
off a tractable piece of the problem. But
seemingly minor simplifying assumptions
may actually complicate things, because
they remove potentially constraining
information.

Consider the embedded word problem.
Most words are embedded in other words,
and/or have words embedded within them
(depending on dialect, cat, at, a, cattle, law,
and log are embedded in a phonemic tran-
scription of catalog), suggesting that models
of SWR must somehow inhibit recognition
of embedded words. The problem is much
less extreme when one considers potential
subphonemic cues such as durational dif-
ferences between short and long words. For
example, the syllable /haem/ is longer in the
word ham than in hamster. Salverda et al.
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(2003) used eyetracking to measure lexical
activation and competition and found that
subjects were exquisitely sensitive to vowel
duration differences of only about fifteen
msecs (see Davis et al., 2002 for converging
results from priming studies), suggesting
such subphonemic cues may mitigate (but
not obviate) the embedding problem. Thus,
while adopting the narrow view of SWR
may allow traction on significant parts of the
problem, it may simultaneously complicate
the problem by ignoring useful information.
The same holds in the opposite direction:
Limiting the scope of SWR to phonological
form recognition ignores syntactic, semantic,
and pragmatic knowledge that could poten-
tially constrain word recognition. Similarly,
eschewing production constraints, as well
as learning and developmental trajectories
leaves a more tractable problem, but at the
peril of missing, for example, ways in which
seeming puzzles of adult processing might
emerge in unanticipated fashion from devel-
opmental pressures (MacDonald, 1999).

In our view, the greatest potential for pro-
gress in modeling SWR is in taking increas-
ingly broader views: upstream (by working
toward models that operate on raw speech),
downstream (by connecting the output of
current SWR models with higher order
linguistic and cognitive structures), and
developmentally. Current debates, like the
feedback debate, have little consequence for
broad view models; the differences between
models are modest and may disappear (or
be amplified) as we grapple with greater
realism. The model of Plaut and Kello
(1999), with its realistic inputs, perception—
production connections, and developmental
approach, stands out as a promising exam-
ple of how the field might proceed toward
these goals,

References

Allopenna, P. D., Magnuson, J. S., & Tanenhaus,
M. K. (1998). Tracking the time course of spo-
ken word recognition using eye movements;
Evidence for continuous mapping models,
Journal of Memory & Language, 38, 419—39.



98 MAGNUSON, MIRMAN, AND HARRIS

Andruski, J. E., Blumstein, S. E., & Burton, M.
(1994). The effect of subphonetic differences
on lexical access. Cognition, 52, 163-87.

Cairns, P.,, Shillock, R., Chater, N.,, & Levy, J,
{1995). Bottom-up connectionist modeling of
speech. In Levy, J. P, Bairaktaris, D., Bullinaria,
J.A.., & Cairns, P. (Eds.) Connectionist models
of memory and language. University College
London Press.

Cole, R. A. (1973). Listening for mispronun-
ciations: A measure of what we hear during
speech. Perception & Psychophysics, 1, 153-6.

Connine, C. M., Titone, D., & Wang, J. (1993).
Auditory word recognition: Extrinsic and
intrinsic effects of word frequency. Journal
of Experimental Psychology: Learning Memory
and Cognition, 19(1), 81-94.

Cutler, A. & Norris, D. (1979). Monitoring sen-
tence comprehension. In Cooper, W. E, &
Walker, ECT (Eds) Sentence processing:
Psycholinguistic studies presented to Merrill
Garrett. Hillsdale: Erlbaum.

Dahan, D. & Magnuson, J., S, (2006). Spoken-word
recognition. In Gernsbacher, M. A. & Traxler,
M. J. (Eds.) Handbaok of Psycholinguistics (pp.
249-83). Flsevier.

Dahan, D., Magnuson, J. S., & Tanenhaus, M. K.
(z001). Time course of frequency effects in
spoken-word recognition: Evidence from
eye movements. Cognitive Psychology, 42,
317~67.

Dahan, D., Magnuson, J. S., Tanenhaus, M. K., and
Hogan, E. M. (2001). Tracking the time course
of subcategorical mismatches: Evidence for
lexical competition. Language and Cognitive
Processes, 16 (5/6), 507-34.

Davis, M. H., Marslen-Wilson, W. D., & Gaskell,
M. G. (2002). Leading up the lexical garden-
path: segmentation and ambiguity in spoken
word recognition. Journal of Experimental
Psychology: Human Perception and Performance,
28, 218~44.

Ellis, R. & Humphreys, G. W. (199q). Connectionist
psychology: A text with readings. Hove, England:
Psychology Press/Taylor & Francis (UK).

Elman, J. L. (1990). Finding structure in time.
Cognitive Science, 14(2), 179211

Elman, J. L. & McClelland, J. L. (1986). Exploiting
lawful variability in the speech wave. In
Perkell, J. S. & Klatt, D. H. (Eds.) Invariance
and variability in speech processes. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Elman, J. L. & McClelland, J. L. (1988). Cognitive
penetration of the mechanisms of perception:
Compensation for coarticulation of lexically

restored phonemes. Journal of Memory &

Language, 27, 143-65.

Fowler, C. & Magnuson, J. S. (this volume);
Speech perception. In Spivey, M., McRae,
K., & Joanisse, M. (Eds) The Cambridge
Handbook of Psycholinguistics. Cambridge

University Press.

Frauenfelder, U H. & Peeters, G. (1998). Simulating
the time course of spoken word recognition;
An analysis of lexical competition in TRACE,
In Grainger, J. & Jacobs, A. M. (Eds.) Localist
Connectionist Approaches to Human Cognition

(pp. 101~46). Mahwah, NJ: Erlbaum.

Frauenfelder, U. H., Segui, J, & Dijkstra, T
(1990). Lexical effects in phonemic process-
ing: Facilitatory or inhibitory? Journal of
Experimental Psychology: Human Perception &

Performance, 16(1), 77-91.

Friston, K. (2003). Learning and inference in the

brain. Neural Networks, 16, 1325-52.

Gaskell, M. G. & Marslen-Wilson, W. D. (1997).
Integrating form and meaning: A distrib-
uted model of speech perception. Language
& Cognitive Processes. Special Cognitive mod-
els of speech processing: Psycholinguistic and
computational perspectives on the lexicon, 12,

613-56.

(1999). Ambiguity, competition, and blending
in spoken word recognition. Cognitive Science,

23, 43902

{z002). Representation and competition in
the perception of spoken words. Cognitive

Psychology, 45(2), 220-66.

Goldinger, S. D. (1998). Echoes of echoes? An
episodic theory of lexical access. Psychological

Review, 105, 251-79.

Goldinger, S. D. & Azuma, T. (2003). Puzzle-
solving science: The quixotic quest for units
in speech perception. Journal of Phonetics, 31,
305-20.

Grossberg, S. & Myers, C. W. (2000). The resonant
dynamics. of speech perception: Interword

integration and duration-dependent back-
ward effects. Psychological Review, 107(4),
73567

Grossberg, S., Boardman, ., & Cohen, M. (1997).
Neural dynamics of variable-rate speech cate-
gorization. Journal of Experimental Psychology:
Human Perception and Performance, 23(2),
481-503.

Grossberg, S., Govindarajan, K. K., Wyse, L. L., &
Cohen, M. A. (2004). ARTSTREAM: a neural
network model of auditory scene analysis and
source segregation. Neural Networks, 17(4),
51136,

Hintzman, D. L. (1986). “schema abstraction” in
2 multiple-trace memory model. Psychological
 Review, 93, 41-28.

acobs, A. M. & Grainger, J. (1994). Models of visual
_ word recognition: Sampling the state of the

art. Journal of Experimental Psychology: Human

_ Perception and Performance, 20(6), 131-34.
Kello, C. T. & Plaut, D. C. (2003). Strategic con-
_ trol over rate of processing in word reading:

A computational investigation of the tempo-
naming task. Journal of Memory and Language,
48, 207-32.

Klatt, D. H. (1979). Speech perception: A model

of - acoustic-phonetic analysis and lexical
access. Journal of Phonetics, 7(3), 279-312.

Kraljic, T. & Samuel, A. G. (2005). Perceptual

learning for speech: Is there a return to nor
mal? Cognitive Psychology, 51(2), 141-78.

(2006). Generalization in perceptual learning

for speech. Psychonomic Bulletin & Review,
13(2), 262-8.

Lee, T. S. & Nguyen, M. (2001). Dynamics of sub-

jective contour formation in early visual cor-
tex. Proceedings of the National Academy of

Sciences, 98(4), 1907~77.

Luce, P. A. (1986). A computational analysis of

tiniqueness points in auditory word recogni-
tion. Perception & Psychophysics, 39, 155-8.

Luce, P. A. & Pisoni, D. B. (1998). Recognizing

spoken words: The neighborhood activation
model. Ear and Hearing, 19, 1—36.

Luce, P. A, Goldinger, S. D., Auer, E. T, Jr, &

Vitevitch, M. S. (2000). Phonetic prim-
ing, neighborhood activation, and parsyn.
Perception and Psychophysics, 62, 615—25.

Luce, R. D. (1959). Individual choice behavior.

Oxford, England: John Wiley.

MacDonald, M. C. (1999). Distributional informa-

tion in language comprehension, production,
and acquisition; Three puzzles and a moral. In
MacWhinney, B. (Ed.) The emergence of lan-
guage (pp. 177-96). Mahwah, NJ; Erlbaum.

MacDonald, M. C, Pearlmutter, N. J, &

Seidenberg, M. S. (1994). The lexical nature of
syntactic ambiguity resolution. Psychological
Review, 101, 676-703.

Magnuson, J. S. (2008a). Nondeterminism, pleiot-

ropy, and single word reading: Theoretical and
practical concerns. In Grigorenko, E. & Naples,
A. (Eds)) Single Word Reading. Mahweh, NJ:
Erlbaum.

{2008b). Generating individual eye movement

behavior from central tendency models of
spoken word recognition. Technical Report,
University of Connecticut. http://magnuson.
psy.uconn.edu/pub.html.

COMPUTATIONAL MODELS OF SPOKEN WORD RECOGNITION 99

Magnuson, J. S., Dahan, D., & Tanenhaus, M. K.
(2001). On the interpretation of computational
models: The case of TRACE. In Magnuson,
J. S. & Crosswhite, K. M. (Eds.) University
of Rochester Working Papers in the Language
Sciences, 2(1), 71-91.

Magnuson, J. S., McMurray, B., Tanenhaus, M. K.,
& Aslin, R. N. (2003a). Lexical effects on com-
pensation for coarticulation: The ghost of
Christmash past. Cognitive Science, 27, 285—98.

(2003b). Lexical effects on compensation
for coarticulation: A tale of two systems?
Cognitive Science, 27, 8015,

Magnuson, J. S., Strauss, T., & Harris, H. D. (2005).
Interaction in spoken word recognition mod-
els: Feedback helps. Proceedings of the Annual
Meeting of the Cognitive Science Society,
1379-84.

Magnuson, J. S, Tanenhaus, M. K., & Aslin, R. N.
(2000). Simple recurrent networks and com-
petition effects in spoken word recognition.
University of Rochester Working Papers in the
Language Science, 1, 56—71.

Magnuson, J. S., Tanenhaus, M. K., Aslin, R. N., &
Dahan, D. (2003). The microstructure of spo-
ken word recognition: Studies with artificial
lexicons. Journal of Experimental Psychology:
General, 132(2), 202-27.

Marr, D. (1982). Vision. San Francisco: W.H.
Freeman.

Marslen-Wilson, W. D. (1987). Functional paral-
lelism in spoken word-recognition. Cognition,
25, 71-102.

(Ed.) (1989). Lexical representation and process.
Cambridge, MA: The MIT Press.

(1990). Activation, competition, and fre-
quency in lexical access. In Altmann, GTM
(Ed.) Cognitive Models of Speech Processing:
Psycholinguistic and Computational Perspectives
(pp.148—72). Cambridge, MA: MIT Press.

Marslen-Wilson, W. D., & Tyler, L.K. (1980). The
temporal structure of spoken language under-
standing. Cognition, 8, 1-71.

Marslen-Wilson, W.D., & Warren, P. (1994). Levels
of Perceptual Representation and Process in
Lexical Access: Words Phonemes and Features.
Psychological Review, 101, 653-67s.

Marslen-Wilson, W. D. & Welsh, A. (1978).
Processing interactions and lexical access dur-
ing word recognition in continuous speech.
Cognitive Psychology, 10, 2g-63.

Massaro, D. W. (1989). Testing between the TRACE
model and the fuzzy logical model of speech
perception. Cognitive Psychology, 21(3), 398—421.

Masson, M. E. J. (1995). A distributed mem-
ory model of semantic priming. Journal of



100 MAGNUSON, MIRMAN, AND HARRIS COMPUTATIONAL MODELS OF SPOKEN WORD RECOGNITION 101
Experimental Psychology: Learning, Memory, (1994). Shortlist: A connectionist model of con- pustejovsky, J. (1995). The generative lexicon. Integration of visual and linguistic infor-
and Cognition, 21(1), 3-23. tinuous speech recognition. Cognition, sz,  Cambridge, MA: The MIT Press. mation in spoken language comprehension.

McClelland, J. L. (1g91). Stochastic interactive 189-234. o, R. P. N. (2004). Bayesian computation in Science, 268(5217), 632—4.
processes and the effect of context on percep- (2005) How do computational models help recurrent neural circuits. Neural Computation,  Trueswell, I. C. & Tanenhaus, M. K. (Eds.). (1994).
tion. Cognitive Psychology, 23(1), 1-44. us build better theories? In Cutler, A. (Ed.) 16, 1-38. Toward a lexicalist framework of constraint-based

McClelland, J. L. & Elman, J. L. (1986). The Twenty-First Century Psycholinguistics: (z005). Bayesian inference and attentional mod- syntactic ambiguity resolution. Hillsdale, NJ;

. TRACE model of speech perception. Cognitive Four Cornerstones. Mahwah, NJ: Lawrence ulation in the visual cortex. Neuroreport, 16, England: Lawrence Erlbaum Associates, Inc,
Psychology, 18, 1-86. Erlbaum. 1843-48. Van Berkum, JJA, Brown, C. M., Zwitserlood,

McClelland, J. L. & Rumelhart, D. E. (1981). Norris, D. & McQueen, J. M. (2008). Shortlist B; Rumelhart, D. E., Hinton, G. E., & Williams, P, Kooijman, V., & Hagoort, P. (2005).
An interactive activation model of context A Bayesian model of continuous speech rec- R. J. (1986). Learning internal representations Anticipating upcoming words in discourse:
effects in letter perception: I An account of ognition. Psychological Review, 115, 357-95. by error propagation, In Rumelhart, D. E. & Evidence from ERPs and reading times.
basic findings. Psychological Review, 88(s), Norris, D., McQueen, J. M., & Cutler, A. (199s). McClelland, J. L. (Eds.) Parallel Distributed Journal of Experimental Psychology: Learning,
375-407. Competition and segmentation in spoken- Processing: Explorations in the Microstructure of Memory, & Cognition, 31(3), 443-67.

McClelland, J. L., Mirman, D., & Holt, L. L. (2006). word recognition. Journal of Experimental Cognition (Vol. 1, pp. 318-62). Cambridge, MA: ~ Warren, R. M. (1970). Perceptual restoration of
Are there interactive processes in speech per- Psychology: Learning, Memory, and Cognition; MIT Press. missing speech sounds. Science, 167, 392-3.
ception? Trends In Cognitive Sciences, 10(8), 21(3), 1209—28. alverda, A. P, Dahan, D., & McQueen, J. M. Wurm, L. H., & Samuel, A. G. (1997). Lexical
363-9. - (2000). Merging information in speech recogni- (2003). The role of prosodic boundaries in inhibition and attentional allocation during

McLeod, P, Plunkett, K., & Rolls, E. T. (1998). tion: Feedback is never necessary. Behavioral the resolution of lexical embedding in speech speech perception: Evidence from phoneme
Introduction to Connectionist Modeling of & Brain Sciences, 23, 299-370. comprehension. Cognition, go, 51-89. monitoring. Journal of Memory & Language,
Cognitive Processes. Oxford: Oxford University {z003). Perceptual learning in speech. Cognitive amuel, A. G. (1981). Phonemic restoration: 36(2), 165-87.

Press. Psychology, 47, 204-38. Insights from a new methodology. Journal of

McQueen, J. M. (2003). The ghost of Christmas ~ Norris, D., McQueen, J. M., Cutler, A, & Experimental Psychology: General, 110, 474-94.
future: didn’t Scrooge learn to be good? Butterfield, S. (1997). The possible-word con: (1996). Does lexical information influence the Author notes
Commentary on Magnuson, McMurray, straint in the segmentation of continuous perceptual restoration of phonemes? Journal
Tanenhaus, and Aslin (2003). Cognitive Science, speech. Cognitive Psychology, 34(3), 191-243. of Experimental Psychology: General, 125(1),  Preparation of this chapter was supported by
27(5), 795-9. O'Reilly, R. C. & Munakata, Y. (2000). 28-51. NIDCD grant DC-0o5765 and NSF grant 0748684

McQueen, J. M., Norris, D., & Cutler, A. (2006). Computational explorations in cognitive neuro- (1997). Lexical activation produces potent phone-  to JSM, and NICHD grants F32HDos2364 to DM
Are there really interactive processes in speech science: Understanding the mind by simulating mic percepts. Cognitive Psychology, 32(2), 97-127.  and HD-01994 to Haskins Laboratories.
perception? Trends in Cognitive Sciences, 10(12), the brain. Cambridge, MA: The MIT Press. Samuel, A. G. & Sumner, M. (this volume).

533. Pitt, M. A., Kim, W,, Navarro, D. J., & Myung, Current directions in research in spoken word

Mirman, D., McClelland, J. L., & Holt, L. L. J. 1. (2006). Global model analysis by param- recognition. Appendix: Modeling tools
(2005). Computational and behavioral investi- eter space partitioning. Psychological Review, Samuel, A. G. & Pitt, M. A. (2003). Lexical activa-
gations of lexically induced delays in phoneme 113(1), 57-83. tion (and other factors) can mediate compen-  This table lists tools useful for modeling spoken
recognition. Journal of Memory & Language, ~ Pitt, M. A., Myung, J. I., & Altieri, N. (2007). sation for coarticulation. Journal of Memory &  word recognition. The list is ordered by ease of
52(3), 42443. Modeling the word recognition data of Language, 48(2), 416-34. use. Many more tools exist (such as the neural

Mirman, D., McClelland, J. L., & Holt, L. L. (2006a). Vitevitch and Luce (1998): Is it ARTful? Scharenborg, O., Norris, D., ten Bosch, L., &  petwork toolbox for Matlab).

Reply to McQueen et al.: Theoretical and empir- Psychonomic Bulletin & Review, 14, 442-8. McQueen, J. (2005) How should a speech rec- Heuristics for evaluating models
ical arguments support interactive processing.  Plaut, D. C. & Kello, C. T. (1999). The emergence ognizer work? Cognitive Science, 29, 867-918.
'Trends in Cognitive Sciences, 10(12}, 534. of phonology from the interplay of speech Shillcock, R. C. & E. G. Bard. (1993). Modularity 1. Model failures should not be accepted

Mirman, D., McClelland, J. L., & Holt, L. L. comprehension and production: A distributed and the processing of closed class words. In lightly
(2006b). An interactive Hebbian account of connectionist approach. In MacWhinney, B. Altmann, GTM & Shillcock, R. C. (Eds.) . - . .
lexically guided tuning of speech perception. (Ed.) The Emergence of Language (pp. 381-415). Cognitive models of speech processing The Second a. If there is a qualitative failure, dgtermme
Psychonomic Bulletin & Review, 13(6), 958-65. Mahwah, NJ: Erlbaum. Sperlonga Meeting (pp. 163-85). Erlbaum. level of failure

Morton, J. (1969) The integration of information ~ Plaut, D. C., McClelland, J. L., Seidenberg, M. S., Spivey, M., Grosjean, M., & Knoblich, G. (2005). i. Theoretical (the underlying assump-
in word recognition. Psychological Review, 76, & Patterson, K. (1996). Understanding normal Continuous attraction toward phonologi- tions are wrong)

16578, and impaired word reading: Computational cal competitors. Proceedings of the National ii. Implementation (an architectural

Movellan, J. R. & McClelland, J. L. (2001). The principles  in  quasi-regular  domains. Academy of Sciences, 102(29), 10393-8. or representational assumption is
Morton-Massaro law of information integra- Psychological Review, 103(1), 56-115. Strauss, T., Harris, H. D., & Magnuson, J. S. (2007). wrong)
tion: Implications for models of perception.  Plunkett, K. & Elman, J. L. (1997) Exercises jTRACE: A reimplementation and exten- iii. Parameters (the model could fit the
Psychological Review, 108(1), 113-48. in Rethinking Innateness: A Handbook for sion of the TRACE model of speech percep- data with changes in parameters, but

Norris, D. (1990). A dynamic-net model of Connectionist Simulations. Cambridge, MA: tion and spoken word recognition. Behavior then previous model predictions must
human speech recognition. In Altmann, MIT Press. Research Methods, Instruments and Computers, be verified with the new settings)
GTM (Ed.) Cognitive Models of Speech Protopapas, A. (1999). Connectionist modeling 39, 19-30. iv, Linking hypotheses (are human
Processing: Psycholinguistic and Computational of speech perception. Psychological Bulletin, Tanenhaus, M. K., Spivey-Knowlton, M. J, and model materials and tasks
Perspectives, pp. 87-104. Cambridge: MIT. 125(4), 410-36. Eberhard, K. M., & Sedivy, J. C. (1995). comparable?)



102

Table: 5.1.

MAGNUSON, MIRMAN, AND HARRIS

Candidate principles for evaluating and comparing models

Tool

Description and URL

tlearn

lens

Emergent

TRACE

ART

Simple yet powerful simulator for feedforward and (simple) recurrent networks.
No programming experience required. Batch processing possible with X1: version
or scripting tools, Useful in conjunction with Plunkett and Elman (1997) and/or
McLeod, Plunkett, and Rolls (1998).

http://crl.ucsd.edu/innate

Doug Rohde’s “light, efficient neural simulator.” Flexible tool for very wide range of
neural networks. Graphical user interface. Tcl/tk interface makes basic programming
skills useful, but not necessary.

http://tedlab.mit.edu/~dr/Lens

Very powertful tool for “parallel distributed processing” modeling, ranging from
high-level cognitive models to neuronal models. Steep learning curve, but incredibly
flexible. See O'Reilly and Munakata (2000).
http://grey.colorado.edu/emergent/index.php/Main_Page

TRACE: Platform-independent reimplementation of the TRACE model in Java.
Includes graphical user interface, analysis, graphing, scripting, and sharing tools. No
programming experience required. See Strauss et al. (2007).
http://magnuson.psy.uconn.edu/jtrace

HebbTRACE: Original TRACE code (written in C), revised and augmented with
Hebbian learning (Mirman et al., 2006b).
http.//magnusonApsy.uconn.edu/mlrman/research/HebbTRACE.zip

Mark Pitt provides a version of the original code that he has modified slightly and
augmented with tools that facilitate simulation and analysis.
http://Ipl.psy.ohio-state.edu/software. php

Mark Pitt provides Matlab code and descriptions of the version of ARTPHONE used
by Pitt, Myung, and Altieri (2007).
http://Ipl.psy.ohio-state.edu/software.php

b. Failures of theory or implementation are
strong evidence against a model

c. Failures of parameters are strong evi-
dence against a model only if new
parameters are needed for each new
data set

d. Failures due to improper linking hypoth-
eses are not model failures

2. Ingauging degree of success, strong standards
should be preferred to weak standards

a. Quantitative fits are stronger than qual-
itative fits

b. Item-specific predictions are stronger
than condition-specific predictions

¢. Specific error predictions are stronger
than error rate predictions

d. Constrained models (based on parame-
ter space partitioning) are stronger than
unconstrained models (i.e., models that
can fit patterns quite different from
human performance)

Heuristics for comparing models

The heuristics cannot be strictly ordered; for exam-
ple, disparity in heuristic (c) might outweigh heuris-

tics (a) and (b)

In comparing two models

a. Prefer the model with greater breadth (range
of phenomena it models)

b. Prefer the model with greater depth (the
model that can be held to a stronger standard
of success, as in (2)

Prefer the model with greater realism (e.g, a
model with more realistic inputs or outputs)
d. Prefer the more realistically constrained model
(e.g., based on parameter space partitioning, see
text)
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e. When all else is equal, apply Occam’s razor:
prefer the simpler model



