

Language and Cognition Laboratory
Department of Psychology, Columbia University

Methods report 2003.01
Original version, April 2, 2003

Playing sounds from
E-Prime InLine scripts

Jim Magnuson
magnuson@psych.columbia.edu

Abstract
This brief report demonstrates how to play sounds from InLine events in E-Prime. This
is useful when you wish to have control over sequences of stimulus events when, for
example, you need to use InLine scripts to monitor for mouse clicks (e.g., in order to
limit clicks to particular regions), or to monitor a serial connection (e.g., for eye tracker
data). Two methods, one scruffy and one neat, are described.

Acknowledgments
Thanks to Sara Burgess at PST tech support.

Notes
1. The “neat” method described here employs techniques that may be vulnerable to changes in

E-Prime in subsequent versions

Please direct questions and comments to Jim Magnuson.

Columbia Language & Cognition Lab: InLine sound in E-Prime

2

Why you might play sounds inside InLine scripts
In our lab, we use E-Basic scripting in E-Prime InLine events in two methods that make
precise control over sounds using E-Prime Sound events untenable:

1. Continuously monitoring for mouse clicks in order to constrain allowable
responses to particular locations (see Methods Report 2003.02)

2. Continuously monitoring for serial input from an eye tracker (see Methods
Reports 2003.03, 2003.04, and 2003.05).

If, for example, we want a sound to play on each trial 500 ms after the onset of a visual
stimulus, but we want to monitor for mouse or serial data during that 500 ms, we cannot
insert a Sound event to play the sound file. The obvious solution is to play the sound
within the InLine script that is doing the monitoring.

With help from PST tech support, we eventually figured this out. Some people might be
able to infer the process from the E-Basic help, but you would have to start with fairly
deep understanding of E-Basic and stimulus events. The purpose of this report is to
ensure that no one in our lab – and hopefully not in too many other labs – has to
struggle with this.

Two methods for playing sounds from InLine scripts
The next two sections describe methods for playing sounds from scripts. In both
methods, you need to have a global soundbuffer variable, and that variable must be
initialized before you make reference to it. In the Scruffy method, this is accomplished
by creating a Sound event under unreferenced objects. E-Prime automatically creates
and initializes everything you need. In the Neat method, we explicitly code everything
we need directly. In both cases, of course, you must enable the sound device and set
the sound parameters appropriately for your stimuli (under the Devices tab when you
open the Experiment window from the Edit menu).

The script for each method sets up a very simple ‘experiment’ in which a picture of an
object is displayed, and 1000 ms later, the name of the object is played through the
sound device. A third section describes a third script, based on the Neat script, that
provides some basic timing information.

Columbia Language & Cognition Lab: InLine sound in E-Prime

3

Scruffy method
This section describes the solution found in the accompanying E-Prime script, scruffysound.es.
This is easy. Create a Sound event under ‘Unreferenced e-objects’ by dragging a SoundOut
icon. Change the name to ‘MySoundOut’ (note that if you use a different name, you’ll have to
change the references in the script shown below). Set the default filename to be any existing file
(necessary to get it to initialize properly). Now, when you generate the script, E-Prime generates
everything needed to define and initialize the necessary variables.

There are 6 lines you must add to your InLine script to play sound.

Dim theSoundBuffer As SoundBuffer

 Set theSoundBuffer = MySoundOut.Buffers(1)
 theSoundBuffer.Filename = c.GetAttrib("Target") & ".wav"
 theSoundBuffer.Load
 theSoundBuffer.Play
 Set theSoundBuffer = Nothing

However, if you put these all in the same inline script, you will add the variable amount of time it
takes to load the sound (at least a few msecs, even for small sounds). You can preload the
stimulus by adding an InLine prior to your stimulus events that does the loading (i.e., the 4 lines
of code preceding the ‘play’ command). This is how it was done in scruffysnd.es (see Figure 1).

Figure 1: The scruffy solution.

Columbia Language & Cognition Lab: InLine sound in E-Prime

4

Neat method
This section describes the solution found in the accompanying E-Prime script, neatsound.es.
This method was developed by tracking down the appropriate code from the script generated by
E-Prime for scruffysound.es, and putting it into the scripts directly. Why? Here are two reasons
you might do it this way:

1. If leaving unreferenced objects lying around appeal to you aesthetically
2. If you are worried that some well-intentioned lab member might delete your

unreferenced objects and disable your script

However, a word of warning is required: PST tech support told me that the Basic code for
event types is among the aspects of E-Prime most likely to change in subsequent
versions. This means that scripts using Basic code to generate things like sound objects
may need updating when new versions of E-Prime are released.

This method requires the same 6 lines as the previous one (see the NeatSnd object in
neatsound.es, also shown in Figure 2, and the code is reprinted on the next page). In addition, it
requires you to declare three global variables under the User tab in the Script window (see
Figure 2), and it requires that you initialize the variables (as in the MySoundOutCreate event
(Figure 2). N.B.: the line:

 MySoundOutSoundBuffer.Filename = "watch.wav"

may be confusing; you can set this to any existing file name; you need to do this in order to get
it to initialize properly.

Figure 2: The neat solution.

Columbia Language & Cognition Lab: InLine sound in E-Prime

5

Here, more legibly, are the three bits of code from Figure 2.

User area of script window

Dim MySoundOutSoundBufferInfo As SoundBufferInfo
Dim MySoundOutSoundBuffer As SoundBuffer
Dim MySoundOut As SoundOut

MySoundOutCreate

Dim MySoundOutSoundBufferInfo As SoundBufferInfo
Dim MySoundOutSoundBuffer As SoundBuffer
Set MySoundOut = New SoundOut
MySoundOut.Name = "MySoundOut"
MySoundOut.Tag = ""
MySoundOutSoundBufferInfo.MaxLength = 5000
MySoundOutSoundBufferInfo.VolumeControl = CLogical("no")
MySoundOutSoundBufferInfo.PanControl = CLogical("no")
Set MySoundOutSoundBuffer= Sound.CreateBuffer(MySoundOutSoundBufferInfo)
MySoundOut.Buffers.Add MySoundOutSoundBuffer
MySoundOutSoundBuffer.Filename = "watch.wav"
MySoundOutSoundBuffer.Load

MySoundOutSoundBuffer.EndSoundAction = 0
Set MySoundOutSoundBuffer = Nothing
MySoundOut.Duration = CLng("-1")
MySoundOut.TimingMode = ebTimingModeEvent
MySoundOut.PreRelease = Val("0")

MySoundOut.OnsetSync = 1
MySoundOut.OffsetSync = 0

LoadSnd

Dim theSoundBuffer As SoundBuffer
Set theSoundBuffer = MySoundOut.Buffers(1)
theSoundBuffer.Filename = c.GetAttrib("Target") & ".wav"
theSoundBuffer.Load

NeatSnd

sleep 1000

theSoundBuffer.Play
Set theSoundBuffer = Nothing

sleep 1000

Columbia Language & Cognition Lab: InLine sound in E-Prime

6

Neat method – plus timing
This section describes the solution found in the accompanying E-Prime script,
neatsoundplustime.es.

Figure 3 highlights what changes we make to do this. First, we add some global Long variables
to handle the timing records to the user area of the script window (I know; not all of them need
to be global – so much for the “neatness”).

Then, add an InLine to read the clock right before the picture is displayed.

Finally, we add a few lines to NeatSnd so we can measure how much time elapses between the
clockreads, and to print summaries in the Output window (via the Debug.Print method). From
the output window in Figure 3, you can see that 1008 ms elapsed from the time the ShowPic
event was called to when the next clockread happened on every trial. Without preloading (i.e.,
with the 4 lines from LoadSnd in NeatSnd), the latency is variable, but usually 1013 or 1012
msecs. Thus, we can chalk the 8 extra msecs observed here to the synching of the picture to to
refresh synching (this test was done on a monitor with a refresh rate of 120 hz). Preloading is
saving about 5 msecs. However, N.B. that this does not guarantee that the sound actually
played 8 ms after the request; this is when E-Prime asked it to be played. Verifying the actual
timing of the sound event is beyond the scope of this report (neat method: oscilloscope; scruffy
method: audio and/or video tape and lots of trials to estimate variability in timing).

Figure 3: The neat solution plus basic timing.

