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Two talkers’ productions of the same phoneme may be quite different acoustically, whereas their
productions of different speech sounds may be virtually identical. Despite this lack of invariance in the
relationship between the speech signal and linguistic categories, listeners experience phonetic constancy
across a wide range of talkers, speaking styles, linguistic contexts, and acoustic environments. The
authors present evidence that perceptual sensitivity to talker variability involves an active cognitive
mechanism: Listeners expecting to hear 2 different talkers differing only slightly in average pitch showed
performance costs typical of adjusting to talker variability, whereas listeners hearing the same materials
but expecting a single talker or given no special instructions did not show these performance costs. The
authors discuss the implications for understanding phonetic constancy despite variability between talkers
(and other sources of variability) and for theories of speech perception. The results provide further
evidence for active, controlled processing in real-time speech perception and are consistent with a model

of talker normalization that involves contextual tuning.
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A fundamental theoretical problem that remains unsolved despite
decades of speech research is the lack of invariance between the
speech signal and perceptual categories. Depending on phonetic con-
text, talker characteristics, or speaking rate, one acoustic pattern may
correspond to several different phonemes, and one phonemic percept
may result from several different acoustic patterns (e.g., Liberman,
Cooper, Shankweiler, & Studdert-Kennedy, 1967; Peterson & Bar-
ney, 1952). Despite this lack of invariance, listeners routinely expe-
rience phonetic constancy: They successfully recognize the variable
speech input as the intended phonetic categories, just as they have a
stable percept of color across variation in ambient illumination or the
size of a person across retinal image differences.

Over the years, much of the research on the lack-of-invariance
problem has focused on the role of acoustic—phonetic variability as
a consequence of coarticulation among phonetic segments (e.g.,
Liberman, 1986; Liberman et al., 1967). For example, a particular
consonant release burst is heard as /p/ or /k/ depending on whether
the following context is /i/ or /a/ (Liberman, Delattre, & Cooper,
1952). In addition, the formant transition pattern corresponding to
any particular consonant varies depending on context (Delattre,
Liberman, & Cooper, 1955).
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When differences in talker and speaking rate are considered, the
problem of lack of invariance becomes considerably worse, be-
cause these factors provide additional sources of many-to-many
mappings. Across talkers, the same acoustic pattern can corre-
spond to different perceptual categories, whereas different talkers’
productions of the same phoneme can differ acoustically (Dorman,
Studdert-Kennedy, & Raphael, 1977; Peterson & Barney, 1952).
Similarly, one acoustic pattern may be heard as /b/ at one speaking
rate but as /w/ at a slower rate (J. L. Miller & Baer, 1983). Thus,
different sources of variability contribute to the nondeterministic
mapping of acoustic patterns onto phonetic categories (cf. Nus-
baum & Magnuson, 1997).

In spite of the similar consequences for theories of speech
perception, different sources of acoustic—phonetic variability in
speech have typically been investigated independently. Phonetic
context variability has generally been treated as the primary prob-
lem (e.g., Liberman et al., 1967), and factors like talker differences
and speaking rate variability have been treated as secondary com-
plications. On the one hand, this is a useful simplifying assump-
tion; examination of one type of variability is more tractable when
the others are held constant. On the other hand, it seems to suggest
that different types of variability pose distinct perceptual chal-
lenges. Indeed, this appears to follow from observations that each
type of acoustic—phonetic variability is marked by different kinds
of signal properties grounded in the physics of articulation (e.g.,
burst locus and formant transition patterns for phonetic context
variability [Delattre et al., 1955]; formant frequency relationships
for talker differences [Syrdal & Gopal, 1986]; acoustic segment
durations for speaking rate [J. L. Miller & Liberman, 1979]).

Studies of phonetic context variability typically focus on rela-
tively local influences, such as the effects of coarticulation among
adjacent segments (e.g., Lotto, Kluender, & Holt, 1997; Mann,
1980). These studies tend to focus on the way in which temporally
proximal sets of cues influence phonetic perception. In contrast,
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research on talker and speaking rate variability has often examined
the effects of much larger temporal contexts, such as an antecedent
carrier phrase (e.g., Ladefoged & Broadbent, 1957, for talker
differences; Gordon, 1988, for speaking rate variability), although
the durations of adjacent segments have also been examined (e.g.,
J. L. Miller & Liberman, 1979).

In spite of these differences in the research approach, similar
theoretic assumptions arise in studying these different forms of vari-
ability, unified by the goal of finding a deterministic mapping from
acoustic patterns to perceptual categories. One underlying assumption
is that there are phonetic invariants but that typical methods of speech
analysis do not reveal the actual invariant information, whether in
acoustic cues (e.g., Kewley-Port, 1983; Stevens & Blumstein, 1978,
1981) or in causal event structures directly informing the listener of
the movements of articulators (i.e., direct realism: Best, 1994; Fowler,
1989). A distinct but conceptually related assumption is that a suffi-
cient sampling of the acoustic distribution of utterances might provide
a statistical basis for phonetic stability (e.g., Diehl, Lotto, & Holt,
2004; Goldinger, 1998). These assumptions are predicated on the
notion that there is some kind of invariant basis to phonetic perception
but that the true nature of the invariance is obscured by the way in
which the acoustic patterns of speech are analyzed. In contrast, motor
theory (Liberman et al., 1967; Liberman & Mattingly, 1985) accepts
that there are no true or underlying acoustic cues to phonetic catego-
ries. Rather, motor theory proposes that listeners use knowledge of
speech production (embedded in a speech-specific mechanism) to
perceptually recover the articulatory gestures used in speaking. Thus,
invariance lies in the motor behavior rather than the acoustic infor-
mation.

However, these assumptions all share the idea that the process of
mapping from acoustic cues to phonetic categories is direct and
unmediated by cognitive processes. The classification of an external
signal (acoustic cue or motor movement) is directly mapped or
transformed passively to a corresponding phonetic category. Thus, the
relationship from external signal to perceptual category is a determin-
istic process that essentially strips away irrelevant variability.

Even after decades of speech research, there are few direct tests
of this view. Empirical support comes in the form of evidence for
or against specific predictions, relatively limited in scope, that are
associated with aspects of this view but do not test it. For example,
evidence that nonhuman animals are sensitive to the covariation of
acoustic information in speech (e.g., Lotto et al., 1997) is used to
argue that articulatory knowledge is not necessary to explain
phonetic context effects. However, this evidence cannot rule out
the possibility that such knowledge is actually used by human
listeners. Similarly, the effect of talker-specific details of spoken
words on memory and responses (Goldinger, 1998) is used to
argue that talker-specific information is not stripped away from the
perception of those words. But this does not prove that holistic
traces are the sole medium of speech perception (see the General
Discussion). Many such studies focus on isolating one aspect of
variability and demonstrating that the problem posed by this vari-
ability can be resolved, in principle, by some kind of direct
mapping process that could be described as a bottom-up process or
a “passive” mapping (see Nusbaum & Schwab, 1986).

We have argued previously (Nusbaum & Magnuson, 1997) that
by its very definition, the lack of invariance in the mapping of
acoustic patterns onto phonetic categories is computationally non-
deterministic and, thus, cannot be resolved by any direct, deter-

ministic mapping theory. The theoretical approaches that have
been taken in the past have been based entirely on the pattern
properties of the speech stimulus and have attempted to solve the
lack-of-invariance problem by positing the use of specific knowl-
edge (e.g., special invariant features, statistical distributions, artic-
ulatory gestures) that could provide a deterministic mapping of
speech onto phonetic categories. However, analytic consideration
of the nature of these direct mapping theories and the nondeter-
ministic nature of the computational problem suggests that this is
an untenable approach.

Thus, we argued that the nondeterministic mapping must be
solved by mechanisms incorporating active control structures
(Nusbaum & Magnuson, 1997). Unpacking this claim requires a
brief discussion of the three fundamental components of compu-
tational mechanisms: representations, transformations, and control
structures. If a deterministic mapping exists between input and
output representations, or if the representations can be transformed
to render a deterministic mapping, passive control structures (also
called open-loop structures) suffice: The same input conditions
result in the same series of transformations and outputs. For
example, an open-loop movement like a ballistic saccade is
planned in advance, and the movement is executed without on-
the-fly adjustment. Such structures afford fast, automatic re-
sponses, but they are inflexible and context-invariant. With active
control structures (also called closed-loop structures), the same
input need not result in the same output. Instead, the system
monitors and modifies its output in a context-sensitive way. A
classic closed-loop example is a visually guided reach, in which
visual feedback can be used to continuously adjust the movement
as it is made. Thus, active control structures are generally more
complex, but they afford adaptive, flexible, context-dependent
responses. On the active control view of speech processing, the
variability in speech does not obscure the underlying phonetic
code but lawfully reflects properties of the message source—the
talker and other context. Phonetic constancy is achieved by ad-
justing interpretation of the signal as a function of bottom-up and
top-down constraints. We call this the active control hypothesis.

In this article, we focus on the issue of talker variability and explore
how much acoustic difference between talkers is sufficient for the
perceiver to show effects of talker variability (e.g., Nusbaum &
Morin, 1992). We begin by briefly reviewing the primary findings
associated with accommodating talker variability. We show that there
is growing evidence for active control but also that some basic facts
about talker variability have yet to be examined.

First, the basic challenge of talker variability is that the rela-
tionship between acoustic patterns and phonetic categories de-
pends on specific vocal characteristics of a talker. That is, there is
a talker-dependent mapping between acoustic information and
linguistic categories. For example, Peterson and Barney (1952)
plotted the vowels of many adult male and female talkers and of
child talkers in F1 X F2 space (i.e., the first two formants) and
found substantial overlap between categories, such that one talk-
er’s production of a vowel like / T/ might have the same formants
as another talker’s production of /&/, whereas the two talkers’
productions of /i/ could be quite different. This is a classic
example of the many-to-many mapping between acoustics and
phonetics: Two vowel categories may be produced by different
talkers with very similar acoustic patterns, whereas very different
acoustic patterns produced by different talkers may be intended
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and perceived as the same vowel. However, listeners have little
trouble interpreting acoustic patterns in talker-appropriate ways,
even from isolated words (Peterson & Barney, 1952). Although
few studies approach the scope and breadth of this particular study,
Johnson, Ladefoged, and Lindau (1993) reported that talkers vary
rather dramatically in the articulatory gestures they use to produce
acoustically similar segments. Talker-dependent mappings be-
tween acoustic patterns and consonant categories have also been
reported. For example, even when dialect, sex, and emotional state
are relatively controlled, two talkers can differ in their production
of acoustic cues to place of articulation such that one talker can
rely more on release burst spectral shape, whereas another will rely
more on transitions (e.g., Dorman et al., 1977). Thus, listeners
cannot weight available cues equally for all talkers, because the
information afforded by different cues may provide different pho-
netic information depending on the talker. The listener must figure
out something about the way these talkers produce speech so as to
recognize the intended phonetic information and use coarticulatory
cues. However, to do so, the listener must perceive that such
information is needed. How much of a difference in talker vocal
characteristics is needed for the listener to encode this acoustic
information differently?

The simplest theories of how listeners achieve phonetic con-
stancy despite talker variability are intrinsic normalization theories
(cf. Ainsworth, 1975; Nearey, 1989) or structural estimation the-
ories (Nusbaum & Morin, 1992). On this view, any sample of
speech is “self-normalizing”; that is, any utterance contains suffi-
cient information to properly categorize it via a normalizing trans-
formation. For example, Syrdal and Gopal (1986) proposed that FO
(fundamental frequency) and F3 (the third formant) could be used
to rescale F1 and F2, the primary cues to vowel identity, although
such a rescaling does not eliminate the effects of talker variability
entirely (similarly, the duration of a vowel can provide the basis
for estimating speaking rate to calibrate perception of a stop or
semivowel consonant; J. L. Miller & Liberman, 1979). Shank-
weiler, Strange, and Verbrugge (1977) proposed that the dynamic
cues in consonant formant transitions (coarticulated with an adja-
cent vowel) may provide talker-independent information about
vowel identity. This approach was supported by tests of compu-
tational models and related later work (e.g., Strange, 1989), sug-
gesting that individual samples of speech indeed contain consid-
erable talker-independent phonetic information. However, intrinsic
normalization cannot account for the next two phenomena.

The second major talker variability finding is that there is a
processing cost when there is talker variability in a set of utter-
ances. Changing from one talker to another in experimental set-
tings can impair accuracy and/or response time. Speech perception
in noise is less accurate and slower when there is talker variability
in a set of utterances compared with when listeners hear utterances
produced by a single talker (Creelman, 1957; Magnuson, Nus-
baum, & Akahane-Yamada, 2007; Mullennix, Pisoni, & Martin,
1989). Recognition of vowel, syllable, and spoken word targets is
reliably slower when there is talker variability compared with
recognition of the speech of a single talker, and this slowing of
responses interacts with working-memory load (Nusbaum &
Morin, 1992; see also Mullennix & Howe, 1999). Talker consis-
tency promotes better performance than does talker variability in
shadowing speech (Goldinger, 1998). Even serial recall of lists of
words spoken by different talkers is worse than recall of lists of

words spoken by single talkers (Martin, Mullennix, Pisoni, &
Summers, 1989). Intrinsic normalization does not predict a cost
associated with talker changes, because the normalizing transfor-
mation is carried out for every sample of speech. This, along with
the next finding, motivates an alternative theory of normalization.

The third major finding is that the context of prior speech
influences recognition of a target utterance. For example, follow-
ing Joos’s (1948) suggestion that antecedent information about a
talker’s vowel space might provide a context for subsequent vowel
perception, Ladefoged and Broadbent (1957) manipulated the vo-
cal characteristics of a synthesized carrier phrase (by shifting
formant frequencies) to simulate different talkers’ vowel spaces,
and they observed significant changes in perception of a constant
set of vowel targets that depended on the characteristics of the
preceding carrier phrase (see Gordon, 1988, for analogous effects
based on the speaking rate of an antecedent context for a voicing
decision). Thus, information about a talker’s vocal tract perceived
prior to a particular vowel sample is used by listeners in mapping
the acoustics of the sample onto phonemic categories.

Effects of preceding context have motivated extrinsic normal-
ization theories of talker variability (cf. Ainsworth, 1975; Nearey,
1989). On this view, listeners use intrinsic cues but also improve
the talker-specific mapping as more speech is heard. For example,
Gerstman (1968) tested a computational model that achieved good
performance across talkers when given information about the
formant parameters for a talker’s point vowels that were used to
rescale subsequent speech (although it remains to be seen whether
this simple approach can be extended to fluent speech). On Nus-
baum and Morin’s (1992) contextual tuning theory, a change in
talker triggers normalization procedures that operate until a stable
mapping between the talker and internal phonetic categories is
achieved. The stable mapping is then maintained until a talker
change is indicated acoustically (e.g., by large changes in FO) or
more implicitly (e.g., via failures of lexical access). Such accounts
naturally explain effects of prior context. Extrinsic theories also
provide an account for processing costs following talker changes,
because they exploit stability in talker characteristics and only
perform normalization after talker changes.

Nusbaum and Morin (1992) also reported results that are con-
sistent with the active control hypothesis. First, perceived changes
in the talker affect the way listeners attend to subsequent speech.
Nusbaum and Morin reported that when the speech was produced
by a single talker, with formants above F2 filtered, whispering the
vowels or combining whispering and filtering had no effect on
recognition accuracy. However, when there was talker variability,
elimination of FO and F3 and higher formants impaired accuracy.
This suggests that listeners only relied on these cues for phonetic
recognition after recognizing a change in talker (implicitly or
explicitly). Second, talker variability interacts with working mem-
ory load to affect speech perception (Nusbaum & Morin, 1992).
When listeners are given a list of visually presented numbers to
hold in working memory while recognizing spoken syllables, there
is no effect on speech recognition performance of varying the
length of the list (amount of memory load) when the speech is
produced by one talker. However, when there is talker variability,
increasing working-memory load significantly slows speech rec-
ognition, suggesting that talker variability itself may place de-
mands on working memory (cf. Navon, 1984). This interaction is
also typical of controlled processing (Schneider & Shiffrin, 1977),
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as Nusbaum and Magnuson (1997) discussed in detail with respect
to this finding (see also Nusbaum & Schwab, 1986).

Recently, Wong, Nusbaum, and Small (2004) reported neural
evidence consistent with the hypothesis that talker changes engage
controlled attentional processing. They compared word-
monitoring performance in blocked- and mixed-talker conditions
and measured changes in neural activity using functional MRI
(fMRI). The mixed-talker condition resulted in increased activity
in cortical areas associated with speech processing under resource-
demanding conditions (posterior superior temporal gyrus; e.g.,
Just, Carpenter, Keller, Eddy, & Thulborn, 1996) and shifts of
attention to spectral information (superior parietal cortex; e.g., Liu,
Slotnick, Serences, & Yantis, 2003; Posner, 2003).

Although our active control hypothesis invokes a computation-
ally distinct alternative to conventional approaches to lack of
invariance, it has developed naturally from normalization ap-
proaches to the problem. Another alternative to conventional the-
ories are nonanalytic episodic theories (Goldinger, 1998; Pisoni,
1997). This view is based on a radically different approach to the
representations underlying speech perception and lexical access
intended to approximate a deterministic mapping. While we defer
discussion of the details of these and related theories and the
results that motivate them until the General Discussion, the key
idea is that by preserving holistic (hence, nonanalytic) exemplar
traces of speech events, statistical clustering of the traces would
provide a basis for phonetic constancy without the need for an
explicit mechanism to accommodate talker variability or other
forms of context dependence. The present experiments provide
opportunities to evaluate the claim that perceptual accommodation
of talker variability is not needed.

As this brief overview shows, talker variability tends to decrease
the efficiency of speech perception. However, there is a very basic
question that has yet to be addressed by any of the research on talker
variability: What constitutes a difference between talkers sufficient to
produce these variability effects? Experiments 1-3 were designed to
investigate how listeners detect a change in talker characteristics.
Experiment 4 returned to a deeper theoretical issue. The effects on
attention and working memory found by Nusbaum and Morin (1992)
suggest that active control structures may underlie the perceptual
accommodation of talker variability. In Experiment 4, we tested
whether unequivocally top-down information modulates responses to
talker variability. The results point to the nature of the control struc-
tures underlying speech perception as the most promising avenue for
solving the lack-of-invariance problem.

Experiment 1

How do acoustic differences between talkers’ vocal characteristics
relate to the effects of talker variability on speech perception? As
noted above, talker variability effects are manifested in several ways,
such as reduced recognition accuracy and slower recognition. Talker
normalization theories assume that when there is a talker change,
listeners must figure out how to map the new talker’s acoustic patterns
onto their intended phonetic interpretations, and determination of the
new mapping will slow recognition. In comparison, episodic-trace
models such as Goldinger’s (1998) deny normalization and, instead,
attribute talker variability effects to the simultaneous encoding of
indexical and phonetic information.

From either perspective, as long as the talker is constant, per-
formance is maintained; the change in talker generates the effect
on recognition performance. However, neither perspective makes
strong claims about how much change between talkers is necessary
for talker variability effects to be obtained. For the episodic mod-
els, in principle, if there is a discriminable change in a talker’s
voice, listeners will have to attend to both phonetic and indexical
dimensions, thus slowing phonetic recognition. This means that
whether the indexical properties change or, for example, the vowel
space changes, there should be a variability effect. However,
normalization models could make a different prediction. Because
normalization is only necessary to constrain phonetic interpreta-
tion, normalization theories might predict that talker variability
effects will be observed only if there is a difference between
talkers that is sufficient to produce a many-to-many mapping. That
is, if two talkers’ vowel spaces are sufficiently similar, talker
variability effects might not be observed, even if the talkers’ voices
differ in other qualities.

Normalization theories would predict that talker variability ef-
fects result from the increased ambiguity in acoustic-to-phonetic
mapping and the performance costs of adjusting to the acoustic—
phonetic space of the new talker (Nusbaum & Magnuson, 1997).
However, a talker’s vocal characteristics are correlated with other
aspects of that talker’s speech. Thus, it would not be surprising if
normalization operated by a satisficing (rather than optimal) ap-
proach of engaging in normalization whenever any detectable
acoustic change between talkers is perceived. Although this more
conservative strategy might lead to a greater average slowing of
recognition performance (through unnecessary normalization op-
erations), it would promote recognition accuracy.

Do all pairs of discriminably different talkers produce talker
variability effects when their speech is presented to listeners? Does
the size of the talker variability effect depend on the acoustic
difference between different talkers? Experiment 1 represents an
extension of an experiment reported by Nusbaum and Morin
(1992), using the same materials but additional subjects. We used
speeded spoken target monitoring to examine whether the acoustic
difference between talkers in a mixed-talker condition predicts the
magnitude of normalization effects. A talker variability effect is
operationalized as reliable slowing of speech recognition (or reli-
able decreases in accuracy) under conditions of talker change
compared with conditions of talker stability (i.e., mixed- vs.
blocked-talker conditions). In this experiment, we compared
mixed-talker conditions with pairs of talkers of the same sex or
different sexes. Within each pair of talkers, the voices were cer-
tainly discriminable, although different pairs were not equally
discriminable. If talker variability effects depend solely on dis-
criminability of voices, all pairs should have produced similar
effects relative to single-talker conditions. If talker variability
effects depend on whether the difference between talkers is suffi-
cient to produce a need for normalization tuning, then different
pairs may produce different results.

Method

Subjects. Two groups of 23 subjects were recruited from the
University of Chicago community. All subjects were native speak-
ers of American English and reported that they had no history of
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hearing or speech disorders. We paid subjects for their participa-
tion and debriefed them when they completed the experiment.

Stimuli. The stimuli consisted of the vowels /i/, /I/, /u/,
and /U/ (used as targets and distractors) and /e/, /=/, /a/, and
/A/ (used only as distractors). One token of each vowel was
produced by each of two male and two female talkers. We mea-
sured the formant frequencies of the steady-state portions of each
vowel for all four talkers. Although the experimenters found the
male and female pairs easily discriminable (they were familiar
with all four talkers), a surprising observation followed from the
vowel space measures. The male talkers differed substantially, but
the female talkers had nearly identical vowel spaces as well as
average pitches of approximately 200 hz. Formant centers mea-
sured by hand from spectrograms of the steady-state portions of
the target vowels for each talker, along with /e/ and /a/ to more
fully describe the vowel spaces, are shown in Table 1. The items
were padded with silence to make all items 500 ms in duration, so
as to allow for a constant stimulus onset asynchrony (SOA).

Procedure. A speeded target-monitoring task was used, and
hit rate, false alarm rate, and response times were calculated.
Subjects were presented with an orthographic form of a target
vowel on a computer display and instructed to press the space bar
whenever they heard the target vowel they saw on the screen. On
each trial, subjects heard a sequence of 16 vowels separated by 250
ms of silence (making the total SOA 750 ms). Four targets were
randomly placed at ordinal positions between the 1st and 16th
stimuli, and they were separated by at least 1 distractor. On each
trial, subjects listened for 1 target from the set /i/, /1/, /u/, and
/U/. The twelve distractors were randomly selected from the full
set of stimuli, excluding the trial’s target.

The two groups of subjects each heard a blocked-talker condi-
tion and two mixed-talker conditions, with block order counter-
balanced. Each block consisted of 12 trials (each trial being a
16-vowel sequence with 4 of the stimuli being targets). There were
two mixed-talker blocks and two blocked-talker blocks, with order
counterbalanced between subjects. For one group, the mixed-talker
conditions contained two talkers of the same sex, with two female
talkers in one block and two male talkers in the other (with the two
talkers mixed within each block). The other group heard pairs of
different-sex talkers in the mixed blocks. In one mixed-talker
block, one male and one female talker were combined, and the
other two talkers were combined in the second mixed-talker block.
For every talker a subject heard in the mixed-talker condition,

Table 1
Vowel Spaces (in Hz) of the Natural Talkers Used in
Experiment 1

Vowel

Talker Formant /i/ /1/ /a/ [/ /u/ /u/
Female 1 F1 280 415 970 940 485 355
F2 2,750 2,170 1,500 2,040 1,255 1,080

Female 2 F1 350 420 900 850 480 385
F2 2,650 2280 1,310 2,010 1,300 1,350

Male 1 F1 380 425 765 585 510 365
F2 2,105 1,875 1,250 1,800 1,180 960

Male 2 F1 210 375 730 550 385 295
F2 2,185 1,890 1,175 1,900 1,100 775

there was a corresponding blocked-talker set of trials (on which all
the items were produced by that talker). For each subject, each
target produced by each talker occurred four times in the blocked-
talker condition and four times in the mixed-talker condition.
Thus, for each talker, there were 16 mixed-talker condition trials
and 16 blocked-talker condition trials. In the blocked-talker con-
dition, trials (as well as items within trials) were blocked by talker,
and talker order was counterbalanced.

Results and Discussion

We measured response time and accuracy for responses to
targets (hits) and distractors (false alarms). Response times were
measured from stimulus onset, and responses that occurred less
than 150 ms after the onset of a stimulus were scored as responses
to the preceding item. We conducted analyses of variance
(ANOVAs5) on hit rate, false alarm rate, and response time for two
factors with two levels each: talker sex homogeneity (same or
different) and talker condition (blocked or mixed). Recall that for
each talker a subject heard in the mixed-talker condition, there was
a corresponding blocked-talker set of trials on which all stimuli
were produced by that single talker. Thus, for example, for the two
male talkers, the blocked-talker condition consisted of separate
blocks of blocked-talker trials with each talker, whereas the mixed-
talker condition consisted of the same number of trials per talker
on which the talker switched randomly from one male talker to the
other.

Hit rates were slightly higher when talker sexes were different
(.94, SD = .07) than when they were the same (.92, SD = .08), but
the main effect of talker sex was not significant, F(1, 44) = 1.01,
p = .319, w? = 0. The main effect of talker condition (blocked by
talker vs. mixed talkers) was significant, F(1, 44) = 4.27, p =
.045, with higher hit rates in the blocked-talker condition (.94,
SD = .07) than in the mixed-talker condition (.91, SD = .08),
although the effect size was negligible (v* = .002). The Talker
Sex Homogeneity X Talker Condition interaction nearly reached
significance for hit rates, F(1, 44) = 3.40, p = .072, but the effect
size was also negligible (w”> = .001), and we did not explore this
interaction further.

A similar pattern held for false alarm rates. The main effect of
sex homogeneity was not significant, F(1, 44) = 1, with the mean
false alarm rate being .02 in both conditions. There was a weak
main effect of talker condition, F(1, 44) = 11.76, p = .001, 0’ =
.006, with slightly more false alarms in the mixed-talker condition
(.03, SD = .02) than in the blocked talker condition (.02, SD =
.02). The Talker Sex Homogeneity X Talker Condition interaction
was not significant, F(1, 44) < 1.

The pattern of response time results was more complex. The
main effect of talker sex homogeneity was not significant, F(1,
44) < 1 (mean for same-sex pairs = 444 ms, SD = 43; mean for
different sex pairs = 448 ms, SD = 48). There was a modest main
effect of talker condition, F(1, 44) = 25.26, p < .001, »? = .01,
with faster responses in the blocked-talker condition (437 ms,
SD = 45) than in the mixed-talker condition (466 ms, SD = 42).
There was also a weak Talker Sex Homogeneity X Talker Con-
dition interaction, F(1, 44) = 5.72, p = .021, ? = .002, so we
examined the simple effect of talker condition at each level of
talker sex homogeneity. The effect was reliable for different-sex
pairs, F(1, 22) = 37.16, p < .001, ®*> = .07 (mean blocked = 431
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ms, SD = 44; mean mixed = 458 ms, SD = 40), but not for
same-sex pairs, F(1, 22) = 2.75, p = .111, ®? = .003 (mean
blocked = 443 ms, SD = 47; mean mixed = 453 ms, SD = 45).

Given the vowel space differences observed in describing the
stimuli—the two female talkers were more similar than were the
two male talkers—we probed further by examining the simple
effect of talker condition for each talker pair. The means in each
talker condition are shown for each talker pair in Figure 1. Re-
sponse times were reliably longer in the mixed-talker condition
than in the blocked-talker condition for both different-sex pairs
and for the two male talkers, F(1, 22) > 14.00, p < .001, w?> .03
(for all three pairs), but not for the two female talkers, F(1, 22) <
1. Note that similar effect sizes were found for the two different-
sex pairs (w® = .03 or .04) and the pair of male talkers (w” = .03).
This suggests that there is not a graded effect of talker differences;
the substantial pitch and vowel space differences between the male
and female talkers did not lead to more slowing than the more
modest differences between the two male talkers.

Given that the experimenters subjectively found the female
talkers as discriminable as the male talkers (they were familiar
with all four talkers), the absence of a talker condition effect for
the two female talkers suggests at least three implications for talker
variability. First, the attentional demands that slow processing in
the mixed condition may be a result of detection (whether explicit
or not) of variability that may require normalization, such as a
significant change in vowel space. That is, in both the blocked and
mixed conditions, subjects begin contextual tuning on the basis of
the characteristics of the talker who produced the first stimulus in
the block. If the next stimulus is sufficiently similar, contextual
tuning continues to build on the results of the first computation.
Otherwise, contextual tuning must be restarted, thereby slowing
recognition and increasing cognitive load. In the case of the female
talkers, their vowel spaces may have been sufficiently similar for
the perceptual framework computed for one to work for the other.

Second, blocked- vs. mixed-talker effects may indicate mandatory
processing of talker characteristics (Goldinger, 1998; Nygaard &
Pisoni, 1998). However, the lack of an effect for the two female
talkers who seemed quite discriminable could be interpreted as not
supporting this view. Of course, it is possible that the reason we did
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Figure 1. Response times (RTs) for each talker pair in blocked- and

mixed-talker conditions in Experiment 1. Asterisks indicate statistically
significant differences. Error bars represent standard error. Fem = female.

not find an effect with the female talkers was simply that the acoustic
differences between the talkers were too small; listeners unfamiliar
with the female voices may have failed to perceive the difference—
especially given the short, isolated vowel stimuli used.

The third implication, which follows from the second, is that
there is a nondeterministic mapping between acoustic cues and
talkers, just as there is between acoustics and phonetic categories.
That is, if the talkers were not distinct to listeners unfamiliar with
their voices, despite being distinct to the experimenters, this would
suggest that there is not a simple mapping from acoustic differ-
ences to talker differences; rather, listeners may need to learn what
characteristics distinguish similar talkers.

However, we do not know much about what characteristics lead
to significant talker differences (e.g., differences perceived as a
change in talker identity and/or a change large enough that a new
speech—phonetic category mapping is triggered). The lack of a
variability effect with the two female talkers suggests that a small
difference in vowel space is not sufficient to yield a talker condi-
tion effect. In Experiments 2 and 3, we began to isolate the types
and magnitude of acoustic differences that lead to reliable perfor-
mance differences associated with talker differences. In Experi-
ment 4, we returned to the question of whether the mapping
between acoustics and talkers is nondeterministic and to the nature
of the control structures needed to account for perceptual con-
stancy despite talker differences.

Experiment 2

Our initial interpretation of Experiment 1 is that a perceptible
change in talker identity need not trigger normalization if the two
talkers’ vowel spaces are sufficiently similar. Experiment 2 used
synthetic talkers to examine what sorts of acoustic variability
triggers normalization. We manipulated two acoustic factors
(FO—the basis for pitch—and vowel space) that have been pro-
posed to be important for normalization (e.g., Syrdal & Gopal,
1986) and one other factor (amplitude) that can be linguistically
relevant (e.g., prosodically) but that would have little correlation
with talker differences. Several previous studies have found that
amplitude does not pattern with linguistically relevant variation
such as changes in talker or speaking rate. For example, word
identification performance decreases when speaking rate is varied
within a list but not when amplitude is varied (Sommers, Nygaard,
& Pisoni, 1994), and preserving amplitude in new—old recognition
memory tasks does not provide a benefit the way preserving rate or
talker characteristics does (Bradlow, Nygaard, & Pisoni, 1999).
However, the impact of amplitude variation in an online task like
monitoring has not been tested. On the one hand, there is little
reason to expect an effect of amplitude given previous null results
in paradigms that often show parallel effects with online monitor-
ing—although this may also mean an amplitude manipulation can
provide a baseline for acoustic parameters that have little linguistic
relevance. On the other hand, if slowing in the mixed-talker
condition results from simple distraction, changes in any of our
parameters in the mixed condition—including amplitude—should
result in significant slowing. If instead the mechanisms that slow
processing in mixed-talker conditions are triggered by acoustic
changes indicative of talker changes, we should find slowing only
for vowel space and FO differences (because large changes in FO
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are typically associated with changes in vowel space as well;
Fujisaki & Kawashima, 1968; R. L. Miller, 1953; Slawson, 1968).

Method

Subjects. We recruited 38 subjects from the University of
Chicago community. All subjects were native speakers of Amer-
ican English and reported that they had no history of hearing or
speech disorders and no extensive experience with synthetic
speech. We paid subjects for their participation and debriefed them
when they completed the experiment.

Stimuli.  The stimuli consisted of the following set of nineteen
monosyllabic words: “ball,” “tile,” “cave,” “done” (the targets),
“dime,” “cling,” “priest,” “lash,” “romp,” “knife,” “reek,” “depth,”
“park,” “gnash,” “greet,” “jaw,” “jolt,” “bluff,” and “cad” (the
distractors)." One token of each stimulus was produced by each of
four synthetic talkers. We constructed the first talker (male-150)
from one of the standard sets of parameters that are built into the
DECtalk synthesizer: a “male” with an average FO of 150 Hz. The
second talker (male-160) was identical to the first, except we
raised his average FO to 160 Hz. The third talker (male-300) was
identical to the first, except we doubled his average FO to 300 Hz.
The fourth talker (female-300) was another of the standard DEC-
talk female voices. All of “her” vocal characteristics were quite
different from the male talkers’, except we set her average FO to
300 Hz to match male-300. The DECtalk settings used for the male
and female talkers are presented in the Appendix. Note that despite
the male talkers all having the same DECtalk settings aside from
average pitch, average pitch interacted with other DECtalk param-
eters to yield modest shifts in vowel space.

To create pairs of stimuli that differed only in average ampli-
tude, we generated a second set of stimuli produced by male-150,
with average root-mean-square (RMS) amplitude digitally in-
creased by 6 dB. We refer to this talker as male-150-loud. Thus,
we had substantial differences in amplitude (male-150 vs. male-
150-loud), pitch (male-150 vs. male-300), and vowel space (male-
300 vs. female-300) along with a modest difference in pitch
(male-150 vs. male-160).

Procedure. A speeded target-monitoring task was used, and
hit rate, false alarm rate, and response times were calculated.
Subjects were presented with an orthographic form of a target
word on a computer display and were instructed to press the space
bar whenever they heard the target word they saw on the screen. In
each trial, subjects heard a sequence of 16 words with an SOA of
750 ms. Four targets were randomly placed at ordinal positions
between the 1st and 16th stimuli. On each trial, subjects listened
for one target from the set “ball,” “tile,” “cave,” and “done.” The
12 distractors were randomly selected from the full set of stimuli,
excluding the trial’s target.

For a pair of talkers, subjects performed the monitoring task in
a blocked-talker condition and a mixed-talker condition. In the
blocked trials, all of the targets and distractors were produced by
one talker. In the mixed trials, equal numbers of targets and
distractors were produced by both talkers and randomly ordered.
Each target item served as the target 12 times in both blocked- and
mixed-talker conditions (so when male-150 and male-300 were the
talkers, “ball” would occur a total of 24 times—12 times per
talker—in blocked- and mixed-talker conditions). Thus, for any
talker pair, there were 48 blocked- and 48 mixed-talker trials.
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Three different groups of 10 subjects performed the experiment
with stimuli produced either by male-150 and male-300 (differing
mainly in pitch), male-150 and female-300 (differing in pitch and
vowel space), or male-150 and male-150-loud (differing only in
amplitude). We counterbalanced talker-condition order (blocked or
mixed) and order of blocked-talker blocks across subjects. One group
of 8 subjects performed the experiment with stimuli produced by two
talker pairs: male-150 and male-160 (differing only modestly in pitch)
and male-300 and female-300 (differing mainly in vowel space). For
this group, we counterbalanced talker pair, stimulus-condition order,
and order of blocked trials across subjects.

Results and Discussion

We tested for effects of talker condition on hit rate, false alarm rate,
and response time for each talker pair. Response times were measured
from stimulus onset, and responses that occurred less than 150 ms
after the onset of a stimulus were scored as responses to the preceding
item. We conducted ANOVAs on the effects of talker condition for
each talker pair. Hit rates were greater than .97 in both talker condi-
tions for every talker pair, and there were no reliable effects of talker
condition on hit rate (Fs = 0.16—1.60, ps = .70-.24).

False alarm rates varied from .01 to .03, but the effect of talker
condition was not significant for four of the five pairs (Fs =
0.05-1.20, ps = .82-.30). There was a borderline effect for the
male-150-male-160 pair, F(1, 7) = 5.51, p = .051, o> = .01, but
in the opposite direction than would be expected (blocked = .01,
SD = .01; mixed = 0, SD = 0). We examined individual differ-
ences and found that although no subjects made a false alarm
response in the mixed-talker condition for this pair, in the blocked
condition, 2 subjects made one false alarm, 1 made two, and 1
made five. The latter was more than 2 standard deviations from the
mean. When this subject is removed, the effect on false alarms is
no longer reliable, but the effects on hit rate and response time are
unchanged. Therefore, we report results with this subject included.

Response times for both talker conditions for each talker pair are
shown in Figure 2. The effect of talker condition was significant for
three of the five pairs. A substantial change in pitch (male-150—-male-
300) was sufficient to slow processing reliably in the mixed-talker
condition, F(1, 9) = 11.70, p = .008, o> = .11, as was a change
primarily in vowel space (male-300—female-300), F(1, 7) = 5.89,
p = 046, w®> = .08, and changes in both pitch and vowel space
(male-150—female-300), F(1, 9) = 16.61, p = .003, »* = .15. In
contrast, neither a change in amplitude (male-150—male-150-loud)
nor a small change in pitch (male-150-male-160) resulted in reliable
talker-condition effects (Fs < 1; and the mean differences were
actually slightly in the opposite of the predicted direction).

These results suggest that simple distraction is unlikely to be the
underlying cause of talker variability effects, because distinct changes
in amplitude did not slow processing (with the caveat that the ampli-
tude manipulation may have been too small; however, a substantially
larger amplitude manipulation is not feasible, because one talker
would have to be made uncomfortably loud or too soft to allow

! We were constrained to using vowels for Experiment 1 because these
were the materials Nusbaum and Morin (1992) recorded for their talkers.
We used words when possible in the later experiments because these
contain the sorts of coarticulatory cues proposed to be important under
some intrinsic normalization theories.
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Figure 2. Response times (RTs) for each talker pair in blocked- and
mixed-talker conditions in Experiment 2. Asterisks indicate statistically
significant differences. Error bars represent standard error. m = male; f =
female.

accurate performance). However, substantial changes in vowel space,
pitch, or both were sufficient to slow processing in the mixed condi-
tion. This result provides some basic descriptive information about
what sorts of acoustic changes trigger normalization.

However, the absence of an effect of the small pitch difference
points to the ambiguity that remains from the absence of an effect
for the two similar female talkers in Experiment 1: Did we fail to
find evidence for normalization because the talkers were similar or
because subjects did not detect (implicitly or explicitly) that they
were different? Indeed, if one compares the differences in vowel
space between the two natural female talkers in Table 1 with the
differences between male-150 and male-160 in Table 2, the two
pairs of talkers appear to be approximately equally similar (leaving
aside timbre and other differences between the female talkers). To
resolve the ambiguity that follows from the absence of an effect for
some talker pairs in Experiment 2, we designed Experiment 3 to
examine the distinctiveness of the similar talkers in this experi-
ment and the similar natural female talkers from Experiment 1.

Experiment 3

We have discussed two possible explanations for the lack of
mixed-talker effects for the similar natural female talkers from
Experiment 1 and the synthetic male talkers differing by 10 hz in
FO from Experiment 2. First, it may be that normalization is not
required for discriminable but highly similar talkers, because the
same vowel space mapping fits both. Or it may be that the talkers
were not discriminable, and therefore, no effect of mixing them
was found—that is, talker changes were not detected, and there-
fore, normalization was not triggered, or indexical processing was
not carried out, or both. We designed Experiment 3 to distinguish
between these explanations. We asked subjects to listen to pairs of
stimuli that were either identical tokens or examples of the same
utterance produced by two different speakers. We asked subjects to
judge either whether the two stimuli were identical tokens or
whether they were produced by the same talker. We expected that
if subjects were able to distinguish the similar talker pairs, they
would be able to achieve high talker discrimination accuracy.

Method

Subjects. We recruited 26 subjects from the University of
Chicago community. All subjects were native speakers of Amer-
ican English and reported that they had no history of hearing or
speech disorders and no extensive experience with synthetic
speech. We paid subjects for their participation and debriefed them
on completion of the experiment.

Stimuli. The stimuli were produced by four pairs of talkers:
three synthetic pairs from Experiment 2 (male-150-male-300,
male-300—female-300, and male-150-male-160) and the pair of
natural female talkers from Experiment 1 (natural female 1 and
natural female 2). For the synthetic talkers, the stimuli consisted of
the word list used in Experiment 2. For the natural talkers, the
stimuli consisted of the eight isolated vowel stimuli from Exper-
iment 1 augmented with a set of eight /rVk/ syllables that had been
recorded previously for other purposes (“rack,” “reek,” “rick,”
“rock,” “rook,” “ruck,” “ruke,” and “wreck”).

Procedure. On each trial, subjects heard a pair of examples of
the same vowel or word. Both items were either produced by the
same talker or by different talkers. For one group of subjects (the
talker group), the instructions were to press a key marked different
only if the two stimuli sounded as if they were produced by
different talkers and to press a key marked same if the talkers
sounded like the same person. For the other group of subjects (the
token group), the instructions were to press a key marked different
if the two stimuli sounded different in any way and to press same
if both stimuli were the same recording. Both groups of subjects
were told to respond as quickly and accurately as possible.

For each talker pair, there were 40 trials on which the expected
response was same, with the same stimulus repeated by the same
talker; half of these used speech from one talker, and half used
speech from the other. The expected response in both the talker
and token conditions was same for these pairs of repeated items.
There were also 40 trials on which the two stimuli were produced
by different talkers, and the first stimulus was produced by each
talker on half of the trials. The expected response in both task
conditions was different for these 40 pairs.

Results and Discussion

We conducted separate one-way ANOVAs on the talker-pair
factor for same and different trials for the talker and token groups.

Table 2
Vowel Spaces (in Hz) of the Synthetic Talkers Used in
Experiments 2—4

Vowel

Talker Formant /i/ /1/ /al /u/ /u/ [/
Male 150 F1 340 490 744 540 410 645
F2 2,120 1,745 1,165 1,110 1,010 1,660

Male 160 F1 360 460 785 515 440 660
F2 2,070 1,755 1,195 1,040 1,040 1,635

Male 300 F1 380 480 660 580 350 645
F2 1,995 1,755 1,005 1,040 995 1,610

Female 300 F1 315 430 740 470 370 920
F2 2,800 2,020 1,215 1,280 1,395 2,030
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Two subjects were excluded from the talker group because they
had extremely low accuracy (<<.50) for different trials for the
dissimilar talkers, suggesting they were not performing the tasks
correctly. In general, accuracy was high, and far above chance, for
all conditions, indicating that even the small pitch and/or vowel
space differences between the pairs of similar talkers were suffi-
cient to lead to the perception of distinct talkers.

Accuracy and response latencies for the token group are shown
in the left panels of Figure 3. The effect of talker pair was not
significant for same token accuracy, F(3, 33) = 1.74, p = .179;
»? = .004, with mean accuracy greater than .99 for every talker
pair. Nor was the effect significant for same response time, F(3,
33) < 1. However, there was a reliable effect of different token
accuracy, F(3, 33) = 5.33, p = .004, o?> = .03, with subjects
substantially less accurate on the similar talker pairs (around .90)
than on the dissimilar pairs (around .99). Despite a trend toward
longer latencies for the similar pairs, the effect was not reliable for
response time, F(3, 33) = 1.89, p = .15, o> = .007.

The results were very similar for the talker conditions (see the right
panels of Figure 3). The effect of talker pair was not significant for
accuracy or response time for same-talker trials (Fs < 1). However,
the effect was reliable for different-talker trials, F(3, 27) = 6.11, p =
003, w?> = .05, with substantially lower accuracy for the similar
talkers (.85—.91) than for the dissimilar talkers (.95—-.97). The effect of
response time was also reliable, F(3, 27) = 7.67, p = .001, w? = .07,
with substantially longer response times for the similar talkers.
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The results are not unequivocal. On the one hand, subjects had
significantly greater difficulty distinguishing the similar talkers,
suggesting that the absence of mixed-talker effects in Experiments
1 and 2 for the similar pairs could have been due to subjects failing
to detect talker differences. On the other hand, performance was
still far above chance, and it would seem implausible that a
6%—-10% decrease in the rate of different responses to the similar
talkers versus the dissimilar talkers would reflect a degree of
confusability that would eliminate mixed-talker effects.

However, the task demands in this experiment were quite different
from those in the monitoring tasks. Subjects were explicitly asked to
say whether tokens or talkers were different. This likely influenced
them to focus on discovering possible differences. The 6%—10%
decrease in accuracy for similar talkers might mask a much higher
level of confusability in the absence of instructions to explicitly look
for differences. Furthermore, individual accuracy for different token
and talker judgments for the similar talkers ranged from .53 to 1.0.
This suggests that the degree of subjective difference varied from
subject to subject (though median accuracy was .93), and the absence
of mixed-talker effects could stem from a subset of subjects who
failed to detect differences between talkers. However, explicit aware-
ness of a talker change is not required for normalization to occur in
contextual tuning theory—rather, the hypothesize—test—adjust mech-
anism triggers evaluation of talker characteristics when the current
mapping cannot provide a good fit between the input and phonemic
categories (or lexical items, etc.).
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Figure 3. Accuracy and response times (RTs) for token and talker judgments for each talker pair in Experiment

3. Error bars represent standard error.
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What, then, determines the effects of talker variability? In
Experiment 3, we directed listeners to respond to acoustic differ-
ences that could signal a difference between talkers. In our previ-
ous monitoring tasks, listeners were directed to recognize words
regardless of talker differences. Thus, it is possible that listeners
may not treat a small but discriminable acoustic difference be-
tween talkers as a change in talker unless they have nonphonetic
(or even nonlinguistic) reasons to do so. We carried out a fourth
experiment to test this possibility.

Experiment 4

Nusbaum and Magnuson (1997) argued that linguistic processes
and speech perception in particular are active processes that are
influenced by expectations derived from context. The psycholin-
guistic literature is rife with examples of context dependence.
Among the examples in spoken language are the word superiority
effect (i.e., that phonemes can be detected more quickly in words
than nonwords; Rubin, Turvey, & van Gelder, 1976), phoneme
restoration (context-dependent restoration of a phoneme replaced
with noise or an ambiguous sound as a function of lexical or
sentential context; e.g., Samuel, 1981, 1997; Warren, 1970), and
immediate integration of visual context to constrain sentence pro-
cessing (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy,
1995). However, proponents of autonomous models of language
processing (e.g., Norris, McQueen, & Cutler, 2000), in which there
is strict encapsulation of information at distinct stages of process-
ing such that the system is completely feedforward, argue that such
results reflect postperceptual decisions. Although there are other
demonstrations that lexical knowledge influences phonemic pro-
cessing in a top-down, online fashion (Elman & McClelland, 1988;
Magnuson, McMurray, Tanenhaus, & Aslin, 2003a; Samuel, 2001;
Samuel & Pitt, 2003), these results remain controversial (see the
discussion between McQueen, 2003, and Magnuson, McMurray,
Tanenhaus, & Aslin, 2003b, and between McClelland, Mirman, &
Holt, 2006, and McQueen, Norris, & Cutler, 2006).

A truly compelling demonstration of an active system would
show effects of nonlinguistic, cognitive expectations on putatively
low-level aspects of speech perception. Perhaps the best-known
and most dramatic demonstration is the finding of Remez, Rubin,
Pisoni, and Carrell (1981) that subjects’ expectations strongly
influenced their perceptions of a three-tone sinusoidal replica of a
naturally produced sentence. When they were given no informa-
tion about the stimulus, subjects were more likely to perceive it as
a variety of nonspeech sounds (e.g., “science fiction” or bird
sounds) than as speech. When they were told to expect computer-
generated speech, however, more than half the subjects accurately
transcribed the entire utterance. This is evidence that perceptual
processes are directed to different aspects of a source signal when
subjects expect to hear speech, but it may reflect the inducement of
a mode of processing rather than a continuous modulation of
perception on the basis of expectations.

Carden, Levitt, Jusczyk, and Walley (1981) found that consonant
distinctions based on place of articulation can be influenced by ex-
pectations for manner of articulation, but this still runs afoul of the
autonomous, postperceptual criteria—as does any study that depends
on direct measures of phonetic decisions, because one cannot disen-
tangle perceptual and decision processes in such results (cf. Samuel,
2001). Closer to our topic, K. M. Fenn, Atkins, Skipper, Bond, and

Nusbaum (2004) found that when subjects being interviewed by
telephone were told to expect a talker change after being put on hold,
they reported having heard two talkers even when the talker did not
change. This suggests that the processing of talker differences could
be susceptible to expectations.

Could the significance of acoustic variability correlated with
talker variability also depend on expectations? Given our hypoth-
esis that talker processing depends on active control (given, e.g.,
the Nusbaum & Morin [1992] finding of load sensitivity), one
might expect that when there is a borderline difference between
talkers, the mechanisms sensitive to talker differences might be
susceptible to top-down cognitive influence. That is, although
awareness of a talker change is not a prerequisite for normaliza-
tion, the mere expectation that a talker change has occurred may be
sufficient to trigger normalization.

We tested this possibility in Experiment 4 by asking two groups of
subjects to do the monitoring task used in Experiment 2 with the
male-150—male-160 pair for which we did not find a talker condition
effect. However, we explicitly told subjects whether to expect to hear
one talker or two. If mixed-talker effects reflect mandatory processing
of indexical characteristics or a passive, automatized normalization
process that is part of an autonomous language processing system,
cognitive expectations should not be able to change them.

Method

Subjects. We recruited 16 subjects from the University of
Chicago community. All subjects were native speakers of Amer-
ican English and reported that they had no history of hearing or
speech disorders and no extensive experience with synthetic
speech. We paid subjects for their participation and debriefed them
on completion of the experiment.

Stimuli. The stimuli consisted of the 19 monosyllabic words
produced by talkers male-150 and male-160 used in Experiment 2.

Procedure. The monitoring paradigm described for Experi-
ment 2 was used, and all blockwise parameters were maintained
with the materials produced by male-150 and male-160. Each
target was presented 12 times in the blocked condition (in which
all targets and distractors were produced by the same talker) and
12 times in the mixed condition (in which the talker changed
randomly from word to word).

Subjects were randomly assigned to two groups of 8. The only
difference between groups was the instructions they received prior
to the experiment. The /-voice expectation group was told that
they would be hearing synthetic speech produced by a single
synthetic talker; to make the speech sound more natural, we
sometimes changed the pitch, but there was only one talker.
Subjects heard a monologue with some pitch variation (with av-
erage FO jumping from 150 to 160 hz). The 2-voice expectation
group was told that we had created two synthetic talkers by
modifying pitch and that in some parts of the experiment, they
would hear speech from two talkers. They also heard a dialogue
between the two voices. The monologue and dialogue were both
approximately 30 s long. The instructions are shown in Figure 4.

Results and Discussion

As in Experiments 1 and 2, we measured accuracy and response times.
Response times were measured from stimulus onset, and responses that
occurred less than 150 ms after the onset of a stimulus were scored as
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Expectation instructions

One voice

In this experiment, you will listen to
computer-generated speech. A common
weakness of computer-generated speech
is that it sounds like someone speaking in
a monotone. To make the computer-
generated speech you'll be hearing more
natural sounding, we’'ve made the pitch
different on some words. We will now
play a tape of some of this speech as an
example.

[Tape of a monolog with different
phrases produced by m150 and m160]

[Common procedural instructions]

Please note that you will only be listening
to one talker in this experiment.
Sometimes the pitch will change a little,
but it will always be the same talker.

Two voices

In this experiment, you will listen to
computer-generated speech. We are
trying to simulate two talkers by modifying
the pitch of our computer-generated
talker. We will now play a tape of a dialog
between the two talkers as an example.

[Tape of a dialog between “Bill” and
“Joe” about a homework assignment]

[Common procedural instructions]

Please note that in some parts of the
experiment, you will hear speech from
only one talker. In other parts, you will

hear speech from two talkers.

Figure 4. 'The one- and two-voice expectation instructions for Experiment 4.

responses to the preceding item. There were no reliable differences
between performance in blocked and mixed trials for the 1-voice expec-
tation group in hit rate (blocked = .98, SD = .02; mixed = .98, SD =
.03); false alarm rate (blocked = .02, SD = .02; mixed = .03, SD = .03),
F(1,7) = 2.1,p = 20, > = 01; or response time (blocked = 430 ms,
SD = 82; mixed = 430 ms, SD = 77). For the 2-voice expectation group,
however, subjects were reliably faster to respond in blocked trials (M =
470 ms, SD = 55) than in mixed trials (M = 492 ms, SD = 51), F(1,7) =
6.2, p = 042, w* = .09. Under 2-voice instructions, there were no reliable
differences in hit rate (blocked = .97, SD = .04; mixed = .97, SD = .04)
or false alarm rate (both means and standard deviations were .02). Figure
5 shows the response time results from the two expectation conditions
and the results from Experiment 2 for this talker pair for comparison.
Figure 6 presents individual response time data for the 1- and 2-voice
expectation groups and the neutral instruction group. Note that most
subjects in the neutral and 1-voice instruction groups show no effect of
talker condition or trend toward slower processing. A striking reversal is
observed in the 2-voice instruction group, in which all but 2 subjects are
substantially slower in the mixed condition than in the blocked condition.

The only difference between the two groups was the expectation
developed by the preexperiment instructions—the stimuli were identical.
This indicates that the talker effects we have observed are not the result
of a purely passive process (e.g., template matching, as van Bergem, Pols,
& Koopmans-van Beinum [1988] suggest, or simple exemplar-based
resonance; Goldinger, 1998). Rather, phonetic processing is constrained
by knowledge of nonacoustic states in the world—whether these take the
form of expectations about the source of the acoustic signal (e.g., the
number of talkers, knowledge that the signal is intended as speech
[Remez et al., 1981]), visual information (e.g., regarding articulations
[McGurk & McDonald, 1976] or communicative gestures [McNeill,
1992, e.g., p. 134]). This strongly suggests that phonetic constancy in
speech perception relies on active control structures.”

General Discussion

What constitutes a difference between talkers? How do listeners
detect (implicitly or explicitly) a change in talker? Clearly, one

way is to perceive a sufficiently large acoustic difference between
talkers. When talkers differ (primarily) either in vowel space (as in
Experiment 1) or fundamental frequency (as in Experiment 2), the
difference between talkers slows down processing. This talker
variability effect is reliable and consistent with previous results
using the same paradigm (Nusbaum & Morin, 1992) and with
studies using different methods (e.g., Mullennix & Pisoni, 1990).
However, this talker variability effect is not simply a result of
acoustic variability. First, not all discriminable talker differences
result in a talker variability effect. In Experiment 1, the two female
talkers were quite different in voice quality, but their vowel spaces
were sufficiently similar that no reliable talker variability effect
was observed when the talkers were mixed. Second, discriminable
variation in amplitude does not slow processing. This indicates that

2 An anonymous reviewer suggested an alternative interpretation of the
basis for the effect. Rather than alerting listeners to the presence of two
talkers, the expectation instructions may have directed subjects’ attention
to the pitch differences during the dialogue more effectively than did the
single-talker instructions (despite containing specific mention of the use of
pitch differences as an attempt to make the talker sound more natural). We
find this explanation unlikely and less parsimonious than one that ties this
result to typical processing of talker differences. There is also reason to
expect that perceptual learning that accompanies exposure to a talker
involves rather different processes than those involved in adjusting to a
talker change. K. F. Fenn, Nusbaum, and Small (2004) examined the
cortical activity accompanying perceptual learning of a synthetic talker.
Their results suggest that perceptual learning of a talker reduces cortical
activity in the posterior part of left superior temporal gyrus (STG). How-
ever, when confronted with talker variability, Wong et al. (2004) showed
that activity in the STG increases. Moreover, during training, learning
seems to recruit the motor system, increasing activity in ventral premotor,
but talker variability seems to increase activity in the superior parietal
region. Thus, talker variability and talker learning seem to have different
effects on cortical processing. Our next step will be to examine whether the
neural correlates of talker-condition effects based on expectations resemble
those for genuine differences, using a design based on that of Wong et al.
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Figure 5. Response times (RTs) for the one- and two-voice conditions in
Experiment 4 along with the results for the same talker pair in Experiment
2 (neutral instructions). The asterisk indicates a statistically significant
difference. Error bars represent standard error.

simple discriminable variation in acoustic quality is not sufficient
to produce talker variability effects.

When does talker-specific acoustic variability slow speech recogni-
tion? First, when the vowel spaces are sufficiently different between
talkers, as in Experiment 1, recognition is significantly slower. This is
entirely consistent with the talker normalization view that listeners must
interpret acoustic cues in the context of the vocal characteristics of the
talker. It could also be construed as consistent with mandatory encoding
of indexical vocal characteristics of the new talker (Nygaard & Pisoni,
1998), although such a talker encoding perspective might suggest that for
any discriminable talker difference, recognition should slow, which does

Neutral Voice Instructions

not happen. Experiment 1 also showed that when the pitch difference is
sufficiently large between talkers, recognition slows in the mixed-talker
condition. This, too, is consistent with the view that listeners simulta-
neously encode talker vocal characteristics and phonetic information (the
indexical-phonetic contingency view of Nygaard & Pisoni, 1998). It is
also consistent with a talker normalization view, given the assumption
that large pitch differences between talkers would be ecologically asso-
ciated with differences in vowel spaces. Our listeners (and their percep-
tual systems) did not know that we had dissociated fundamental fre-
quency and vocal tract size using a computer speech synthesizer.
However, it is the third case (i.e., Experiment 4) that is the most inter-
esting. Given a constant, modest pitch difference between two synthetic
talkers with identical vowel spaces, listeners’ expectations determine
whether or not there is a variability effect when the speech of these talkers
is mixed. If the pitch difference is treated as within-talker variability,
mixing two sets of utterances differing in pitch does not slow processing,
whereas if the pitch difference is expected to correspond to between-talker
variability, the mixed condition slows processing.

On the one hand, this suggests that talker identity has the same
many-to-many, lack-of-invariance problem that holds for phonetic
segments. The same acoustic difference between speech samples
could arise because of one speaker using different speaking styles
or two talkers differing in that characteristic. And a real difference
between talkers might be manifested with little or no acoustic
difference. The problem of adjusting to changes in talker charac-
teristics then might be thought of as the same kind of computa-
tional problem as recognizing phonetic structure (cf. Nusbaum &
Magnuson, 1997). In other words, detecting talker differences that
require perceptual accomodation is itself a perceptual problem that
may not be handled automatically or passively.

One Voice Instructions
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Figure 6. Individual response times (RTs) for the one- and two-voice conditions in Experiment 4, along with

the results for the same talker pair in Experiment 2 (neutral instructions).
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On the other hand, the cognitive penetrability of talker differ-
ence detection raises questions about some aspects of the standard
view of speech perception. What is the “standard view”? Given the
disparities that exist between theories such as the motor theory of
speech perception at one extreme (Liberman & Mattingly, 1985)
and auditory theories at the other (e.g., Diehl et al., 2004), it would
seem difficult to find any aspect of processing theories that is
standard. However, even across this range of types of theories,
there is a strong flavor of modularity (cf. Fodor, 1983), whether
stated explicitly (as in Liberman & Mattingly, 1985) or not. These
theories take speech perception as fast, automatic, encapsulated,
and independent of other cognitive processes.

The present finding that expectations about the interpretation of an
acoustic signal changes the nature of the processing of that signal fits
well within a series of studies in speech perception that should be
troublesome to any kind of modular, purely bottom-up, passive pro-
cessing theory. Remez et al. (1981) showed that simply telling listen-
ers that sine wave signals are speech was enough to shift processing
from an apparently nonlinguistic auditory mode to linguistic interpre-
tation. Carden et al. (1981) showed that when listeners “imagined”
(following instructions) one manner of articulation not present in a
consonant series, perception of the place of articulation shifted as if
appropriate cues to manner were acoustically present in the signal.
Niedzielski (1999) showed that telling listeners that a set of synthetic
vowels were produced by a speaker from Windsor, Ontario, Canada,
shifted vowel classification relative to telling the listeners the speaker
came from Detroit. Johnson, Strand, and D’Imperio (1999) showed
pictures of male and female faces paired with “androgynous” male
and female speech and found expectations based on the pictures
changed perception of the speech.

In all these studies, high-level cognitive information (e.g., be-
liefs, expectations) changed the interpretation of an acoustic signal
as if different signal properties were present. The experience in
these studies is as salient perceptually as is the McGurk effect
(McGurk & Macdonald, 1976)—this is not some kind of logico-
deductive process wherein listeners are supplying compliant an-
swers. In our Experiment 4, the effects of expectation were a
25-ms increase in response time in the mixed condition, which is
squarely in the 20-30-ms increase that is found with genuinely
distinct talkers. Together, these studies raise the same question
originally framed by Remez et al. (1981) as to whether the role of
traditional acoustic speech cues needs revision.

Rather than view speech perception as mediated by simple
passive mapping systems that relate cues to categories, researchers
need to think about speech perception in a fundamentally different
way. We have previously argued (Nusbaum & Magnuson, 1997)
that almost all theories of speech perception treat the relationship
between acoustic cues and linguistic categories as a deterministic
mapping, assuming that one has only to discover the information
in or transformations of the speech signal that will provide invari-
ance. An invariant mapping would allow speech perception to be
explained via passive computations using open-loop control struc-
tures (Nusbaum & Magnuson, 1997; Nusbaum & Schwab, 1986).
However, given the frustrating failure to discover a basis for
invariance, it may be necessary to accept that the mapping between
acoustic cues and linguistic categories is truly nondeterministic. If
one acoustic pattern can be classified as a member of multiple
categories depending on context, this is formally a nondetermin-

istic system, and the mapping cannot be resolved by the kinds of
theories that have been proposed previously.

However, there is an alternative theory that has been argued to
provide an account of phonetic constancy without appeal to active
control structures: nonanalytic episodic theories of speech percep-
tion and spoken word recognition (Goldinger, 1998; Nygaard &
Pisoni, 1998), in which holistic (unanalyzed) episodic traces of
events provide the basis for processing speech. Both proposals
subscribe to the principle of lawful variability (Elman & McClel-
land, 1988)—that is, that variability in the speech signal is infor-
mative about the sources of variability and, therefore, is informa-
tion rather than noise to be abstracted away (Nygaard, 2005).
Because the nonanalytic account promises to explain phonetic
constancy without active control, it bears discussion here.

Nonanalytic Episodic Theories

Nonanalytic theories are motivated by two sets of results. First,
there is a perceptual contingency between recognizing phonetic and
indexical properties of speech. Mullennix and Pisoni (1990) found
that listeners cannot ignore irrelevant variation in indexical character-
istics (e.g., talker identity) when their task is to attend to phonetic
information, and vice versa (although the relationship is asymmetri-
cal; talker variability interfered more with phonetic processing than
vice versa, which Mullennix & Pisoni, 1990, interpreted as indicating
that phonetic processing is hierarchically contingent [cf. Turvey,
1973] on assessment of talker characteristics, because talker charac-
teristics condition phonetic realization, but the converse is not equally
true), suggesting the two sorts of information are processed integrally
(Garner, 1974). Consistent with this result, Nygaard and colleagues
(Nygaard & Pisoni, 1998; Nygaard, Sommers, & Pisoni, 1994) re-
ported that training on talker identification promotes better perception
of speech produced by the trained-on talkers.

Pisoni and his colleagues (e.g., Nygaard & Pisoni, 1998; Nygaard,
Sommers, & Pisoni, 1994; Pisoni, 1997) have argued that the inter-
action between talker vocal characteristics and the acoustic—phonetic
structure of speech does not require any kind of perceptual compen-
sation or normalization process.” Instead, they argued that when there
is a change in talker, listeners attend to both talker vocal characteris-
tics and phonetic information, encoding both into long-term memory
and, more radically, that this happens in a nonanalytic tashion. Both
indexical and phonetic characteristics of speech must be attended to
simultaneously because they are inseparable; the speech signal is not

3 An additional motivation given for nonanalytic episodic accounts is the
claim that any sort of normalization implies throwing out nonlinguistic infor-
mation, which would be inconsistent with evidence for memory and process-
ing effects of surface details of speech. Although this view has been part of
some accounts of normalization, normalization itself does not entail throwing
out information. For example, there is nothing in Joos’s (1948) proposals that
indicate that information is discarded. Instead, the proposal is that a coordinate
mapping is achieved between the characteristics of the talker one is hearing
and internal categories. However, evidence for sensitivity to surface detail
would not preclude even a normalization account on which the mapping is
achieved by extracting only linguistically relevant cues from speech—if it is
assumed that multiple representations of the sensory input are maintained, and
at least one contains surface details. This would be a reasonable position given
the substantial evidence for multiple representations at different levels of
abstraction in vision (e.g., Milner & Goodale, 1995), audition (Bushara et al.,
1999), and speech (Belin, Zatorre, Lafaille, Ahad, & Pike, 2000).
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decomposed but is processed holistically. From this perspective, the
demands of attending to both sets of properties are the putative cause
of the adverse effects of talker variability.

The second phenomenon motivating nonanalytic episodic accounts
is that memory for and processing of spoken words is affected by
“nonlinguistic” talker characteristics. Performance on old-new list
memory tasks is better when words are repeated in the same voice
rather than different voices (Church & Schacter, 1994; Goldinger,
1996; Goldinger, Pisoni, & Logan, 1991; Palmeri, Goldinger, &
Pisoni, 1993). Thus, even after words are recognized, there is some
interaction between the linguistic and indexical properties of an ut-
terance, at least in terms of retrieving episodic traces of the words.

Goldinger (1998) proposed an episodic theory of lexical access
to account for these phenomena. In seeking to model memory
effects of surface details, Goldinger proposed that speech is per-
ceived via memory traces of word-length episodes that preserve all
surface details, and the speech signal is neither isolated nor de-
composed. The episodic approach is a “kitchen-sink™ version of
lawful variability that approximates a deterministic mapping from
nondeterministic input with a passive control structure. By includ-
ing all aspects of the signal (in particular, indexical properties and
sub- and supraphonemic signal variation), a statistical compositing
mechanism (based, in Goldinger’s [1998] implemented model, on
MINERVAZ2; Hintzman, 1988) is theorized to be able to create
clusters of episodes that will allow context independent speech
perception and word recognition, without explicit normalization.

How would the episodic model do this? Consider the traditional
view of invariance (reflected both by Lane [1965] and by Liberman et
al. [1967]), that each phoneme could be realized as a unique (or a
collection of unique) physical patterns, but the process of speech
production obscures and restructures these patterns. Coarticulatory
influences of proximal phonetic segments, physical and other differ-
ences in the vocal characteristics of talkers, and differences in speak-
ing rate all are sources of acoustic perturbations that impose noise on
the true phonetic signal pattern. Note the similarity of this view of
linguistic classification to the statistical problem of detecting, in any
kind of experiment, the influence of an independent variable on a
measured dependent variable (cf. Anderson, Silverstein, Ritz, &
Jones, 1977) given all the sample error and measurement noise that
occurs in real world measurements. This metaphor for pattern classi-
fication as a statistical memory-retrieval process underlies the math-
ematics of the MINERVA2 model (Hintzman, 1988), which is the
foundation of the implementation of Goldinger’s (1998) episodic
lexicon model.

The statistical compositing process by which retrieved repre-
sentations are aggregated from experienced auditory representa-
tions of utterances is quite similar to the idea of the law of large
numbers in statistics in discerning the mean of a distribution from
increased sampling of a population. At least in the abstract, this
notion of statistical recognition serves the same purpose as nor-
malization mechanisms in other theoretical approaches. In the
Goldinger (1998) model (based on MINERV A2; Hintzman, 1988),
the statistical aggregation of episodic traces of auditory experi-
ences of speech similar to an utterance abstracts a linguistic form
even without such abstractions being stored explicitly (see Mc-
Clelland & Rumelhart, 1985). Thus, irrelevant surface acoustic
detail seems to be “filtered” out, and apparently abstract phonetic
forms are recognized even though the model does not explicitly
represent such abstract forms in memory.

Goldinger’s (1998) model was proposed explicitly as an alter-
native to normalization theories. The idea of normalization is that
sources of acoustic variability need to be taken into account to
determine context-specific acoustic—phonetic mappings. Gold-
inger (1998) represented normalization for talker variability as
filtering the variability away from the phonetic pattern to be
recognized, and related nonanalytic theories regard evidence for
sensitivity to subphonemic and nonlinguistic surface detail as
direct evidence against normalization (e.g., Pisoni, 1997). These
arguments assume a view of normalization on which abstract
phonetic representations are stored mentally, and for a listener to
match their corresponding auditory patterns to any particular ut-
terance, perturbations of those patterns by variation in phonetic
context, talker differences, and speaking rate must be filtered out.
This corresponds to a particularly old view of normalization in the
computer vision literature in which an input pattern must be
normalized into a canonical view orientation, position, and size
before matching against stored object models (Roberts, 1965).
However, this is quite different from the view of normalization
proposed by Joos (1948) or that found in most subsequent nor-
malization theories of speech perception (for further discussion,
see Nusbaum & Magnuson, 1997, and Footnote 3).

The nonanalytic episodic model potentially accounts for all but
one of the talker variability phenomena we have reviewed. It
proposes that the invariance problem can be solved through richer
representations. It could account for processing declines in mixed-
talker conditions via resonance: Because speed of recognition
depends on the strength of the response when a new trace is
compared with traces in memory, and more recent traces are
represented more strongly, a performance advantage should
emerge in the blocked-talker condition because of accumulating
recency benefits (see Magnuson et al., 2007, for a comparison of
short- and long-term effects of talker familiarity, and further dis-
cussion of the theories under review here). It is not clear that the
model can account for context effects such as those reported by
Ladefoged and Broadbent (1957)* or for evidence for active con-
trol (attentional modulation and interactions with working memory
[Nusbaum & Morin, 1992] and the expectation-based variability
effects in Experiment 4). However, it naturally accounts for effects
of linguistic and nonlinguistic talker characteristics on memory
and processing and for the contingency of those characteristics
(e.g., Goldinger, 1996, 1998; Nygaard & Pisoni, 1998).

However, if we turn to the larger question of phonetic constancy
across all kinds of variability, serious questions arise for nonanalytic
episodic theories. The first problem is that the model assumes seg-
mentation; words are the basic episodic unit. The second problem is
category formation. Goldinger (1998) argued that his model obviates
normalization: A passive, exemplar-matching process would not need

“1It is possible that effects of recency might also account for this
phenomenon. In the Ladefoged and Broadbent (1957) experiment, the
relevant stimulus was a sample without cues to nonphonetic talker char-
acteristics and was thus ambiguous between two phonemic categories. If it
is assumed that the carrier sentence activates the characteristics of one
talker, that may be sufficient to disambiguate the consonant-vowel—
consonant words that must be classified. However, note that “talker char-
acteristics” in this study consisted simply of vowel spaces, and that these
had to be inferred, in part, over multiple samples of speech; it appears that
accounting for this initial step would be challenging for the episodic theory.
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special mechanisms to accommodate talker differences—it would
simply activate the appropriate cluster on the basis of trace similarity.
This, however, begs the question of how categories would form—
what would be the basis for clustering two talkers’ acoustically
distinct vowels in a single category? This point has not yet received
detailed treatment in the theory, but it exactly parallels the normal-
ization question: What are the stimulus properties that are used to
classify speech samples as exemplars of phonemic categories? An
additional problem is that the simulations Goldinger (1998) presented
in support of the claim that normalization is not required depend on an
assumption that differed importantly from the larger nonanalytic
assumption of the theory: Indexical and phonetic features were rep-
resented as independent vectors in those simulations. This implicitly
assumes analysis to separate the features, because in real speech,
talker characteristics condition the realization of phonetic information;
they cannot be had for free in an unanalyzed episode.

Our true difference with nonanalytic episodic theories (Goldinger,
1998; Pisoni, 1997) is not with the exemplar-based approach but with
the denial of analysis. The statistical compositing we have just de-
scribed might go far toward providing at least a partial solution to
acoustic—phonetic mapping—if it were made analytic. Assuming the
input is literally nonparametric (raw, unanalyzed wholes) begs crucial
questions (segmentation, cluster formation, etc.). Analysis is also
required to account for the evidence for active control we have already
reviewed as well as a growing body of results documenting the
amazing adaptability of speech and word perception and production.
For example, Dell, Reed, Adams, and Meyer (2000) and Onishi,
Chambers, and Fisher (2002) have shown, in production and percep-
tion, respectively, that speakers and listeners are exquisitely sensitive
to short-term changes in phonotactic probabilities, and Maye, Aslin,
and Tanenhaus (2003) found that listeners adapt very quickly to novel
vowel space rotations. In the latter case, highly learned acoustic—
phonetic mappings must be suppressed to successfully perceive
speech from the rotated vowel space. How could attention modulate
the weight of any parameter of speech if the input is a parameter-free,
unanalyzed episode? What is needed is an analytic approach that
includes active control.

Active Control Mechanisms

We have suggested that the solution to nondeterminism in speech
perception may lie in control structures—specifically, active, closed-
loop mechanisms capable of adapting quickly to changes in acoustic—
phonetic mappings (cf. Nusbaum & Magnuson, 1997). Understanding
phonetic constancy may require us to consider more cognitive, active
processes wherein multiple hypotheses regarding the interpretation of
an acoustic pattern are tested so as to recognize speech (e.g., on the
basis of the success of lexical access or integration with discourse
context; cf. Newell, 1975). Such hypothesis tests might necessitate
shifts in attention to such different cues in the speech signal as would
be appropriate to the specific context. For example, Nusbaum and
Morin (1992) reported that when there is talker variability, listeners
use different acoustic cues than they do when there is a single talker.
More recently, Wong et al. (2004) used fMRI imaging to show that
talker variability increases attentional processing in traditional speech
areas (e.g., posterior superior temporal cortex) but also recruits areas
that are more associated with shifts of attention (i.e., superior parietal
cortex).

Note that neither the claim that contextual tuning invokes atten-
tional processing nor an appeal to the notion of hypothesis testing
entails that the listener be explicitly aware of the operation of the
underlying mechanisms, that the listener must explicitly detect a talker
change, or even that a talker change must be implicitly detected to
trigger normalization. This is an important point to consider, given
findings that listeners sometimes fail to detect talker changes (K. M.
Fenn, Atkins, et al., 2004; Vitevitch, 2003) and that false experiences
of talker change can be induced (K. M. Fenn, Atkins, et al., 2004).

An active, hypothesis-testing theory of speech perception (e.g.,
Stevens & Halle, 1967) can use multiple sources of information to
constrain proposed hypotheses and to test those hypotheses. Given
the nondeterministic mapping present in speech, parallel tests of
alternative possible interpretations provide a plausible basis that
could ultimately resolve the lack-of-invariance problem. As we
discussed earlier, evidence for active control is consistent with a
variety of architectures that provide approximate-test-adjust mech-
anisms. These range from interactive-activation models (McClel-
land & Elman, 1985; McClelland & Rumelhart, 1981); to simple
recurrent networks (Elman, 1990), and attractor networks (Plaut &
Kello, 1999), in which recurrent connections allow nondetermin-
istic mappings to be approximated; to conflict-monitoring net-
works of the sort developed by Cohen and his colleagues (Botvin-
ick, Braver, Carter, Barch, & Cohen, 2001; Cohen, Braver, &
O’Reilly, 1996). Although these models have focused on how
highly overlearned responses can be moderated under task de-
mands (as in the Stroop task), they also provide a potential frame-
work for attentional modulation more generally.

What of the episodic effects of (putatively) linguistically irrel-
evant details of speech events? Another possibility would be an
analytic exemplar-based approach compatible with active control.
Johnson (1994, 1997) proposed an analytic exemplar model in

STt is crucial to note the distinction between evidence for change
deafness and blindness and an assertion that the changed aspects of a
stimulus have not been processed. Change blindness or change deafness
occur in situations in which the environment is typically stable, and change
is unexpected. Change blindness should not imply a failure to process, pre-
and postchange, the aspects of a scene that change, nor even a complete
failure to process the change itself—there is instead a failure of awareness.
For example, Hayhoe, Bensinger, and Ballard (1998) found increased
fixation durations following scene changes in a simple copying task that
subjects did not report noticing, but only when the change was task-
relevant (see also Triesch, Ballard, Hayhoe, & Sullivan, 2003). Similarly,
Luck, Vogel, and Shapiro (1996) examined event-related potentials (ERPs)
to words presented during attentional blinks. Subjects could not recall the
presented word, but online ERP patterns indicated that the words were
processed semantically, because their meanings influenced N400 magni-
tude. Wolfe (1999) argued that such findings show that change blindness
and inattentional blindness (Mack & Rock, 1998) would be better de-
scribed as inattentional amnesia. The literature on visual search is instruc-
tive on this point. Despite some correspondence between subjective and
empirical measures of attentional allocation in search under automatized
processing (typically construed as parallel search) and controlled process-
ing (typically construed as serial search), subjects have at best little
awareness of the underlying mechanisms or of the gradual changes in
processing that occur as a task is automatized (see also Wolfe, 1998, for
challenges to the parallel-serial division, and a review of evidence instead
for a continuum of difficulty). In short, a process under active control is not
the same thing as a process under strategic control.
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which normalization depends on attentional modulation of param-
eters (in the generalized context model framework; Nosofsky,
1988), ranging from specific acoustic features, such as F0, to
indexical cues or, potentially, any relevant information, such as
visual cues indicating a talker change. This framework is compat-
ible with all the talker variability phenomena we have reviewed,
including evidence for active control.

However, the active control mechanism is an externally applied
contextual attentional modulation and, so, is itself unspecified.
Goldinger and Azuma (2003) presented a very similar approach, in
which they abandon nonanalysis. The new theoretical framework
they sketched is explicitly analytic (indeed, references central to
the earlier arguments for nonanalysis [e.g., Jacoby & Brooks,
1984] were no longer cited, and the word nonanalytic did not
appear). They proposed that adaptive resonance theory (Grossberg,
1980) may provide a unifying framework in which a hierarchical
structure of features at multiple scales (e.g., acoustic, phonetic,
phonemic, syllabic, words) is built up through experiences of
contingent activation. Similar structures form for different sorts of
sensory data and knowledge, and sufficient contingent activation
across modalities or knowledge types could result in perceptually
coherent structures that will “resonate” (form part of a set of
recurrently connected structures) and allow for, for example, social
influences on phonetic perception (Goldinger & Azuma, 2003).
However, again, attention remains an external modulator rather
than an integral part of the system. A possibility for future explo-
ration would be to use mechanisms like those in Cohen and
colleagues’ conflict monitoring networks (Botvinick, Braver,
Carter, Barch, & Cohen, 2001; Cohen et al., 1996), which allow
attentional control without homunculuslike external modulation.

Lawful Variability as the Guiding Principle

The common factor among recent alternative approaches to
nondeterminism in speech perception, and talker variability in
particular (Nusbaum & Magnuson, 1997; Nygaard, 2005), is the
appeal to Elman and McClelland’s (1988) observation that vari-
ability in speech is not noise. Rather, variability reveals lawful
contingencies relevant for phonetic perception as well as other
types of knowledge carried in speech (e.g., talker identity, emo-
tional state). But how can the wheat be told from the chaff—which
aspects of variability are relevant for phonetic constancy? Non-
analytic episodic theories are conservative to a logical extreme: An
omnimodality episode preserves everything. This approach pro-
vides an explanation for episodic effects on perception and mem-
ory as well as state-dependent learning and other effects of implicit
memory. Without an existence proof that such a system can handle
a realistic analogue of variability in speech (or speech itself), this
approach provides little insight into the informational structure of
speech or the cognitive, perceptual, and neural mechanisms that
underlie phonetic constancy. The true insight of the nonanalytic
episodic approach is the need to account for exemplar effects and
the possibility that something like an omnimodal memory trace
may play a role in some aspects of speech processing.

We have argued that a nonanalytic mechanism could not account
for attentional, working-memory, and expectation-based results that
indicate active control structures underlie speech processing. Active
control structures also provide a potential computational solution to
the lack-of-invariance problem. Evidence for active control is com-

patible with a variety of approaches, including analytic exemplar
models that allow active control (Goldinger & Azuma, 2003; John-
son, 1994, 1997), attractor networks (e.g., Plaut & Kello, 1999), or
any of these mechanisms coupled with an active control mechanism,
with one candidate being the conflict monitoring framework (Botvin-
ick et al., 2001; Cohen et al., 1996).

But still missing are general principles that might provide insight
into the contingencies in speech that are relevant for phonetic con-
stancy. Features are stipulated rather than discovered in all of the
computational models we have discussed. Work on the triangle model
of visual word recognition (e.g., Harm & Seidenberg, 2004) may
provide a heuristic approach for speech. In the triangle model, a
minimal set of representational nodes are posited: one for visual
features (orthography), one for phonology, and one for semantics.
These are minimal in that they are the smallest set needed to account
for the interfaces to written language. Pathways exist from each set to
the others in an attractor network framework. As the network is
trained (e.g., to produce the correct phonological pattern given a
particular orthographic input), contingencies are discovered and em-
bedded in the network through connection-weight learning. The
model becomes sensitive to the relative lawfulness of the
orthography—phonology mapping compared with the largely arbitrary
semantic mappings. Plaut and Kello (1999) proposed a model in the
triangle framework for speech perception and production, using the
most realistic analogues to speech used in any current model. The
contingencies such a model is able to learn are those that are predic-
tive of one or more mappings. Modeling may provide one route to
discovering the contingencies (lawful variability) relevant for pho-
netic constancy by heuristically adding sets of interface nodes and
using the model to discover contingencies between interfaces.

Conclusion

The heavy lifting of identifying specific mechanisms remains,
but significant progress in understanding phonetic constancy could
be gained by considering the role of control structures in resolving
nondeterminancy. However, regardless of the correct account of
phonetic constancy, the present experiments demonstrate that un-
der certain conditions, listeners’ expectations are as powerful as
acoustic cues in triggering processes that allow perceptual accom-
modation of talker variability.
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Appendix

DECtalker Parameters for Three Synthetic Talkers

Talker
Parameter Male-150/160/300 Female-300
Sex 1 0
Head size 100 95
F4 3300 4500
F5 3650 2500*
F4 bandwidth 260 230
F5 bandwidth 330 2048
Average FO 150/160/300 300
FO range 100 135
Voicing source gain 65 65
Aspiration source gain 70 70
Frication source gain 80 84
Nasalization gain 74 70
Aascade formant resonator 1 gain 68 67
Cascade formant resonator 2 gain 60 65
Cascade formant resonator 3 gain 48 51
Cascade formant resonator 4 gain 64 58
Loudness of voice® 86 80
Breathiness 0 0
Lax breathiness 0 50
Smoothness 3 60
Richness 70 100
Fixed samples of open glottalization (n) 0 10
Laryngealization (%) 0 0
Baseline fall 18 8
Hat rise 18 20
Stress rise 32 32
Assertiveness 100 100
Quickness 40 30

Note. All of the male talkers used in the study differed only in average FO.

# Setting F4 lower than F5 effectively turns off higher formants in DECtalk.

square (RMS) amplitude was digitally normalized.

® For the experiments, root-mean-
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