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Abstract 

This dissertation explores the fine-grained time course of spoken word 

recognition: which lexical representations are activated over time as a word is heard. 

First, I examine how bottom-up acoustic information is evaluated with respect to 

lexical representations. I measure the time course of lexical activation and 

competition during the on-line processing of spoken words, provide the first time 

course measures of neighborhood effects in spoken word recognition, and 

demonstrate that similarity metrics must take into account the temporal nature of 

speech, since, e.g., similarity at word onset results in stronger and faster activation 

than overlap at offset. I develop a paradigm combining eye tracking as participants 

follow spoken instructions to perform visually-guided tasks with a set of displayed 

objects (providing a fine-grained time course measure) with artificial lexicons 

(providing precise control over lexical characteristics), as well as replications and 

extensions with real words. Control experiments demonstrate that effects in this 

paradigm are not driven solely by the visual display, and, in the context of an 

experiment, artificial lexicons are functionally encapsulated from a participant’s 

native lexicon.  

The second part examines how top-down information is incorporated into on-

line processing. Participants learned a lexicon of nouns (referring to novel shapes) 

and adjectives (novel textures). Items had phonological competitors within their 

syntactic class, and in the other. Items competed with similar, within-class items. In 

contrast to real-word studies, competition was not observed between items from 

different form classes in contexts where the visual display provided strong syntactic 

expectations (a context requiring an adjective vs. one where an adjective would be 

infelicitous). I argue that (1) this pattern is due to the highly constraining context, in 

contrast to the ungrounded materials used previously with real words, and (2) the 

impact of top-down constraints depends on their predictive power. 

The work reported here establishes a methodology that provides the fine-

grained time course measure and precise stimulus control required to uncover the 
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microstructure of spoken word recognition. The results provide constraints on 

theories of word recognition, as well as language processing more generally, since 

lexical representations are implicated in aspects of syntactic, semantic and discourse 

processing.  
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Chapter 1:   Introduction and overview 

Linguistic communication is perhaps the most astonishing aspect of human 

cognition. In an instant, we transmit complex and abstract messages from one brain to 

another. We convert a conceptual representation to a linguistic one, and concurrently 

convert the linguistic representation to a series of motor commands that drive our 

articulators. In the case of spoken language, the acoustic energy of these articulations 

is transformed from mechanical responses of hair cells in our listener’s ears to a 

cortical representation of acoustic events which in turn must be interpreted as 

linguistic forms, which then are translated into conceptual information, which 

(usually) is quite similar to the intended message.  

Psycholinguistics is concerned largely with the mappings between conceptual 

representations and linguistic forms, and between linguistic forms and acoustics. 

Words provide the central interface in both of these mappings. Conceptual 

information must be mapped onto series of word forms, and in the other direction, 

words are where acoustics first map onto meaning. Some recent theories of sentence 

processing suggest that word recognition is not merely an intermediary stage that 

provides the input to syntactic and semantic processing. Instead, various results 

suggest that much of syntactic and semantic knowledge is associated with the 

representations of individual words in the mental lexicon (e.g., MacDonald, 

Pearlmutter, and Seidenberg, 1994; Trueswell and Tanenhaus, 1994). In the domain 

of spoken language, lexical knowledge is implicated in aspects of speech recognition 

that were often previously viewed as pre-lexical (Andruski, Blumstein, and Burton, 

1994; Marslen-Wilson and Warren, 1994). Thus, how lexical representations are 

accessed during spoken word recognition has important implications for language 

processing more generally. 

However, a complicating factor in the study of spoken words is the temporal 

nature of speech. Words are comprised of sequences of transient acoustic events. 

Understanding how acoustics are mapped onto lexical representations requires that 
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we analyze the time course of lexical activation; knowing which words are activated 

as a word is heard provides strong constraints on theories of word recognition. 

The experiments we report here address two aspects of word recognition 

where time course measures are crucial. The first set of experiments addresses how 

the bottom-up acoustic signal is mapped onto linguistic representations. Spoken 

words, unlike visual words, are not unitary objects that can persist in time. Spoken 

words are comprised of series of overlapping, transient acoustic events. The input 

must be processed in an incremental fashion. As a word unfolds in time, the set of 

candidate representations potentially matching the bottom-up acoustic signal will 

change (cf., e.g., Marslen-Wilson, 1987). Different theories of spoken word 

recognition make different predictions about the nature of the activated competitor set 

over time (e.g., Marslen-Wilson, 1987, vs. Luce and Pisoni, 1998); thus, we need to 

be able to measure the activations of different sorts of competitors as words are 

processed in order to distinguish between models.  

In addition, top-down information sources are integrated with bottom-up 

acoustic information during word recognition, as we will review shortly. Knowing 

when and how top-down information sources are integrated will provide strong 

constraints on the development of theories and models of language processing.  

Specifically, we will examine whether a combination of highly predictive syntactic 

and pragmatic information can constrain the lexical items considered as possible 

matches to an input, or whether spoken word recognition initially operates primarily 

on bottom-up information. While this question has been addressed before, the 

pragmatic aspect – a visual display providing discourse constraints – is novel.  

A further contribution of this dissertation is the development of a 

methodology that addresses the psycholinguist’s perennial dilemma. Words in natural 

languages do not fall, in sufficient numbers, into neat categories of combinations of 

characteristics of interest, such as frequency and number of neighbors (similar 

sounding words), making it difficult to conduct precisely controlled factorial 

experiments. By creating artificial lexicons, we can instantiate just such categories. In 
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the rest of this chapter, we will set the stage for the experiments reported in this 

dissertation by reviewing the macrostructure and microstructure of spoken word 

recognition.  

 

The macrostructure of spoken word recognition 

A set of important empirical results must be accounted for by any theory of 

spoken word recognition. These principles form what Marslen-Wilson (1993) referred 

to as the macrostructure of spoken word recognition: the general constraints on 

possible architectures of the language processing system from the perspective of 

spoken word recognition. At the most general level, current models employ an 

activation metaphor, in which a spoken input activates items in the lexicon as a 

function of their similarity to the input and item-specific information (such as the 

frequency of occurrence). Activated items compete for recognition, also as a function 

of similarity and item-specific characteristics.  

We will not extensively review the results supporting each of these 

constraints. Instead, consider results from Luce and Pisoni (1998), which illustrate all 

of the constraints. According to their Neighborhood Activation Model (NAM), lexical 

items are predicted to be activated by a given input according to an explicit similarity 

metric.1 The probability of identifying each item is given by its similarity to the input 

multiplied by its log frequency of occurrence divided by the sum of all items’ 

frequency-weighted similarities. Similar items are called neighbors, and a word’s 

neighborhood is defined as the sum of the log-frequency weighted similarities of all 

words (the similarities between most words will effectively be zero). The rule that 

generates single-point predictions of the difficulty of identifying words is called the 

“frequency-weighted neighborhood probability rule”. 

                                                 
1  Typically, the metric is similar to that proposed by Coltheart, Davelaar, Jonasson and Besner (1977) 

for visual word recognition (items are predicted to be activated by an input if they differ by no more 

than one phoneme substitution, addition or deletion), or is based on confusion matrices collected for 

diphones presented in noise.  
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Luce and Pisoni report that item frequency alone accounts for about 5% of the 

variance in a variety of measures, including lexical decision response times, and 

frequency-weighted neighborhood accounts for significantly more (16-21%). So first 

we see that item characteristics (e.g., frequency) largely determine how quickly words 

can be recognized. Second, the fact that neighborhood is a good predictor of 

recognition time shows that (a) multiple items are being activated, (b) those items 

compete for recognition (since recognition time is inversely proportional to the 

number of competitors, weighted by frequency, suggesting that as an input is 

processed, all words in the neighborhood are activated and competing), and (c) items 

compete both as a function of similarity and frequency (frequency weighted 

neighborhood accounts for 10 to 15% more variance than simple neighborhood). 

At the macro level, there are four more central phenomena that models of 

spoken word recognition should account for. First, there is form priming. Goldinger, 

Luce and Pisoni (1989) reported that phonetically related words should cause 

inhibitory priming. Given first one stimulus (e.g., “veer”) and then a related one (e.g., 

“bull”, where each phoneme is highly confusable with its counterpart in the first 

stimulus), recognition should be slowed compared to a baseline condition where the 

second stimulus follows an unrelated item. The reason inhibition is predicted is that 

the first stimulus is predicted to activate both stimuli initially, but the second stimulus 

will be inhibited by the first (assuming an architecture such as TRACE’s, or Luce, 

Goldinger, Auer and Vitevitch’s [2000] implementation of the NAM, dubbed 

“PARSYN”). If the second stimulus is presented before its corresponding word form 

unit returns to its resting level of activation, its recognition will be slowed. These 

effects have generated considerable controversy (see Monsell and Hirsh, 1998, for a 

critical review). However, Luce et al. (2000) review a series of past studies and 

present some new ones that provide compelling evidence for inhibitory form (or 

“phonetic”) priming. 

Second, there is associative or semantic priming, by which a word like “chair” 

can prime a phonetically unrelated word like “table” due to their semantic 
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relatedness. Third, there is cross-modal priming (e.g., Tanenhaus, Leiman and 

Seidenberg, 1979; Zwitserlood, 1989), in which words presented auditorily affect the 

perception of phonologically or semantically related words presented visually. 

Finally, there are context effects. These include syntactic and semantic effects, where 

a listener is biased towards one interpretation of an ambiguous sequence by its 

sentence (or larger discourse) context (see Tanenhaus and Lucas, 1987, for a review). 
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Phonemes

Word forms
Visual word 
recognition

Visual word 
recognition

Spoken word
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SemanticsSemantics

LexiconLexicon

Syntax/
Parsing
Syntax/
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Auditory 
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Discourse/
Pragmatics
Discourse/
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Figure 1.1: A schematic of the language processing system. 

 
Figure 1.1 shows schematically the components of the language processing 

system implicated in the spoken word recognition literature. Components represented 

by ‘clouds’ are not implemented in any current model of spoken word recognition 

(although models for these exist in other areas of language research). These are 
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depicted as separate components merely for descriptive purposes; we will not discuss 

the degree to which any of them can be considered independent modules here.  

 

The microstructure of spoken word recognition 

Marslen-Wilson (1993) contrasted two levels at which one could formulate a 

processing theory. First, there are questions about the global properties of the 

processing system. A theory based on such a “macrostructural” perspective focuses 

on fairly coarse (but nonetheless important) questions such as what constraints there 

are on the general class of possible models. For spoken word recognition, these 

include the factors we discussed in the previous section. Armed with knowledge 

about the general properties required of a model, one can proceed to the more precise, 

“microstructural” level, and address fine-grained issues such as interactions among 

processing predictions for specific stimuli, modeling and measuring the time course 

of processing, and questions of how representations are learned. 

There is no black-and-white distinction between macro- and microstructural 

“levels.” Rather, there is a continuum. For example, Luce’s NAM (Luce, 1986; Luce 

and Pisoni, 1998) identifies some global, macrostructural constraints, but at the same 

time, makes such fine-grained predictions as response times for individual items. 

Why, then, have we taken, “the microstructure of spoken word recognition,” as our 

title? Two reasons are especially important.  

First, as Marslen-Wilson (1993) implied, the time has come for research on 

spoken word recognition to address the microstructure end of the continuum. There is 

consensus on the general properties of the system, but the field lacks a realistic theory 

or model with sufficient depth to account for microstructure, while maintaining 

sufficient breadth to obey the known macrostructural constraints (in other words, 

there are microtheories or micromodels of specific phenomena, but no sufficiently 

general theories or models; cf. Nusbaum and Henly, 1992). The best-known, best-

worked out, explicit, implemented model of spoken word recognition remains the 

TRACE model (McClelland and Elman, 1986). While it suffers from various 
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computational problems (e.g., Elman, 1989; Norris, 1994), and cannot account for a 

number of basic speech perception phenomena, such as rate or talker normalization 

(e.g., Elman, 1989), it is the best game in town sixteen years later. One central factor 

in the slow rate of progress in developing theories of spoken word recognition has to 

do with a lag between the development of models of microstructure (such as TRACE 

and Cohort [e.g., Marslen-Wilson, 1987]) and sufficiently sensitive, direct and 

continuous measures to distinguish between them. As we will discuss in Chapter 2, 

the head-mounted eye tracking technique applied to language processing by 

Tanenhaus and colleagues (e.g., Tanenhaus et al., 1995) represents a large advance in 

our ability to measure the microstructure of language processing. 

The second reason to focus on microstructure has to do with what we argue to 

be an essential component of the microstructure approach: the use of precise 

mathematical models, or, in the case of simulating models (such as non-deterministic 

or incompletely understood neural networks), implemented models. Without precise, 

implemented models, there are limits to our ability to address even global properties 

of processing systems. Consider an example from visual perception.  

“Pop-out” phenomena in visual search are well known (see Wolfe, 1996, for a 

recent comprehensive review). Early explanations (which are still largely accepted) 

appealed to pre-attentive vs. attentive processes and resulting parallel or serial 

processing (e.g., Treisman and Gelade, 1980). Such verbal models appeared to be 

quite powerful. Many researchers replicated the diagnostic pattern. For searches 

based on a single feature, response time does not increase as the number of distractors 

does, suggesting a parallel process. More complex searches for combinations of 

features (or absence of features) lead to a linear increase in response time as the 

number of distractors is increased, suggesting a serial search. Some, however, began 

to question the parallel/serial distinction, even as it began to take on the luster of a 

perceptual law.  

For example, studies by Duncan and Humphreys (1989) indicated that some 

processes diagnosed as “early” or pre-attentive were actually carried out rather late in 
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the visual system. Without a worked-out theory of attention that could explain why a 

late process should be pre-attentive, the pre-attentive/attentive distinction was brought 

into question. Duncan and Humphreys (1989), among others, questioned the 

parallel/serial processing distinction. When precise, signal-detection-based models 

were combined with greater gradations of stimuli, the distinction was shown to be 

false; there is a continuum of processing difficulty that varies as a function of target 

and distractor discriminability.  

This example illustrates the potential hazards of focusing even on global, 

macrostructural issues without precise models. However, psycholinguists seem 

determined to repeat history. Consider the current debate in sentence processing 

between proponents of constraint-based, lexicalist models (which are analogous to the 

signal detection approach to visual search in that they consider stimulus-specific 

attributes) and structural models (e.g., the garden-path model [e.g., Frazier and 

Clifton, 1996], which claims that processing depends on structures a level of 

abstraction apart from specific stimuli).  

Tanenhaus (1995) made the case for the microstructure end of the continuum 

in studying sentence processing, and argued that even global questions could not be 

adequately addressed without precise, parameterized models. Clifton (1995) argued 

that the conventional approach of addressing global questions (such as whether 

human sentence processing is parallel or serial) remained the best course for progress. 

Clifton, Villalta, Mohamed and Frazier (1999) reiterated this argument, and claimed 

to refute recent evidence for parallelism (Pearlmutter and Mendelsohn, 1998) with a 

null result using different stimuli.  

This is exactly the style of reasoning Tanenhaus (1995) argued against, and 

which proved so misleading in the study of visual search. Without item-specific 

predictions, one cannot refute lexically-based – that is, item-based – models. Some 

might argue that this is a flaw, since the purpose of theory building ought to be to 

make broad, general predictions that capture the essence of a problem. 
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Furthermore, lexicalist models provide a precise and robust account of much 

of the phenomena of sentence processing (although there are not yet any implemented 

models of sufficient breadth and depth). Constraint-based models predict, as did 

signal-detection models for visual search, that a continuum of processing patterns can 

be observed depending on interactions among the characteristics of the stimuli used. 

Without measuring the relevant characteristics for Clifton el al.’s (1999) stimuli, one 

cannot quantify constraint-based predictions for their experiment. 

In summary, what we mean by microstructure goes beyond the dichotomy 

suggested by Marslen-Wilson (1993), to a continuum between macro- and 

microstructural questions. As microstructural questions are becoming more central in 

spoken word recognition, we must develop methods that allow both fine-grained time 

course measures and precise control of stimulus-specific characteristics. The next 

chapter is devoted to a review of the recent development of a fine-grained time-

course measure. The succeeding chapters combine the eye tracking measure with an 

artificial lexicon paradigm which allows precise control over lexical attributes. 
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Chapter 2:   The “visual world” paradigm 
 

In typical psychophysical experiments, the goal is to isolate a component of 

behavior to the greatest possible extent. Almost always, this entails removing the task 

from a naturalistic context. While a great deal has been learned about perception and 

cognition with this classical approach, it leaves open the possibility that perception 

and cognition in natural, ongoing tasks may operate under very different constraints. 

Recently, a handful of researchers have begun examining visual and motor 

performance in more natural tasks (e.g., Hayhoe, 2000; Land and Lee, 1994; Land, 

Mennie and Rusted, 1998; Ballard et al., 1997). The key methodological advance that 

has allowed this change in focus is the development of head-mounted eye trackers 

that allow relatively unrestricted body movements, and thus can provide a continuous 

measure of visual performance during natural tasks. In this chapter, we will describe 

the eye tracker used in the experiments described in the following chapters. Then, we 

will briefly review its use in the study of vision, and the adaptation of this technique 

for studying language processing.  

 

The apparatus and rationale 

An Applied Science Laboratories (ASL) 5000 series head-mounted eye 

tracker was used for the first two experiments reported here. An SMI EyeLink, which 

operates on similar principles, was used for the last three experiments. The tracker 

consists mainly of two cameras mounted on a headband. One provides a near-infrared 

image of the eye sampled at 60 Hz. The pupil center and first Purkinje reflection are 

tracked by a combination of hardware and software in order to provide a constant 

measure of the position of the eye relative to the head. The second camera (the 

“scene” camera) is aligned with the subject’s line of sight (see Figure 2.1). Because it 

is mounted on the headband and moves when the subject’s head does, it remains 

aligned with the subject’s line of sight. Therefore, the position of the eye relative to 
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the head can be mapped onto scene camera coordinates through a calibration 

procedure. The ASL software/hardware package provides a cross hair indicating 

point-of-gaze superimposed on a videotape record from the scene camera. Accuracy 

of this record (sampled at video frame rates of 30 Hz) is approximately 1 degree over 

a range of +/- 25 degrees. An audio channel is recorded to the same videotape. Using 

a Panasonic HI-8 VCR with synchronized sound and video, data is coded frame-by-

frame, and eye position is recorded with relation to visual and auditory stimuli. Visual 

stimuli are displayed on a computer screen, and fluent speech is either spoken (in the 

case of the Allopenna, Magnuson and Tanenhaus, 1998, study we will review below) 

or played to the subject over headphones using standard Macintosh PowerPC D-to-A 

facilities.  

The rationale for using eye movements to study cognition is that eye 

movements are typically fairly automatic, and are under limited conscious control. On 

average, we make 2-3 eye movements per second (although this can vary widely 

depending on task constraints; Hayhoe, 2000), and we are unaware of most of them. 

Furthermore, saccades are ballistic movements; once a saccade is launched, it cannot 

be stopped. Given a properly constrained task, in which the subject must perform a 

visually-guided action, eye movements can be given a functional interpretation. If 

they follow a stimulus in a reliable, predictable fashion with minimal lag,2 they can be 

interpreted as actions based on underlying decision mechanisms. Although there is 

evidence that eye movements in unconstrained, free-viewing linguistics tasks are 

highly correlated with linguistic stimuli (Cooper, 1974), all of the experiments in this 

proposal will use visual-motor tasks in order to avoid the pitfalls of interpreting 

unconstrained tasks (see Viviani, 1990). 

 

                                                 
2  We take 200 ms to be a reasonable estimate of the time required to plan and launch a saccade in this 

task, given that the minimum latency is estimated to be between 150 and 180 ms in simple tasks 

(e.g., Fischer, 1992; Saslow, 1967), whereas intersaccadic intervals in tasks like visual search fall in 

the range of 200 to 300 ms (e.g., Viviani, 1990). 
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Figure 2.1: Eye tracking methodology. 
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Vision and eye movements in natural, ongoing tasks 

Models of visuo-spatial working memory have typically been concerned with 

the limits of human working memory. Results from studies pushing working memory 

to its limits have led to the proposal of modality-specific “slave” systems that provide 

short-term stores. Usually, it is assumed that there are at least two such stores: the 

articulatory loop, which supports verbal working memory, and the visuo-spatial 

scratchpad (Baddeley and Hitch, 1974) or “inner scribe” (Logie, 1995), which 

supports visual working memory. Recent research by Hayhoe and colleagues was 

designed to complement such work with studies of how capacity limitations constrain 

performance in natural, ongoing tasks carried out without added time or memory 

pressures. 

The prototypical task they use is block-copying (see Figure 2.2). Participants 

are presented with a visual display (on a computer monitor or on a real board) that is 

divided into three areas. The model area contains a pattern of blocks. The 

participant’s task is to use blocks from the resource area to construct a copy of the 

model pattern in the workspace. Eye and hand position are measured continuously as 

the participant performs the task. The task is to use blocks displayed in the resource 

(right monitor) to build a copy of the model (center) in the workspace (left). The 

arrows and numbers indicate a typical fixation pattern during block copying. The 

participant fixates the current block twice. At fixation 2, the participant picks up the 

dark gray block. After fixation 4, the participant drops the block. 

 

Workspace Model Resource

1
3 24

 

Figure 2.2: The block-copying task. 
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Note that the task differs from typical laboratory tasks in several ways. First, it 

is closer to natural, everyday tasks than, e.g., tests of iconic memory or recognition 

tasks. Second, as a natural task, it extends over a time scale of several seconds. Third, 

the eye and hand position measures allow one to examine performance without 

interrupting the ongoing task; that is, the time scale and dependent measures allow 

one to examine instantaneous performance at any point, but also to have a continuous 

measure of performance throughout an entire, uninterrupted natural task. Studies 

using variants of the block-copying task have revealed that information such as gaze 

and hand locations can be used as pointers to reduce the amount of information that 

must be internally represented (e.g., Ballard, Hayhoe, and Pelz, 1995). These pointers 

index locations of task-relevant information, and are called deictic codes (Ballard, 

Hayhoe, Pook, and Rao, 1997).  

In several variants of the block-copying task, the same key result has been 

replicated. Rather than committing even a small portion of a model pattern to 

memory, participants work with one component at a time, and typically fixate each 

model component twice. First, participants fixate a model component and then scan 

the resource area for the appropriate component and fixate it. The hand moves to pick 

up the component. Then, a second fixation is made to the same model component as 

on the previous model fixation. Finally, participants fixate the appropriate location in 

the workspace and move the component from the resource area to place it in the 

workspace. If we divide the data into fixation-action sequences each time an object is 

dropped in the workspace, this model-pickup-model-drop sequence is the most often 

observed (~45%, with the next most frequent pattern being pickup-model-drop, which 

accounts for ~25% of the sequences; model-pickup-drop and pickup-drop each 

account for ~10% of the sequences, with most of the remaining, infrequent patterns 

involving multiple model fixations between drops; thus, the majority of fixation 

sequences involve at least one model fixation per component, with an average of 

nearly two model fixations per component). 
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Given such a simple task, why don’t participants encode and work on even 

two or three components between model fixations, which would be well within the 

range of short-term memory capacity? Ballard et al. (1997) have proposed that 

memories for motor signals and eye or hand locations provide a more efficient 

mechanism than could be afforded by a purely visual, unitary, imagistic 

representation. In the block-copying paradigm, participants seem to encode simple 

properties one at a time, rather than encoding complex representations of entire 

components. For example, a fixation to a model component could be used to encode 

the block’s color, and its location within the pattern. This might require encoding not 

just the block’s color, but also the colors of its neighbors (which would indicate its 

relative location). Alternatively, the block’s color and the signal indicating the 

fixation coordinates could be encoded. With the color information, a fixation can be 

made to the resource area to locate a block for the copy. The fixation coordinates 

could serve as a pointer to the block’s location in the model (and all potential 

information available at that location). Next, a saccade can be made back to the 

fixation coordinates, and the information necessary for placing the picked-up block in 

the workspace can be encoded. 

Note that in the copying task, the second fixation is typically made back to 

exactly the same place in the model. Why can’t the information that allows the 

participant to fixate the same location be used to place the picked-up block in the 

correct place in the workspace? Because that information is about an eye position – 

the pointer – not about the relative location of the block in the pattern. The fixation 

coordinates act as a pointer in the sense of the computer programming term: a small 

information unit that represents a larger information unit simply by encoding its 

location. Thus, very little information need be encoded internally at a given moment. 

Perceptual pointers allow us to reference the external world and use it as memory, in 

a just-in-time fashion. This hypothesis was inspired in part by an approach in 

computer vision that greatly reduced the complexity of representations needed to 

interact with the world. On the active or animate vision view (Bajcsy, 1985; Brooks, 
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1986; Ballard, 1991), much less complex representations of the world are needed 

when sensors are deployed (e.g., camera saccades are made) in order to sample the 

world frequently, in accord with task demands. 

Hayhoe, Bensinger and Ballard (1998) reported compelling evidence for the 

pointer hypothesis in human visuo-motor tasks. As participants performed the block-

copying task at a computer display, the color of an unworked model block was 

sometimes changed during saccades to the model area (when the participant would be 

functionally blind for the approximately 50 ms it takes to make a saccadic eye 

movement). The color changes occurred either after a drop in the workspace (before 

pickup), or after a pickup in the resource area (after pickup). Participants were 

unaware of the majority of color changes, according to their verbal reports. However, 

fixation durations revealed that performance was affected. Fixation durations were 

slightly, but not reliably, longer (+43 ms) when a color change occurred before 

pickup compared to a control when no color change occurred. When the color change 

occurred after pickup, fixation durations were reliably longer (+103 ms) than when no 

change occurred.  

How do these results support the pointer hypothesis? Recall that the most 

frequent fixation pattern was model-pickup-model-drop. When the change occurs 

after pickup -- just after the participant has picked up a component from the resource 

area and is about to fixate the corresponding model block again -- there is a relatively 

large effect on performance. When the color change occurs before pickup -- just after 

a participant has finished adding a component to the workspace -- there is a relatively 

small effect. At this stage, according to the pointer hypothesis, color information is no 

longer relevant; what had been encoded for the preceding pickup and drop can be 

discarded, and this is reflected in the small increase in fixation duration. 

Bensinger (1997) explored various alternatives to this explanation. He found 

that the same basic results hold when: (a) participants can pick up as many 

components as they like (in which case they still make two fixations per component, 

but with sequences like model-pickup, model-pickup, model-drop, model-drop), (b) 
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images of complex natural objects are used rather than simple blocks, or (c) the 

model area is only visible when the hand is in the resource area (in which case the 

number of components being worked on drops when participants can pick up as many 

components as they want, so as to minimize the number of workspace locations to be 

recalled when the model is not visible). 

 

Language-as-product vs. language-as-action 

The studies we just reviewed reveal a completely different perspective of 

visual behavior than classical methods for studying visuo-spatial working memory. 

The discovery that multiple eye movements can substitute for complex memory 

operations might not have emerged using conventional paradigms. Language research 

also relies largely on classical, reductionist tasks, on the one hand, and, on the other, 

on more natural tasks (such as cooperative dialogs) that do not lend themselves to 

fine-grained analyses. Clark (1992) refers to this as the distinction between language-

as-product and language-as-action traditions.  

In the language-as-product tradition, the emphasis is on using clever, 

reductionist tasks to isolate components of hypothesized language processing 

mechanisms. The benefit of this approach is the ability to make inferences about 

mechanisms due to differences in measures such as response time or accuracy as a 

function of minimal experimental manipulations. The cost is the potential loss of 

ecological validity; as with vision, it is not certain that language-processing behavior 

observed in artificial tasks will generalize to natural tasks. In the language-as-action 

tradition, the emphasis is on language in natural contexts, with the obvious benefit of 

studying behavior closer to that found “in the wild.” The cost is the difficulty of 

making measurements at a fine enough scale to make inferences about anything but 

the macrostructure of the underlying mechanisms. 

The head-mounted eye-tracking paradigm provides the means of bringing the 

two language research traditions closer together. As in the vision experiments, 

subjects can be asked to perform relatively natural tasks. Eye movements provide a 
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continuous, fine-grained measure of performance, which allows (specially designed) 

natural tasks to be analyzed at an even finer level than conventional measures from 

the language-as-product tradition. To illustrate this, we will briefly review one study 

of spoken word recognition using this technique (known as “the visual world 

paradigm”). 

The microstructure of lexical access: Cohorts and rhymes 
Allopenna, Magnuson and Tanenhaus (1998) extended some previous work 

using this paradigm (Tanenhaus et al., 1995) to resolve a long-standing difference in 

the predictions of two classes of models of spoken word recognition. “Alignment” 

models (e.g., Marslen-Wilson’s Cohort model [1987] or Norris’ Shortlist model 

[1994]) place a special emphasis on word onsets to solve the segmentation problem – 

that is, finding word boundaries. Marslen-Wilson and Welsh (1978) proposed that an 

optimal solution would be, starting from the onset of an utterance, to consider only 

those word forms consistent with the utterance so far at any point. Given the stimulus 

beaker, at the initial /b/, all /b/-initial word forms would form the cohort of words 

accessed as possible matches to the input. As more of the stimulus is heard, the cohort 

is whittled down (from /b/-initial to /bi/-initial to /bik/-initial, etc.) until a single 

candidate remains. At that point, the word is recognized, and the process begins again 

for the next word.3 In its revised form, as with the Shortlist model, Cohort maintains 

its priority on word onsets (and thus constrains the size of the cohort) in an activation 

framework by employing bottom-up inhibition. Lower-level units have bottom-up 

inhibitory connections to words that do not contain them (tripling, on average, the 

number of connections to each word in an architecture where phonemes connect to 

words, compared to an architecture like TRACE’s, where there are only excitatory 

bottom-up connections).  

In contrast to alignment models’ emphasis on word onsets, continuous 

activation models like TRACE (McClelland and Elman, 1986) and NAM/PARSYN 

                                                 
3  In cases where there ambiguity remains, the Cohort model’s selection and integration mechanisms 

complete the segmentation decision. 
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(Luce and Pisoni, 1998; Luce et al., in press) are not designed to give priority to word 

onsets. Words can become active at any point due to similarity to the input. The 

advantage for items that share onsets with the input (which we will refer to as cohort 

items, or cohorts) is still predicted, because active word units inhibit all other word 

nodes. As shown in Figure 2.3, cohort items become activated sooner than, e.g., 

rhymes. Thus, cohort items (as well as the correct referent) inhibit rhymes and 

prevent them from becoming as active as cohorts, despite their greater overall 

similarity. Still, substantial rhyme activation is predicted by continuous activation 

models, whereas in alignment models, an item like ‘speaker’ would not be predicted 

to be activated by an input of ‘beaker.’ 

Until recently, there was ample evidence for cohort activation (e.g., Marslen-

Wilson and Zwitserlood, 1989), but there was no clear evidence for rhyme activation. 

For example, weak rhyme effects had been reported in cross-modal and auditory-

auditory priming (Connine, Blasko and Titone, 1993; Andruski et al., 1994) when the 

rhymes differed by only one or two phonetic features. The hints of rhyme effects left 

open the possibility that conventional measures were simply not sensitive enough to 

detect the robust, if relatively weak, rhyme activation predicted by models like 

TRACE.4 Encouraged by the ability of the visual world paradigm to measure the time 

course of activation among cohort items (Tanenhaus et al., 1995), Allopenna et al. 

(1998) designed an experiment to take another look at rhyme effects.  

 

                                                 
4  This is especially true when null or weak results come from mediated tasks like cross-modal 

priming, where the amount of priming one would expect was not specified by any explicit model. 

Presumably, weak activation in one modality would result in even weaker activation spreading to the 

other. 
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Figure 2.3: Activations over time in TRACE. 

 

An example of the task the subject performed in our first experiment was 

shown in Figure 2.1. The subject saw pictures of four items on each trial. The 

subjects’ task was to pick up an object in response to a naturally spoken instruction 

(e.g., “pick up the beaker”) and then place it relative to one of the geometric figures 

on the display (“now put it above the triangle”). On most trials, the names of the 
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objects were phonologically unrelated (to the extent that no model of spoken word 

recognition would predict detectable competition among them). On a subset of critical 

trials, the display included a cohort and/or rhyme to the referent. We were interested 

in the probability that subjects would fixate phonologically similar items compared to 

unrelated items as they recognized the last word in the first command (e.g., “beaker”). 

 

Figure 2.4: Fixation proportions from Experiment 1 in Allopenna et al. (1998). 
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Fixation probabilities averaged over 12 subjects and several sets of items are 

shown in Figure 2.4. The data bear a remarkable resemblance to the TRACE 

activations shown in Figure 2.3. However, those activations are from an open-ended 

recognition process, and cannot be compared directly to fixation probabilities for two 

reasons. First, probabilities sum to one, which is not a constraint on TRACE 

activations. (Note that the fixation proportions in Figure 2.4 do not sum to one 

because subjects begin each trial fixating a central cross; the probability of fixating 

this cross is not shown.) Second, subjects could fixate only the items displayed during 

each trial. We needed a linking hypothesis to relate TRACE activations to behavioral 

data. 

 

We addressed these two problems by converting activations to predicted 

fixation probabilities using a variant of the Luce choice rule (Luce, 1959). The basic 

choice rule is: 
ka
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Where Si is the response strength of item i, given its activation, ai, and k, a 

constant5 that determines the scaling of strengths (large values increase the advantage 

for higher activations). Pi is the probability of choosing i; it is simply Si normalized 

with respect to all items’ (1 to j) strengths (at each cycle of activation).  

One problem with applying the basic choice rule to activations is that given j 

possible choices, when the activation of all j items is 0, each would have a response 

probability of 1/j. To rectify this, a scaling factor was computed for each cycle of 

activations: 
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5 Actually, a sigmoid function was used in place of a constant in Allopenna et al. (1998). This 
improves the fit somewhat; see Allopenna et al. for details. 
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This scaling factor (the maximum activation at time t over the maximum 

activation observed in response to the current stimulus over an arbitrary number of 

cycles) made response probabilities range from 0 to 1, where 0 indicated all 

activations were at 0 and 1 indicates that one item was active and equal to the peak 

activation. 

The second modification to the choice rule was that only items visually 

displayed entered into the response probability equations, given that subjects could 

only choose among those items. Thus, activations were based on competition within 

the entire lexicon (the standard 230-word TRACE lexicon augmented with our items, 

and their neighbors, for a total of 268 items), but choices were assumed only to take 

into account visible items. Note that this fact could have been incorporated in many 

different ways. For example, the implementation of TRACE we used allows a top-

down bias to be applied to specific items, which would change the dynamics of the 

activations themselves. The post-activation selection bias we used carries the implicit 

assumption that competition in the lexicon is protected from top-down biases from 

other modalities. As we will discuss in Chapter 4, this assumption should be tested 

explicitly. 

However, the method we used provided an exceptionally good fit to the data. 

Predicted fixation probabilities are shown in Figure 2.5. To measure the fit, RMS 

error and correlations were computed. RMS values for the referent, cohort, and rhyme 

were .07, .03 and .01, respectively. r2 values were .98, .90, and .87.  

Note that the results also support TRACE over the NAM, in that cohort items 

compete more strongly than rhymes. In the NAM, rhymes are predicted to be more 

likely responses than cohorts due to their greater similarity to the referent. Thus, 

TRACE provides a better fit to data because it incorporates the temporal constraints 

on spoken language perception: evidence accumulates in a “left-to-right” manner. 

The NAM, on the other hand, remains quite useful because it produces a single 

number for each lexical item that is fairly predictive of the difficulty subjects will 

have recognizing it.  
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Figure 2.5: TRACE activations converted to response probabilities. 

 

The Allopenna et al. (1998) study demonstrates how a sufficiently sensitive, 

continuous and direct measure can address questions of microstructure. The 

experiments reported here extend this work to even finer-grained questions regarding 

the time course of neighborhood density (Experiments 1 and 2), appropriate similarity 

metrics for spoken words (Experiments 1-3), and the time course of the integration of 
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top-down information during acoustic-phonetic processing (Experiment 5). We 

extend the methodology to achieve more precise control over stimulus characteristics 

(by instantiating levels of characteristics in artificial lexicons), and by examining 

important control issues (to what degree effects in the visual world paradigm are 

controlled by the displayed objects [Experiments 2 and 5], and whether the native 

lexicon intrudes on processing items in a newly-learned artificial lexicon [Experiment 

4]).  
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Chapter 3:   Studying time course with an artificial lexicon 
 

As the sound pattern of a word unfolds over time, multiple lexical candidates 

become active and compete for recognition. The recognition of a word depends not 

only on properties of the word itself (e.g., frequency of occurrence; Howes, 1954), 

but also on the number and properties of phonetically similar words (Marslen-Wilson, 

1987; 1993), or neighbors (e.g., Luce and Pisoni, 1998). The set of activated words is 

not static, but changes dynamically as the signal is processed.  

Models of spoken word recognition (SWR) must take into account the 

characteristics of dynamically changing processing neighborhoods in continuous 

speech (e.g., Gaskell and Marslen-Wilson, 1997; Norris, 1994). Recent 

methodological advances using an eye-tracking measure allow for direct assessment 

of the time course of SWR at a fine temporal grain (e.g., Allopenna, Magnuson and 

Tanenhaus, 1998). However, the degree to which these, and other more traditional 

methods, can be used to evaluate hypotheses about the dynamics of processing 

neighborhoods depends on how precisely the distributional properties of words in the 

lexicon (such as word frequency and number of potential competitors) can be 

controlled. 

Artificial linguistic materials have been used to study several aspects of 

language processing with precise control over distributional information (e.g., Braine, 

1963; Morgan, Meier and Newport, 1987; Saffran, Newport and Aslin, 1996).  The 

present chapter introduces and evaluates a paradigm that combines the eye-tracking 

measure with an artificial lexicon, thereby revealing the time course of SWR while 

word frequency and neighborhood structure are controlled with a precision that could 

not be attained in a natural-language lexicon. In the paradigm we developed, 

participants learn new “words” by associating them with novel visual patterns, which 

enabled us to examine how precisely controlled distributional properties of the input 

affect processing and learning. This is an important advantage of an artificial lexicon 

because on-line SWR in a natural-language lexicon is difficult to study during the 
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process of acquisition, particularly when the goal is to determine how word learning 

is affected by the structure of lexical neighborhoods. The usefulness of the artificial 

lexicon approach depends crucially on the degree to which SWR in a newly learned 

lexicon is similar to SWR in a mature lexicon. We address this question by using the 

same eye movement methods that have been used to study natural-language lexicons, 

and comparing the results obtained with an artificial lexicon to related studies using 

real words. 

Eye movements to objects in visual displays during spoken instructions 

provide a remarkably sensitive measure of the time course of language processing 

(Cooper, 1974; Tanenhaus, Spivey-Knowlton, Eberhard and Sedivy, 1995; for a 

review, see Tanenhaus, Magnuson, and Chambers, in preparation), including lexical 

activation (Allopenna, Magnuson and Tanenhaus, 1998; Dahan, Magnuson and 

Tanenhaus, in press; Dahan, Magnuson, Tanenhaus and Hogan, in press; for a review, 

see Tanenhaus, Magnuson, Dahan, and Chambers, in press). Allopenna et al. (1998) 

monitored eye movements as participants followed instructions to click on and move 

one of four objects displayed on a computer screen (see Figure 2.1 in Chapter 2) with 

the computer mouse (e.g., “Look at the cross. Pick up the beaker. Now put it above 

the square.”). The probability of fixating each object as the target word was heard was 

hypothesized to be closely linked to the activation of its lexical representation. The 

assumption providing the link between lexical activation and eye movements is that 

the activation of the name of a picture affects the probability that a participant will 

shift attention to that picture and fixate it. On critical trials, the display contained a 

picture of the target (e.g., beaker), a picture whose name rhymed with the target (e.g., 

speaker), and/or a picture that had the same onset as the target (e.g., beetle, called a 

“cohort” because items sharing onsets are predicted to compete by the Cohort model; 

e.g., Marslen-Wilson, 1987), as well as unrelated items (e.g., carriage) that provided 

baseline fixation probabilities. 

Figure 2.4 (in Chapter 2) shows the proportion of fixations over time to the 

visual referent of the target word, its cohort and rhyme competitors, and an unrelated 
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item. The proportion of fixations to referents and cohorts began to increase 200 ms 

after word onset. We take 200 ms to be a reasonable estimate of the time required to 

plan and launch a saccade in this task, given that the minimum latency is estimated to 

be between 150 and 180 ms in simple tasks (e.g., Fischer, 1992; Saslow, 1967), 

whereas intersaccadic intervals in tasks like visual search fall in the range of 200 to 

300 ms (e.g., Viviani, 1990). Thus, eye movements proved sensitive to changes in 

lexical activation from the onset of the spoken word and revealed subtle but robust 

rhyme activation which had proved elusive with other methods. 

Although competition between cohort competitors was well-established (for a 

review see Marslen-Wilson, 1987), rhyme competition was not. Weak rhyme effects 

had been found in cross-modal and auditory-auditory priming, but only when rhymes 

differed by one or two phonetic features in the initial segment (Andruski, Blumstein, 

and Burton, 1994; Connine, Blasko, and Titone, 1993; Marslen-Wilson, 1993). The 

rhyme activation found by Allopenna et al. (1998) favored continuous activation 

models, such as TRACE (McClelland and Elman, 1986) or PARSYN (Luce, 

Goldinger, and Auer, 2000), in which late similarity can override detrimental effects 

of initial mismatches, over models such as the Cohort model (Marslen-Wilson, 1987, 

1993) or Shortlist (Norris, 1994) in which bottom-up inhibition heavily biases the 

system against items once they mismatch.  

Dahan, Magnuson and Tanenhaus (2001) used the eye-movement paradigm to 

measure the time course of frequency effects and demonstrated that frequency affects 

the earliest moments of lexical activation, thus disconfirming models in which 

frequency acts as a late, decision-stage bias (e.g., Connine, Titone, and Wang, 1993). 

When a picture of a target word, e.g., bench, was presented in a display with pictures 

of two cohort competitors, one with a higher frequency name (bed) and one with a 

lower frequency name (bell), initial fixations were biased towards the high frequency 

cohort. When the high- and low-frequency cohorts were used as targets in displays in 

which all items had unrelated names, the fixation time course to pictures with higher 

frequency names was faster than for pictures with lower frequency names. This 
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demonstrated that frequency effects in the paradigm do not depend on the relative 

frequencies of displayed items, and that the visual display does not reduce or 

eliminate frequency effects, as in closed-set tasks (e.g., Pollack, Rubenstein and 

Decker, 1959; Sommers, Kirk and Pisoni, 1997). 

In the present research, the position of overlap with the target was 

manipulated by creating cohort and rhyme competitors, frequency was manipulated 

by varying amount of exposure to words, and neighborhood density was manipulated 

by varying neighbor frequency. Four questions were of primary interest. First, would 

participants learn the artificial lexicon quickly enough to make extensions of the 

paradigm feasible? Second, is rapid, continuous processing a natural mode for SWR, 

or does it arise only after extensive learning? Third, would we find the same pattern 

of effects observed with real words (cohort and rhyme competition, frequency 

effects)? Fourth, do effects in this paradigm depend on visual displays, or is 

recognition of a word influenced by properties of its neighbors, even when their 

referents are not displayed? This would demonstrate that the effects are primarily 

driven by SWR processes. 

  

Experiment 1 

Method 
Participants. Sixteen students at the University of Rochester who were native 

speakers of English with normal hearing and normal or corrected-to-normal vision 

were paid $7.50 per hour for participation. 

Materials. The visual stimuli were simple patterns formed by filling eight 

randomly-chosen, contiguous cells of a four-by-four grid (see Figure 3.1). Pictures 

were randomly mapped to words.6 The artificial lexicon consisted of four 4-word sets 

                                                 
6 Two random mappings were used for the first eight participants, with four assigned to each mapping. 

A different random mapping was used for each of the eight subjects in the second group. ANOVAs 

using group as a factor showed no reliable differences, so we have combined the groups. 
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of bisyllabic novel words, such as /pibo/, /pibu/, /dibo/, and /dibu/.7  Mean duration 

was 496 ms. Each word had an onset-matching (cohort) neighbor, which differed only 

in the final vowel, an onset-mismatching (rhyme) neighbor, which differed only in its 

initial consonant, and a dissimilar item which differed in the first and last phonemes. 

The cohorts and rhymes qualify as neighbors under the “short-cut” neighborhood 

metric of items differing by a one-phoneme addition, substitution or deletion (e.g., 

Newman, Sawusch, and Luce, 1997). A small set of phonemes was selected in order 

to achieve consistent similarity within and between sets. The consonants /p/, /b/, /t/, 

and /d/ were chosen because they are among the most phonetically similar stop 

consonants. The first phonemes of rhyme competitors differed by two phonetic 

features: place and voicing. Transitional probabilities were controlled such that all 

phonemes and combinations of phonemes were equally predictive at each position 

and combination of positions. A potential concern with creating artificial stimuli is 

interactions with real words in the participants’ native lexicons. While Experiment 4 

addresses this issue explicitly, none of the stimuli in this study would fall into dense 

English neighborhoods (9 words had no English neighbors; 5 had 1 neighbor, with 

log frequencies between 2.6 and 5.8; 2 had 2 neighbors, with summed log frequencies 

of 4.1 and 5.9). Furthermore, even if there were large differences, these would be 

unlikely to control the results, as stimuli were randomly assigned to frequency 

categories in this experiment, as will be described shortly. 

The auditory stimuli were produced by a male native speaker of English in a 

sentence context (“Click on the pibo.”). The stimuli were recorded to tape, and then 

digitized using the standard analog/digital devices on an Apple Macintosh 8500 at 16 

bit, 44.1 kHz. The stimuli were converted to 8 bit, 11.127 kHz (SoundEdit format) for 

use with the experimental control software, PsyScope 1.2 (Cohen, MacWhinney, Flatt 

and Provost, 1993).  

                                                 
7  The other items were /pota/, /poti/, /dota/, /doti/; /bupa/, /bupi/, /tupa/, /tupi/; and /bado/, 

/badu/, /tado/, /tadu/. 
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Figure 3.1: Examples of 2AFC (top) and 4AFC displays from Experiments 1 and 2. 
 

Procedure. Participants were trained and tested in two 2-hour sessions on 

consecutive days. Each day consisted of seven training sessions with feedback and a 

testing session without feedback. Eye movements were tracked during the testing 

session.  

The structure of the training sessions was as follows. First, a central fixation 

cross appeared on the screen. The participant then clicked on the cross to begin the 

trial. After 500 ms, either two shapes (in the first three training sessions) or four 

shapes (in the rest of the training sessions and the tests) appeared (see Figure 3.1). 
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Participants heard the instruction, “Look at the cross.”, through headphones 750 ms 

after the objects appeared. As instructed prior to the experiment, participants fixated 

the cross, then clicked on it with the mouse, and continued to fixate the cross until 

they heard the next instruction. 500 ms after clicking on the cross, the spoken 

instruction was presented (e.g., “Click on the pibu.”). When participants responded, 

all of the distractor shapes disappeared, leaving only the correct referent. The name of 

the shape was then repeated. The object disappeared 500 ms later, and the participant 

clicked on the cross to begin the next trial. The testing session was identical to the 

four-item training, except that no feedback was given. 

During training, half the items were presented with high frequency (HF), and 

half with low frequency (LF). Half of the eight HF items had LF neighbors (e.g., 

/pibo/ and /dibu/ might be HF, and /pibu/ and /dibo/ would be LF), and vice-versa. 

The other items had neighbors of the same frequency. Thus, there were four 

combinations of word/neighbor frequency: HF/HF, LF/LF, HF/LF, and LF/HF. Each 

training session consisted of 64 trials. HF names appeared seven times per session, 

and LF names appeared once per session. Each item appeared in six test trials: one 

with its onset competitor and two unrelated items, one with its rhyme competitor and 

two unrelated items, and four with three unrelated items (96 total). 

Eye movements were monitored using an Applied Sciences Laboratories 

E4000 eye tracker, which provided a record of point-of-gaze superimposed on a video 

record of the participant's line of sight. The auditory stimuli were presented binaurally 

through headphones using standard Macintosh Power PC digital-to-analog devices 

and simultaneously to the HI-8 VCR, providing an audio record of each trial. Trained 

coders (blind to picture-name mapping and trial condition) recorded eye position 

within one of the cells of the display at each video frame. 
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Figure 3.2: Day 1 test (top) and Day 2 test (bottom) from Experiment 1. 
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Results 

A response was scored as correct if the participant clicked on the named 

object with the mouse. Participants were close to ceiling for HF items in the first test, 

but did not reach ceiling for LF items until the end of the second day (see Table 1). 

Eye position was coded for each frame on the video tape record beginning 500 ms 

before target onset and ending when the participant clicked on a shape. The second 

day's test was coded for all subjects. The first day's test was coded only for the second 

group of eight subjects (see footnote 6). In order not to overestimate competitor 

fixations, only correct trials were coded. 

Cohort and rhyme effects. Figure 3.2 shows the proportion of fixations to 

cohort, rhyme and unrelated distractors8 in 33 ms time frames (video sampling rate: 

30 Hz), averaged across all frequency and neighbor (cohort or rhyme) conditions for 

the test on Day 1 (n = 8) and Day 2 (n = 16). The overall pattern is strikingly similar 

to the pattern Allopenna et al. (1998) found with real words (see Figure 2.4 in 

Chapter 2). On both days cohorts and rhymes were fixated more than unrelated 

distractors. The cohort and target proportions separated together from the unrelated 

baseline. After a slight delay (more apparent on day two), the fixation probability of 

the rhyme separated from baseline. Eye movements were more closely time-locked to 

speech than it appears in the figures. Allowing for the estimated 200 ms it takes to 

plan and launch a saccade, the earliest eye movements were being planned almost 

immediately after target onset. Since the average target duration was 496 ms, eye 

movements in about the first 700 ms were planned and launched prior to target offset.  

                                                 
8  Fixation probabilities for unrelated items represent the average fixation probability to all unrelated 

items.  
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Figure 3.3: Cohort effects on Day 2 in Experiment 1. 



36 

 

Note that the slope of the target fixation probability (derived from a logistic 

regression) was less than for real words (Day 1: probability increased .0006/msec; 

Day 2: .0007; real words: .0021; see Figure 2.4 in Chapter 2), and the target 

probability did not reach 1.0 even 1500 ms after the onset of the target name. Two 

factors underlie this. First, the stimuli were longer than bisyllabic words like those 

used by Allopenna et al. because of their CVCV structure. Second, although 

participants were at ceiling on HF and LF items in the second test (Table 3.1), they 

were apparently not as confident as we would expect them to be with real words, as 

indicated by the fact that they made more eye movements than participants in 

Allopenna et al. (1998): 3.4 per trial on Day 2 vs. 1.5 per trial for real words. 

 

 

 

Table 3.1: Accuracy in training and testing in Experiment 1. 

Session Overall HF LF 

Training 1 (2AFC) 0.728 0.751 0.562 

Training 4 (2AFC) 0.907 0.933 0.722 

Training 7 (4AFC) 0.933 0.952 0.797 

Day 1 Test 0.863 0.949 0.777 

    

Training 8 (4AFC) 0.940 0.960 0.802 

Training 11 (4AFC) 0.952 0.965 0.859 

Training 14 (4AFC) 0.969 0.977 0.908 

Day 2 Test 0.974 0.983 0.964 
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Figure 3.4: Rhyme effects on Day 2 in Experiment 1. 

 

 

 



38 

Two differences stand out between the results for Days 1 and 2. First, the 

increased slope for target fixation probabilities on Day 2 reflects additional learning. 

Second, the rhyme effect on Day 1 appeared to be about as strong as the cohort effect. 

ANOVAs on mean fixation probabilities9 in the 1500 ms after target onset showed 

that cohort and rhyme probabilities reliably exceeded those for unrelated items on 

Day 1 (cohort [.10] vs. unrelated [.04]: F[1,7]=11.0, p < .05; rhyme [.09] vs. unrelated 

[.05]: F[1,7]=7.2, p < .05), but the cohort and rhyme did not differ from one another 

(F[1,7]<1). On Day 2, the cohort and rhyme both differed from the unrelated items 

(cohort [.14] vs. unrelated [.06]: F[1,15]=36.5, p < .001; rhyme [.09] vs. unrelated 

[.05]: F[1,15]=13.3, p < .005) and from each other (F[1,15]=8.7, p < .05). The mean 

probability of fixating the target was .29 on Day 1 and .37 on Day 2. 

Frequency effects. Competitor effects were clearly modulated by frequency. 

The four combinations of target and cohort frequency are shown in Figure 3.3 for 

Day 2. Notice that when the target was HF and the cohort was LF (upper right panel), 

fixation probabilities rose most rapidly to the target and fixation probabilities to the 

cohort were lowest compared to other conditions. Cohort activation preceded target 

activation when the target was LF and the cohort was HF (bottom left panel). When 

both the target and cohort were HF (upper left panel), activations were virtually 

identical until 200 ms after target offset. Although relatively weaker effects were 

found when both the targets and competitors were LF (lower right panel), they still 

resemble the overall effect shown in Figure 3.2. The same combinations of target and 

rhyme frequency are shown in Figure 3.4. The overall pattern of results mirrors that 

obtained with cohort competitors, although the proportion of fixations to rhymes is 

less than the proportion of fixations to cohorts. 

 

 

                                                 
9 Mean fixation proportion is a simple transformation of a more familiar statistic, area under the curve. 
Since area is based on a number of samples, we can divide by that number to arrive at mean fixation 
proportion. Transforming area to mean proportion does not affect the outcomes of ANOVAs, since 
each area is divided by the same number (and therefore the ratios of variances do not change). 
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Discussion 

With relatively little training (98 exposures to HF items and 14 to LF items), 

the time course of processing novel words became strikingly similar to that of real 

words. In fact, after just 49 exposures to HF items and 7 exposures to LF items on the 

first day of training, cohort and rhyme effects were already present. These results 

from an artificial lexicon replicate previous results found with real words, including 

the time course of frequency effects, as well as cohort and rhyme competition. 

Moreover, they demonstrate that the artificial lexicon paradigm can be used 

effectively to study the processing of newly-learned lexical items. 

 

Experiment 2 
 

The eye-tracking paradigm has two advantages over conventional 

psycholinguistic measures: it provides a much finer-grained measure of lexical 

processing in continuous speech, and it allows use of more naturalistic tasks than 

response measures that require a metalinguistic judgment. However, a potential 

limitation of the paradigm is the need for visual displays. This raises two concerns. 

First, the paradigm might not be sensitive to effects of non-displayed lexical 

competitors (which other methods, such as identification in noise or lexical decision, 

are; Luce and Pisoni, 1998), making it difficult to examine effects of lexical 

neighborhoods. Second, the observed effects might depend crucially on interactions 

between pictured referents and names, rather than primarily reflecting input-driven 

lexical activation.  

Experiment 2 examines whether the neighborhood density effects observed in 

Experiment 1 depend on the display of pictures of potential competitors. Experiment 

2 asked the following question: will the frequency of an item's neighbors slow the 

time course of recognition (as it does in tasks like identification in noise; e.g., Luce 

and Pisoni, 1998) even when the neighbors are not displayed? We included the 

cohort, rhyme, and frequency conditions from Experiment 1. In addition, we 

compared the time course of recognition for HF and LF words with HF and LF 
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neighbors when the neighbors were not displayed. If neighbor characteristics 

influence the rise time of fixation probabilities when those neighbors are not 

displayed, this will demonstrate that fixation probabilities reflect competition within 

the entire lexicon, rather than just properties of the displayed alternatives.  

 

Method 

Participants. Eight students at the University of Rochester were paid 

$7.50/hour for their participation. All were native speakers of English with normal 

hearing and normal or corrected-to-normal vision. 

Materials and Procedure. Experiment 2 differed from Experiment 1 only in 

that a third level of frequency was used. Half the items were presented with medium 

frequency (MF). Six items were HF, two were LF, and eight were MF. All of the MF 

items had MF neighbors. The HF and LF items were assigned such that four of the 

HF items had HF neighbors, and two had LF neighbors (and the neighbors for the two 

LF items were those two HF items). 

Each training block consisted of 68 trials. HF items appeared 7 times per 

block, LF items appeared once per block, and MF items appeared 3 times per training 

block. The tests consisted of 96 trials. Each item appeared in six trials: one with its 

cohort (onset) neighbor and two unrelated items, one with its rhyme (offset) neighbor 

and two unrelated items, and four with three unrelated items. For the crucial 

comparisons (HF targets with HF or LF neighbors displayed with three unrelated 

distractors), MF items were used as unrelated distractors so that any difference in 

target probabilities cannot be attributed to distractor characteristics.  

 

Results 

Participants reached ceiling levels of accuracy by the end of Day 2 (see Table 

3.2). Experiment 2 replicated the basic cohort and rhyme patterns found in 

Experiment 1 (Figure 3.5 shows the fixation probability results averaged over all 
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conditions for Day 2). The same pattern of frequency effects was also observed, but 

will not be presented for sake of brevity. 

Figure 3.6 shows the results of the crucial conditions: the fixation probabilities 

for HF targets with HF or LF neighbors presented among unrelated, MF distractors. 

As predicted, the fixation probabilities for targets with LF neighbors rose more 

quickly than for targets with HF neighbors. Seven of eight subjects showed strong 

trends in the predicted direction. An ANOVA comparing mean target fixation 

probability showed a significant effect of absent neighbor frequency (HF = .39; LF = 

.50; F[1,7] = 8.5, p < .05).  

 

 

 

 

Table 3.2: Accuracy in training and testing in Experiment 2. 

Session Overall HF MF LF 

Training 1 (2AFC) 0.680 0.738 0.594 0.500 

Training 4 (2AFC) 0.948 0.969 0.917 0.857 

Training 7 (4AFC) 0.912 0.943 0.902 0.625 

Day 1 Test 0.884 0.896 0.914 0.798 

     

Training 8 (4AFC) 0.928 0.955 0.900 0.778 

Training 11 (4AFC) 0.965 0.982 0.909 1.000 

Training 14 (4AFC) 0.969 0.973 0.906 0.875 

Day 2 Test 0.962 0.966 0.925 0.933 
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Figure 3.5: Combined cohort and rhyme conditions in Experiment 2. 
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Discussion 

The results of Experiment 2 show that the eye-movement paradigm reveals 

lexical processing that extends well beyond those items which are present in the 

visual displays: the time course of recognition depended on characteristics of non-

displayed neighbors. The data in Figure 3.6 allow us to reject an alternative 

interpretation of the results shown in Figure 3.3 and Figure 3.4, where target 

probabilities rose most quickly when the target was HF and the neighbor was LF. 

Fixations are serial, and competition among a set of simultaneously displayed items 

might result from competition at a decision stage (e.g., motor programming). While 

this problem diminishes with many observations, the current results provide strong 

evidence for lexical competition rather than competition at fixation generation: 

differences in target fixation probabilities were not accompanied by commensurate 

differences in unrelated fixation probabilities (the weak trend [in HF condition = 

.041; in LF condition = .038] was not reliable; F<1). Therefore, the differences shown 

in Figure 3.6 indicate that more time was needed for the activation of the target to 

become sufficiently large to generate initial eye movements when the target had HF 

neighbors. 

 

Discussion of Experiments 1 and 2 

Experiments 1 and 2 demonstrate that after minimal training lexical 

processing in a novel lexicon is strikingly similar to natural-language SWR. We 

replicated several basic results from studies with real words: (a) the artificial lexical 

items were processed incrementally, (b) phonetically similar neighbors become 

partially activated with a time course that mapped onto emerging phonetic similarity, 

and (c) recognition was affected by target and neighbor frequency. The current results 

extended previous studies by showing that recognition depends on competition within 

the lexicon: neighbor frequency affected processing even when neighbors were not 

displayed.  
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Figure 3.6: Effects of absent neighbors in Experiment 2. 
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A number of difficult issues arise in research with artificial languages, 

including the nature of interactions with the native-language lexicon. These issues are 

addressed in Experiments 3 and 4. Even before addressing those issues, however, the 

present results demonstrate that research with a novel lexicon that builds upon an 

existing phonological system can be used to evaluate the microstructure of spoken 

language comprehension. This paradigm offers a valuable complement to more 

traditional paradigms because it allows for (a) precise experimental control of the 

distributional properties of the linguistic materials, (b) tests of distribution-based 

learning hypotheses, and (c) evaluation of processing during early lexical learning. 

Moreover, the use of artificial lexical items that refer to tangible objects, and 

potential extensions to more complete artificial languages with well-defined 

semantics, should make it possible to explore the interaction of distributional and 

referential properties during language processing – issues that would be difficult to 

address in research with non-referential artificial languages (due to the difficulty of 

introducing semantic properties) or with natural language stimuli (due to lack of 

precise control over distributional properties). 

The Day 1 results from Experiment 1 also demonstrate that incremental 

processing of multiple alternatives in parallel does not depend on highly (over-) 

learned lexical representations. A difference observed between the tests on Days 1 

and 2 is that while cohort effects were reliably stronger than rhyme effects on Day 2 

(as Allopenna et al., 1998, found with real words), rhyme effects were as strong as 

cohort effects on Day 1. This is consistent with Charles-Luce and Luce's (1990) 

suggestion that children’s initial representations of words may depend more on 

overall similarity than on sequential similarity. A more precise formulation is 

suggested by simulations with simple recurrent networks (Magnuson, Tanenhaus, and 

Aslin, 2000), in which rhyme effects are gradually weakened as a lexicon is learned 

(and disappear when a lexicon is over-learned).  
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Chapter 4:   Replication with English stimuli 
Experiment 3 is designed to replicate the basic neighborhood frequency effect 

from Experiment 1using real English words. This is important because we need to 

know that the effects we have observed with the artificial lexicons will generalize to 

natural linguistic stimuli. We will test the recognition time for words that are high or 

low frequency, crossed with high or low neighborhood density. Manipulating these 

two factors allows the potential replication of the effects from Experiments 1 and 2. 

In addition, the stimuli have high or low cohort densities. As we discussed in Chapter 

2, Allopenna et al. (1998) found differential competition effects for items sharing 

onsets (again, “cohorts”, since items overlapping at onset are predicted to compete by 

the Cohort model) and rhymes.  

While there was greater overlap between targets and rhymes in the Allopenna 

et al. study than between targets and cohorts, cohorts competed more strongly than 

rhymes (due, according to models like TRACE, to the temporal distribution of 

similarity; a cohort’s initial overlap allows a head start relative to a rhyme’s later 

overlap, with the result that rhymes are more strongly inhibited by cohorts of the 

target and the target itself to reach high activation levels). The cohorts used by 

Allopenna et al. would not, however, even count as neighbors under the 

Neighborhood Activation Model. Cohorts mismatch by too many phonemes to be 

counted as neighbors using the “shortcut” metric (neighbors differ by no more than 

one phoneme substitution, addition or omission). Using the more sophisticated 

metrics developed by Luce and colleagues, they would still be considered much less 

likely competitors than rhymes. Rhymes have ceiling level positional confusion 

probabilities (as an example of one phonemic similarity) at each phoneme where they 

match the target, and low confusion probabilities only at onset. Cohorts have high 

confusion probabilities beyond the first series of phones they share with the target, 

and low confusion probabilities beyond. Typically, then, cohorts will have more 

positions with low confusion probabilities. When the product of positional confusion 
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probabilities is computed, cohorts will have much lower predicted similarity than 

rhymes.  

This suggests two possible additions that could be made to Luce’s (1986; Luce 

& Pisoni, 1999) neighborhood probability rule; first, similarity metrics perhaps 

should be revised such that cohorts are considered neighbors, and second, early 

positions perhaps should be given greater weight than later positions. Experiment 3 

will tell us whether basic neighborhood effects can be observed with real words in the 

visual world paradigm, and provide a first look at whether cohort information might 

improve neighborhood metrics.  

 

Experiment 3 

Methods 

Participants. Fifteen native speakers of English who reported normal or 

corrected-to-normal vision and normal hearing were paid for their participation.  

Stimuli. The target stimuli consisted of 128 imageable English nouns. There 

were two levels (high and low) of frequency, neighborhood density, and cohort 

density. There were 16 items in each of the 8 combinations of these levels (2 x 2 x 2). 

After Luce and Pisoni (1998), neighborhood density was computed simply as the 

summed log frequencies of all neighbors, including the target (note that this sum 

forms the denominator of the frequency-weighted neighborhood probability rule; 

since the numerator is the log frequency of the target, controlling for neighborhood 

density entails equating summed neighbor log frequency). Neighbors were identified 

using the 1-phoneme shortcut metric (items are considered neighbors if they differ by 

a single phoneme addition, deletion, or substitution), which tends to be a better 

predictor of recognition facility than more sophisticated metrics (Luce, personal 

communication). Cohort density was the summed log frequencies of all items sharing 

the same two-phoneme onset as the target (including the target itself). Table 4.1 

shows the means and ranges of the two levels of each of these factors, and statistics 

for individual items can be found in the Appendix.  
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Table 4.1: Frequencies and neighborhood and cohort densities in Experiment 3. 

   Low    High  

  Mean Min Max  Mean Min Max 

Log frequency  2.3 .01 3.22  4.7 3.9 6.5 

Neighborhood density  26.0 6.7 49.9  101.5 60.6 178.2 

Cohort density  47.3 6.4 98.1  289.0 152.3 975.5 
 

 

The auditory stimuli were produced by a male native speaker of English in a 

sentence context (“Click on the chef.”). The stimuli were recorded using a Kay Lab 

CSL 4000 with 16 bit resolution and a sampling rate of 22.025 kHz. The mean 

duration of the “Click on the…” portion of the instruction was 427 ms. Mean target 

duration was 551 ms. 

The visual stimuli came from a variety of sources, including the Snodgrass 

pictures (Snodgrass and Vanderwart, 1980), and a number of clip-art collections. We 

tried to allow as little variability as possible in realism, style, and other 

characteristics, but the large number of images required for this experiment made 

perfect control untenable.10  

Procedure. Trials were randomly ordered for each participant. On each trial, 

the target and three distractors appeared after a 100 ms pause (during which the eye 

tracker began recording) when the participant clicked on a central fixation square. 

Concurrently, the auditory instruction began (e.g., “click on the yarn”). The trial 

ended 150 ms after the participant clicked on one of the pictures.  

The pictures were classified according to a handful of broad semantic classes 

(e.g., person, animal, vehicle, appliance, tool). Only 1 item from each category was 

permitted to appear in each display. The pictures were displayed approximately 2 

degrees of visual angle from the central fixation square, at 45, 135, 225, and 315 

                                                 
10  We am currently collecting ratings of the pictures. Initial analyses based on a small number of 

participants’ ratings indicate that there is almost no correlation between mean rating and 

performance on the targets used in Experiment 3. 
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degrees relative to the central fixation square (i.e., in the corners of a square around 

the central fixation square).  

Eye movements were monitored using a SensorMotorics Instruments (SMI) 

EyeLink eye tracker, which provided a record of point-of-gaze in screen coordinates 

at a sampling rate of 250 hz. The auditory stimuli were presented binaurally through 

headphones (Sennheiser HD-570) using standard Macintosh Power PC digital-to-

analog devices. Saccades and fixations were coded from the point-of-gaze data using 

SMI’s software. 

 

Predictions 

The predictions for this experiment are straightforward. First, high-frequency 

items should be recognized more quickly (as reflected in a steeper rise in target 

fixation proportion beginning about 200 ms after noun onset) than low-frequency 

items. Second, items with low neighborhood density should be recognized more 

quickly than items in high-density neighborhoods, since the competitors in a dense 

neighborhood (in aggregate) will compete more strongly than those in low density 

neighborhoods. This would replicate the neighborhood effects found with real words 

in previous studies (e.g., Luce and Pisoni, 1998), as well as the neighborhood density 

effects in Experiments 1 and 2. Third, the same pattern (low-density < high-density) 

should occur for cohort density, assuming items sharing onsets compete for 

recognition. It is not clear how these factors should interact; we will examine this 

post-hoc. 

 

Results 

Figure 4.1 shows the patterns for the main effects of frequency, neighborhood 

density, and cohort density. As can be seen in the figure, the first and third predictions 

appear to be borne out: fixation proportions rise more quickly for high-frequency 

targets than low-frequency targets, and more quickly for items with low-density 

cohorts than those in high-density cohorts. The pattern for neighborhood density is 
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not clear-cut; there appears to be an early advantage for items in high-density 

neighborhoods, and a late advantage for low-density items. 

We conducted a 2 x 2 x 2 ANOVA (high vs. low levels of frequency, 

neighborhood and cohort) on mean fixation proportion on the window from 200 ms 

(where we could expect the earliest signal-driven differences in fixation proportions) 

to 1000 ms (by which point target proportions asymptoted in all  conditions). There 

were reliable main effects of frequency (HF=.55, LF=.51; F(1,21)=47.4, p< .001), 

neighborhood density (HD=.53, LD=.54; F(1,21)=18.9, p < .001), and cohort density 

(HC=.52, LC=.55; F(1,21)=4.7, p < .001). All of the interactions were significant. 

In Figures 4.2 – 4.4, we have separated the results into pairs of levels; Figure 

4.2, for example, shows the effects of frequency at the two levels of neighborhood 

density (top panels) and cohort density (lower panels). There were clear frequency 

effects at all combinations of levels, with the exception of high-cohort items, where 

the effect was weak. A similar pattern held on effects of neighborhood density 

(Figure 4.3). There were modest effects at both levels of frequency (upper panels) and 

low cohort density (lower left), but no effect on high-cohort items. This suggests 

cohort density is playing a rather strong role; given items with dense cohorts, 

recognition is slowed and the influences of other factors is damped.  

Turning to the cohort effect at levels of frequency and neighborhood density 

(Figure 4.4), we see what appear to be modest to strong effects at all levels, except for 

a weak effect on high-neighborhood density items. This suggests that, despite the 

relatively small numeric effect of neighborhood, the effect is strong enough to damp 

the influence of cohort density (if not frequency).  
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Figure 4.1: Main effects in Experiment 3. 
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Figure 4.2: Interactions of frequency with neighborhood and cohort density. 
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Figure 4.3: Neighborhood density at levels of frequency and cohort density. 
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Figure 4.4: Cohort density at levels of frequency and neighborhood density. 
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Discussion 

The current results replicate standard findings in spoken word recognition 

(frequency and neighborhood density effects). They also confirm that words that 

overlap in onset (initial consonant and vowel) – onset cohorts – have strong effects on 

word recognition (as shown in Figure 4.1). The effect of cohort density is apparent 

from the earliest signal-driven fixation proportions (around 200 ms after word onset), 

but the advantage observed for items in low-density neighborhoods does not kick in 

until about 600 ms after word onset. This is consistent with findings like those from 

Allopenna et al. (1998) and Experiments 1 and 2, where we observe earlier, stronger 

competition between targets and cohorts than between targets and rhymes. The cohort 

density metric only takes into account words overlapping at onset, whereas 

neighborhood density typically includes many items that are not cohorts, and 

therefore, the overlap is temporally later. Consistent with this pattern, Newman et al. 

(1997) found effects of neighborhood density on phoneme identification for 

“medium” latency responses, but not for fast responses. 

This suggests an explanation for the initial advantage for high-density items 

(middle panel of Figure 4.1) and all levels of frequency and cohort density (Figure 

4.3). An examination of the number of cohorts included in neighborhood density 

reveals that a higher percentage of neighbors in low-density neighborhoods are also 

cohorts; 58% of the neighbors in low-density neighborhoods are cohorts, versus 32% 

in high density. Thus, low-density words are initially at a disadvantage because the 

majority of their neighbors compete at onset. The low-density advantage shows up 

later, when the majority (two thirds) of the neighbors in high-density neighborhoods 

overlap substantially with the input (if one examines the tables in the Appendix, it is 

clear that there is an interaction between neighborhood density and frequency in this 

respect.  

The implication for theories of spoken word recognition is that type of 

competitor (where and how it mismatches a target) is important. We must develop 
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similarity metrics that take into account more directly the temporal aspect of 

similarity among spoken words. 
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Chapter 5:   Do newly learned and native lexicons interact? 
 

While Experiments 1 and 2 demonstrated the feasibility of using artificial 

lexicons to test specific hypotheses with precisely controlled stimuli, an important 

control issue is whether the native lexicon influences recognition in an artificial 

lexicon. If an artificial lexicon can be considered self-contained, design constraints 

would be tremendously reduced. If the native lexicon does affect performance on 

items in an artificial lexicon, one must take great care in designing artificial lexicons 

to ensure that effects are not due to interactions with items in the participant’s native 

lexicon. 

 The basis for the hypothesis that there ought to be interactions between 

newly-learned and long-standing lexical representations is straight-forward. 

Especially when the artificial lexicon is being presented in English carrier phrases 

(e.g., “click on the pibu”), we might expect that the novel words are simply being 

added to the native lexicon.  

There are several possible bases for the opposite hypothesis. The artificial 

lexicon might be functionally self-contained because it is a closed set. For example, 

an initial disadvantage for low-frequency items dissipates when items are repeated in 

an experiment (e.g., Scarborough et al., 1977). A possible explanation for closed set 

effects, and an independent motivation for the “self-contained artificial lexicon” 

hypothesis, is recency. The many recent presentations of the artificial items may boost 

their saliency (potentially via, for example, enhanced resting level activation) such 

that the representations of native lexical items are swamped.  

If we fail to find effects of English neighborhood density on artificial lexical 

items, we will not be able to distinguish between recency and closed-set explanations. 

Our present purpose, however, is simply to determine how likely it is that effects 

observed with artificial lexicons could be due to characteristics of the native lexicon.  

In Experiment 4, we will test what influence the native lexicon has on a 

learned artificial lexicon by creating novel words which, if they were English words, 
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would be in high- or low-density neighborhoods. Half would fall into high-density 

neighborhoods, and half would fall into low-density neighborhoods. Half of the items 

that would be in high-density neighborhoods and half that would be in low-density 

neighborhoods will be high frequency within the artificial lexicon, and half will be 

low frequency. If the newly-learned lexicon is self-contained, we should only observe 

effects of the artificial lexicon's structure (i.e., a frequency effect). If the native 

language lexicon influences recognition of the newly-learned lexicon, we should 

observe an interaction of artificial and English lexical effects; e.g., if the artificial 

lexical items are competing for recognition with English lexical items, low-frequency 

words in the lexicon that would be in high-density English neighborhoods should be 

harder to recognize than low-frequency artificial words that would be in low-density 

English neighborhoods.  

 

Experiment 4 

Methods 
 

Participants. Eight native speakers of English who reported normal or 

corrected-to-normal vision and normal hearing were paid for their participation. 

Participants attended sessions on two consecutive days. The sessions were both 

between about 90 and 120 minutes long, and participants were paid $7.50 per hour. 

Materials. The linguistic materials consisted of 20 artificial words formed by 

taking low-frequency, low-cohort, high- and low-density words from the materials for 

Experiment 3, and changing the final consonant. Thus, half of the resulting artificial 

words would fall into high-density English neighborhoods, while the other half would 

fall into low-density neighborhoods (see Table 5.111). The auditory stimuli were 

produced by a male native speaker of English in a sentence context (“Click on the 

yarp.”). The stimuli were recorded using a Kay Lab CSL 4000 with 16 bit resolution 

                                                 
11 Note that only low cohort items were used. The difference in mean cohort density between the high- 
and low-density items is small, given the variation in cohort density; for example, the mean cohort 
density for high-cohort density items in Experiment 3 was 289. 
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and a sampling rate of 22.025 kHz. The mean duration of the “Click on the…” 

portion of the instruction was 380 ms. Mean target duration was 532 ms.  

 

Table 5.1: Linguistic stimuli from Experiment 4. 

Item Gloss Phonemic
English 
Cohort 

No. 
NBs

NB 
Density 

No. 
Cohorts 

Cohort 
Density 

LD 1 fahv fav fox 9 24.80 57 87.41 
LD 2 goodge guj goose 7 9.67 8 6.38 
LD 3 hoon hUn hook 10 16.13 9 11.45 
LD 4 kef kEf keg 11 20.08 29 44.22 
LD 5 kowg kaWg couch 4 8.19 35 61.28 
LD 6 sheb SEb chef 10 21.79 17 25.24 
LD 7 thuz T√z thumb 8 11.31 10 12.99 
LD 8 torl tcrl torch 2 3.00 27 35.68 
LD 9 vishe vaiS vice 4 5.32 24 45.42 
LD 10 yarp yarp yarn 7 13.66 11 15.50 
LD Means    7.2 13.39 22.9 34.56 
        

Item Gloss Phonemic
English 
Cohort 

No. 
NBs

NB 
Density 

No. 
Cohorts 

Cohort 
Density 

HD 1 buut bUt bull 35 94.48 48 59.47 
HD 2 chihs CIs chick 28 57.84 28 39.23 
HD 3 goen gon goat 36 88.59 27 38.47 
HD 4 kayd ked cake 40 78.69 38 61.65 
HD 5 nide naid knight 36 92.40 37 51.16 
HD 6 naik nek nail 37 91.45 24 50.34 
HD 7 nuch n√C nun 22 61.68 22 35.62 
HD 8 sahn san sock 46 109.42 52 72.24 
HD 9 sheed Sid sheep 38 89.56 14 26.69 
HD 10 vait vet vase 31 88.87 13 24.43 
HD Means    34.9 85.30 30.30 45.93 
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The visual materials consisted of 20 unfamiliar shapes. These were 

constructed by randomly filling 18 contiguous cells of a 6 x 6 grid. A distinctive set 

was generated by creating 500 such figures, and randomly selecting twenty. Nine 

examples are shown in Figure 5.1. Pilot tests indicated that these materials, while 

clearly similar to those used in Experiments 1 and 2, were more distinctive and easier 

to learn. 

 

 

Figure 5.1: Examples of visual stimuli from Experiment 4. 

 
Procedure. Participants were trained and tested in sessions on two consecutive 

days. Each session lasted between 90 and 120 minutes. On day 1, participants were 

trained with a two-alternative forced choice (2AFC) task for four blocks, then with 

four-alternative forced choice (4AFC) for seven blocks. On day 2, training continued 

with seven 4AFC blocks. At the end of each day, participants were given a 4AFC test 

with no feedback. Eye movements were tracked during the testing session.  

The structure of the training sessions was nearly identical to that used in 

Experiments 1 and 2. First, a central fixation square appeared on the screen. The 

participant then clicked on the square to begin the trial. After 100 ms, either two 
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shapes (in the first four training sessions) or four shapes (in the rest of the training 

sessions and the tests) appeared (see Figure 3.1 for examples of displays in 

Experiment 1). In contrast to Experiments 1 and 2, participants were not given 

explicit instructions to fixate the central stimulus. When the participant clicked on the 

fixation square, a 100 ms pause was followed by the appearance of the pictures and 

the spoken instruction (e.g., “Click on the yarp.”). When participants responded, all of 

the distractor shapes disappeared, leaving only the correct referent. The name of the 

shape was then repeated. The object disappeared 200 ms later, and the participant 

clicked on the square to begin the next trial. The testing session was identical to the 

four-item training, except that no feedback was given (150 ms after the participant 

clicked on an object, all of the pictures disappeared). 

During training, half the items were presented with high frequency (HF), and 

half with low frequency (LF). Frequency assignments were made randomly for each 

participant. HF items were presented 6 times per training block, and LF items were 

presented once per block, so there were 70 trials per training block. Each item was 

presented six times in each test. For training and testing, distractors were chosen 

randomly, except that in training, pictures corresponding to low-frequency items were 

used as distractors more often than high-frequency pictures, in order to keep the 

number of visual presentations of each picture comparable. Trials were presented in 

random order, with the constraint that the same target could not occur on consecutive 

trials.  

During the tests, eye movements were monitored using a SensorMotorics 

Instruments (SMI) EyeLink eye tracker, which provided a record of point-of-gaze in 

screen coordinates at a sampling rate of 250 hz. The auditory stimuli were presented 

binaurally through headphones (Sennheiser HD-570) using standard Macintosh 

Power PC digital-to-analog devices. Saccades and fixations were coded from the 

point-of-gaze data using SMI’s software. 
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Predictions 

First, we expect to observe an effect of training frequency. Words presented 

with high frequency during training should be processed more readily than low-

frequency words, which should be reflected in a more rapid rise in fixation 

proportions for high-frequency words. Second, if there is intrusion from the English 

lexicon – that is, if English words compete for recognition with the artificial lexical 

items – words that would fall into high-density English neighborhoods should be 

harder to recognize than items that would fall into low-density neighborhoods. 

Alternatively, if the artificial lexicon is functionally encapsulated from the English 

lexicon (whether due to recency, or membership in a closed set), we should not 

observe effects of English neighborhood density. 

 

Table 5.2: Progression of training and testing accuracy in Experiment 4. 

Type First block Last block 
2afc .73 .95 
4afc, Day 1 .94 .96 
Test, Day 1  .99 
4afc, Day 2 .96 .96 
Test, Day 2  .99 

 
 
 
Results 

Training. The progression of training accuracy is detailed in Table 5.2. 

Participants quickly reached ceiling levels of accuracy on high-frequency items (by 

about the third 2AFC block), though it took a bit longer to reach ceiling for low-

frequency items (about the third 4AFC block). A 4 (block) x 2 (frequency) x 2 

(density) ANOVA on day 1 accuracy revealed significant main effects of block (see 

means in Table 5.2; F(3,24)=28.7, p< .001) and frequency (HF=.93, LF=.74; 

F(1,8)=44.4, p < .001), but not of density (HD=.84, LD=.83; F(1,8) = 1.4, p=.27). 

One participant, because of time constraints, only completed six 4AFC sessions on 

the first day. An ANOVA on the full data for the other eight participants shows the 
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same pattern that was found in the day 1 2AFC sessions: there were significant effects 

of block (F(6,42)=7.10, p < .001), frequency (HF=.99; LF=.96; F(1,7)=7.24, p < 

.001), but not of density (F(1,7) = 0). A 2 (frequency) x 2 (density) ANOVA on the 

data for all 9 participants also shows a main effect of frequency (HF=.99, LF=.96; 

F(1,8)=32.50, p < .001), but not of density (HD=.97, LD=.98; F=.019). On day 2, 

accuracy began at ceiling levels for both high- and low-frequency items and stayed 

there. There were no effects of block, frequency or density. Thus, the training was 

effective. Participants reached ceiling levels on the first day, and the training on day 2 

served simply as practice.  

Eye tracking tests. Participants reached ceiling levels of accuracy on both 

day’s tests (accuracy > .99 in all conditions), such that there were significant accuracy 

effects. Fixation probabilities over time are plotted for the six crucial comparisons in 

Figure 5.2 (frequency effects on both days) and Figure 5.3 (density effects on both 

days). The top two panels plot the main effects of frequency and frequency within 

high- and low-density items (Figure 5.2) and the analogous density effects (Figure 

5.3). Note that on both days, the frequency effect apparent in the top left panels is due 

to the relatively strong frequency effect for high-density items (middle panels of 

Figure 5.2). Despite the absence of an apparent effect of density in the top panels of 

Figure 5.3, there was a strong trend among low-frequency items (bottom panels). 

Thus, these summary plots suggest an effect of frequency only on high-density items, 

and an effect of density only on low-frequency items.  

We conducted analyses of variance on mean fixation proportions (as in the 

previous experiments) in the window from 200 ms (when we would expect the 

earliest signal-driven differences in fixation proportions) to 1400 ms (approximately 

where target fixation proportions asymptote in each condition). We conducted 

identical analyses on the data from both days. The trends were identical on both days, 

so we will only report the results for day 2. 
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Figure 5.2: Frequency effects on Day 1 (left) and Day 2 (right) of Experiment 4. 
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Figure 5.3: Density effects on Day 1 (left) and Day 2 (right) of Experiment 4. 
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We conducted a 2 (high- vs. low frequency) x 2 (high vs. low density) 

ANOVA. There was a significant main effect of frequency (HF=.67, LF=.59; 

F(1,7)=24.6, p = .002; effect size = .72), but not of density (although the trend was in 

the expected direction, i.e., lower-density items were fixated more: HD=.62, LD=.64; 

F(1,7)=.6). Planned comparisons of the frequency effect at the two levels of density 

confirm the pattern shown in Figure 5.2: there was a reliable frequency effect on 

high-density items (HF=.68, LF=.57; F(1,7)=18.8, p = .003), and a non-significant 

trend for low-density items (HF=.65, LF=.62; F(1,7)=1.5, p=.266). We conducted 

planned comparisons on density at the two levels of frequency, despite the apparent 

reversal in the density effect on high-frequency items. The reversal at high frequency 

was not reliable (HD=.68, LD=.65; F(1,7) = 1.3, p = .29), nor was the predicted trend 

on low-frequency items (HD=.57, LD=.62; F(1,7)=2.6, p=.15).  

 

Discussion 

The main effects from the eye-tracking test conform to one set of predictions 

for this experiment. There was a significant effect of the experimental frequency 

manipulation, but not of English neighborhood density. This suggests that an artificial 

lexicon can be considered functionally isolated from a participant’s native lexicon. 

While we cannot distinguish between the two possible bases discussed earlier for this 

pattern (closed-set vs. recency), the purpose of Experiment 4 was simpler. We wished 

to test whether characteristics of the native lexicon impinge on an artificial one in 

experiments such as Experiments 1 and 2. Again, the main effects of Experiment 4 

indicate that the native lexicon does not impinge on an artificial lexicon. 

The interactions, however, are puzzling, and hint at a more complex story. It 

is important to note that the basis for the frequency effect is in high-density items, and 

that the pattern is largely consistent across participants. An examination of individual 

participant data (for day 2) shows that seven of eight participants show a frequency 

trend on high-density items. Only two show predicted (HF > LF) frequency trends on 
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low-density items, with four others showing no apparent trend, and two showing 

moderate reversals (LF > HF) on low-density items. Conversely, five participants 

show moderate to strong density trends (LD > HD) on low-frequency items, while 

two show no apparent trend, and one an apparent reversal (HD > LD). Only one 

shows a trend in the expected direction (LD > HD) on high-frequency items, with 

four showing no apparent trend, and three showing apparent reversals (HD > LD). 

To summarize the pattern, there are effects of frequency (more-or-less only) 

on high-density items. Although density trends do not reach significance at either 

high or low levels of frequency, the patterns in the individual data suggest that the 

trend towards a low-density advantage on low-frequency items might prove reliable 

with perhaps twice as many participants (the effect size is .17, which falls into 

Cohen’s [1977] “large” category). What can explain this odd pattern? If anything, we 

might expect to find stronger frequency effects on low-density items, where the 

influence of the English lexicon ought to be weaker. 

The statistics reported in Table 5.1: Linguistic stimuli from Experiment 4. 

suggest one possible confound in the items. Although the range of English cohort 

densities is small given the possible range (see Experiment 3), one could easily divide 

each set into relatively high- and low-cohort density items. We did this by rank 

ordering the high and low neighborhood density items by cohort density, and labeling 

the five in each group with the highest cohort densities as such. An ANOVA with the 

added factor of cohort density did not reveal any influence of cohort density; there 

was not a main effect of cohort density, nor any interactions with frequency or 

neighborhood density. Another way to assign items to cohort density groups would be 

to rank order them without regard to neighborhood density (since, for example, some 

high-neighborhood/“low-cohort” items would have higher cohort density than some 

low-neighborhood/“high-cohort” items). We ran the analysis again with items 

assigned to cohort group simply by their rank-ordered cohort density. Again, there 

was not a main effect of cohort density, nor any interactions of cohort density with 
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frequency or neighborhood density. Thus, cohort density cannot explain the pattern of 

results. 

Some differences in the current procedures and results compared to those of 

Experiments 1 and 2 suggest another possibility. Participants seemed to learn faster 

with the current materials than with those used in Experiments 1 and 2 (compare 

Table 3.1, Table 3.2, and Table 5.2). We suspect that the visual stimuli account for 

much of the difference. The visual stimuli for Experiment 4 were more complex than 

those for Experiments 1 and 2 (being created by filling 18 cells in a 6 x 6 grid, rather 

than 8 cells in a 5 x 5 grid), which seemed to make them more discriminable. The 

high:low frequency ratio was 6:1 in this experiment, as opposed to 7:1 in the earlier 

ones. Also, each item was repeated 6 times in the test. Any of these three things (or 

their combination) might have weakened the effect of the frequency manipulation. A 

frequency effect might diminish given more salient and therefore better-learned 

stimuli when participants have practiced on the items at ceiling levels of performance 

for an extended period. The 7:1 ratio used in the earlier studies might have been close 

to the minimum needed to achieve robust frequency effects in the artificial lexicon 

paradigm. Similarly, repeated exposures in the test could weaken frequency. 

 Why should ceiling level performance result in the non-intuitive frequency 

effect only on high-density items? It is possible that when the frequency effect is 

diminished, for whatever reason, the task has become too easy. For example, if we 

were to add a cognitive load manipulation or noise to the stimuli, we might see a 

stronger frequency effect on all items.  

Density may be playing a role akin to the role of noise. The high-density items 

may be more difficult to process, but not so much so that we find a main effect of 

density (again, because participants are at ceiling levels of performance). The result is 

that the slight added difficulty allows a slightly more sensitive measure of frequency, 

and we observe robust frequency effects on high-density items. Conversely, 

frequency may play the same role for density. The low-frequency items are more 

difficult to process, since they are not learned as well as the high-frequency items 
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(despite ceiling-level performance), and thus allow a more sensitive measure of 

density (with the strong LD > HD trend observed for low-frequency items).  

However, if we examine the percentage of neighbors at the different levels 

that are also cohorts (as we did for the preceding experiment), we find another 

explanation for the trend towards the predicted neighborhood effect on low-frequency 

items but not on high-frequency items: 60% of high-frequency, low-neighborhood 

density items are also cohorts, compared to 31.5% of high-frequency, high-

neighborhood density items. Again, this would predict an initial disadvantage for 

low-density items, since most of their neighbors will be active at word onset. 

However, the same pattern holds (albeit more weakly) for low-frequency items, so 

this account may be incorrect. 

 
Conclusion 

 

To conclude, what are the implications for artificial lexicon studies? To a first 

approximation, the statistically reliable results of Experiment 4 suggest that items in 

an artificial lexicon – in the paradigm described in Experiments 1, 2 and 4 – can be 

considered functionally isolated from a participant’s native lexicon.  The non-

significant interactions between artificial lexicon frequency and English density, 

though, suggest that caution is in order; Experiment 4 cannot be interpreted as 

suggesting there are no interactions between artificial and native lexicons. The 

density manipulation may not have been strong enough, although it was nearly as 

strong as it could be given that we had to constrain the materials to highly imageable 

nouns. On the other hand, the materials used in Experiment 4 may represent a worst-

case scenario. The items were designed to be highly similar to English words, yet we 

did not observe reliable differences due to English density. While experimenters 

ought to be wary of interactions with native lexicons when using artificial lexicons, 

and explicitly measure factors such as the density, the results of Experiment 4 suggest 

that it may well be difficult to find native-lexicon interactions even when an 

experiment is biased to find them. 
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Chapter 6:   Top-down constraints on word recognition 
A central issue in the language processing research in the last few decades has 

been modularity, in terms of division of labor in the language processing system via 

distinct processing stages or levels of representation (such as word recognition, 

syntactic and semantic processing; e.g., Fodor, 1983; see Gaskell and Marslen-

Wilson, 1997, for arguments for a rather minimal number of levels), the degree to 

which information is shared between such theoretical levels (e.g., Tanenhaus et al., 

1979), or how information flows within a level (e.g., Elman and McClelland, 1988; 

Norris, McQueen and Cutler, 2000; Samuel, 1981). Arguments for strong modularity 

(discrete divisions between and within sensory systems, and information 

encapsulation within systems) run along the following lines: keeping information 

sources separate at initial stages of processing will make a system more efficient and 

less prone to hallucinations induced by top-down influences in the absence of robust 

bottom-up information. Arguments for interaction are based on the notion that a 

system can be made more efficient by allowing any sufficiently predictive information 

source to be integrated with processing as soon as it is relevant. 

Experiment 5 explores to what degree lexical activation is independent from 

other aspects of language processing. This issue has been explored many times 

previously. The seminal results on this topic were reported by Tanenhaus et al. (1979) 

and Swinney (1979). Tanenhaus et al. presented participants with spoken sentences 

that ended with a syntactically ambiguous word (e.g., “they all rose” vs. “they bought 

a rose”).  If participants were asked to name a visual target immediately at the offset 

of the ambiguous word, priming was found both for the alternative suggested by the 

context (e.g., “stood” given “they all rose”) and for homophones that would not fit the 

syntactic frame (e.g., “flower”). Given a 200-ms delay prior to the presentation of the 

visual stimulus, only the syntactically appropriate word was primed. This suggests 

that while top-down information such as syntactic expectations influence word 

recognition, bottom-up information prevails in the earliest moments of word 
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recognition, and top-down information comes into play as a relatively late-acting 

constraint. Tanenhaus et al. argued that this made sense in terms of the predictive 

power of a form-class expectation. Knowing that the next word will be one of tens of 

thousands of nouns, for instance, would afford virtually no advantage for most nouns 

(those without homophones in different form classes). Furthermore, expectations for 

classes like noun or verb might be very weak because modifiers can almost always be 

inserted before either class (e.g., “they just rose”, “they bought a very pretty red 

rose”; cf. Shillcock and Bard, 1993).  

Tanenhaus and Lucas (1987) interpreted this delayed top-down result in the 

context of evidence for feedback within word recognition. Elman and McClelland 

(1988), Ganong (1980) and Samuel (e.g., 1981), for example, provided evidence 

supporting strong lexical effects on phonemic perception. Tanenhaus and Lucas noted 

that in cases where there were early effects of top-down information sources, a part-

whole relationship existed. For example, phonemes (presumably) form part of the 

representation of words, whereas the relationship between words and form classes is 

one of set membership. Tanenhaus and Lucas speculated that one might find top-

down effects in cases where there is a part-whole relationship between words and 

some larger unit, such as an idiomatic phrase.  

Shillcock and Bard (1993) pointed out that there are form classes which are 

more predictive than noun or verb, simply because the number of members in the set 

is much smaller: closed-class words. They examined whether /wUd/ in a sentence 

context favoring the closed-class item, “would” (e.g., “John said that he didn’t want 

to do the job, but his brother would, as we later found out”) would prime associates of 

its homophone, “wood”, such as “timber” (and vice-versa, given a context like “John 

said he didn’t want to do the job with his brother’s wood, as we later found out”). 

They found priming for “timber” given the open-class context (favoring “wood”) 

immediately after the offset of /wUd/, but not given the closed-class context. The 

same result held when they probed half-way through the pronunciation of /wUd/. This 
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suggests that the closed-class context was indeed sufficiently constraining to bias 

even the earliest moments of word recognition. A cloze test (in which participants 

were asked to supply the next word given the sentence contexts up to the word just 

prior to “would” or “wood”, with the understanding that the word they supplied 

would not be the last in the sentence) confirmed that the closed-class context was 

much more predictive. While participants provided words of the same form class as 

the target most of the time for both cases (74% for closed-class, 85% for open), they 

were much more likely to provide the target given the closed-class context (34.4%) 

than the open-class context (1.3%).  

This result is consistent with the view that top-down information sources will 

be integrated early in processing when they are sufficiently predictive. In Experiment 

5, we tested the hypothesis that even form class expectations for open-class words 

could constrain word recognition given a context with sufficient predictive power. 

We used an extension of the artificial lexicon paradigm. Participants learned the 

names of shapes – the nouns of the artificial lexicon – as well as the names of textures 

that could be applied to the shapes – the adjectives. Instructions were given in an 

English context, with English word order (e.g., “click on the /pib√/ [adj] /tedu/ 

[noun]”). The lexicon contained phonemic cohorts (e.g., /pibo/ and /pib√/) that 

come from different syntactic categories (e.g., /pibo/ was a noun and /pib√/ was an 

adjective) or the same category (e.g., another noun was /pibe/). While it would be 

possible to conduct the experiment with English items (e.g., “purple” and “purse”), 

we could not achieve the same level of consistency across items in terms of the 

relationships between nouns and adjectives.  

We created conditions in which the visual context provided strong syntactic 

expectations by constructing contexts in which adjectives were required (e.g., two 

examples of the shape associated with /pibo/, but with two different textures) or 

infelicitous (e.g., two different shapes, making the adjective superfluous, even if the 

shapes have different textures). If syntactic expectations in conjunction with 
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pragmatic constraints embodied in the visual display can constrain word recognition 

early in processing, we should observe competition effects only between cohorts from 

the same syntactic form class.  

 

Experiment 5 

Methods 
 

Participants. Eight native speakers of English who reported normal or 

corrected-to-normal vision and normal hearing were paid for their participation. 

Participants attended sessions on two consecutive days. The sessions were both 

between about 90 and 150 minutes long, and participants were paid $7.50 per hour. 

Materials. The linguistic materials consisted of the 18 artificial words (9 

nouns, referring to shapes, and 9 adjectives referring to textures) shown in Table 6.1. 

The auditory stimuli were produced by a male native speaker of English in a sentence 

context (“Click on the /bupe tedu/.”). The stimuli were recorded using a Kay Lab CSL 

4000 with 16 bit resolution and a sampling rate of 22.025 kHz. The mean duration of 

the “Click on the…” portion of the instruction was 475 ms for adjective instructions, 

and 402 ms for noun instructions. For adjective instructions, mean adjective duration 

was 487 ms, and mean noun duration was 682 ms. For noun instructions, noun 

duration was 558 ms.  

The visual materials consisted of 9 of the unfamiliar shapes generated for 

Experiment 4 (selected randomly). These shapes provided referents for the nouns. In 

addition, 9 textures were selected from among the set distributed with Microsoft 

PhotoDraw. Figure 6.1 shows each of the 9 shapes, with a different one of the 9 

textures applied to each. Names were randomly mapped to shapes and textures for 

each participant. 
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Table 6.1: Artificial lexicon used in Experiment 5. 

 NOUN (shape) ADJ (texture)  
1 pibo pib√ 1 
2 pibe   
3 bupo bup√ 2 
  bupe 3 

4 tedu tedi 4 
  tedE 5 

5 dotE doti 6 
6 dotu   
7 kagQ kagai 7 
  kagU 8 

8 gawkU gawkQ 9 
9 gawkai   

 

 

 

Figure 6.1: The 9 shapes and 9 textures used in Experiment 5. 
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Procedure. Participants were trained and tested in sessions on two consecutive 

days. Each session lasted between 90 and 120 minutes. On day 1, participants were 

trained first on the nouns in a two-alternative forced choice (2AFC) task (with no 

texture, i.e., solid black). As in previous experiments, two shapes would appear, the 

participant would hear an instruction to click on one (e.g., “click on the bupo”), and 

when they clicked, one item would disappear, leaving the correct item on the screen, 

and its name was repeated. There were 14 repetitions of each item, split into 3 blocks 

of 48 trials. Items were not repeated on consecutive trials, and were ordered such that 

every item was repeated 7 times every 72 trials. Following the 2AFC blocks, noun 

training continued with 3 blocks of 4AFC, with identical ordering constraints and 

numbers of trials. Each shape appeared equally often as distractors.  

Adjective training then began. First, participants saw two exemplars of one 

shape, with different textures. They heard an instruction, such as “click on the bupe 

pibo”. Since they already knew that, e.g., “pibo” referred to one of the shapes, 

participants found it transparent that “bupe” referred one of the textures. As in the 

noun training, after they clicked on one item, the incorrect one disappeared and the 

full name was repeated. Each adjective and each noun were targets on 8 trials in each 

block; each adjective was randomly paired with 8 different nouns in each block. After 

three 48-trial 2AFC blocks, there were three 4AFC blocks, with four exemplars of the 

same shape with four different textures. These were followed by three more blocks of 

4AFC, but with two exemplars each of two shapes, each with a different texture 

(requiring participants to recognize both the adjective and noun). 

After this, a more complex training regime began. On some trials, four 

different shapes appeared. On others, two pairs of shapes appeared. On every trial, 

each shape had a different texture. On trials with two pairs of shapes, an adjective 

was required to make unambiguous reference, and the full referent was specified on 

such trials (e.g., “click on the bupe pibo”). On trials with four different shapes, the 

adjective was not required – each item could be identified unambiguously by the 

name of the shape, and so only the noun was specified in the instruction (e.g., “click 
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on the pibo”). In fact, using the adjective would be infelicitous, on Grice’s (1975) 

maxim of quantity (one should not over-specify, which is in fact the observed 

tendency in natural conversation). Each adjective was repeated 8 times in every block 

of 144 trials, paired each time with a different, randomly selected noun. Each noun 

was repeated as the target item 8 times in the 4-noun trials. Trials were presented in 

blocks of 48. Participants completed 3 blocks of this mixed training on day 1. On day 

2, they completed 12 more, which comprised the entire training phase on day 2.  

After each 48-trial presentation block, the participant saw a summary of his or 

her accuracy in that block. To motivate participants, we told them that each training 

segment would continue until they reached 100% accuracy. Typically, we moved to 

each successive training phase after the number of blocks listed above for each 

segment, except in a few rare cases where participants were below 90% accuracy 

after the specified number of blocks, in which case training continued for another 1-2 

blocks. 

Each day ended with a 4AFC test with no feedback. We tracked participants’ 

eye movements during the test. There were six basic conditions in the test. In the 

noun baseline condition, there were four different shapes, and no shape nor adjective 

was a competitor of the target noun. In the noun plus noun cohort condition, there 

were four shapes, and one of them was a cohort to the target (e.g., the target might be 

/pibo/, and /pibe/ would also be displayed), but no shape had the target’s adjective 

cohort texture applied (e.g., no shape would have the /pib√/ texture). In the noun plus 

adjective cohort condition, four different shapes were displayed. The noun cohort was 

not displayed, but the adjective cohort was (e.g., a distractor might be /pib√ tedu/). 

In these conditions, the instruction would only refer to the noun (e.g.,  “click on the 

pibo”).  

In the other three conditions, two exemplars of two different shapes were 

displayed, requiring the adjective to be used in the instruction. In the adjective 

baseline condition, none of the distractor textures were cohorts of the target, and 

neither were any of the nouns. In the adjective plus adjective cohort condition, one of 
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the non-target textures was a cohort to the target (e.g., the target might be 

/tedi dotu/, and one non-target might be /tedE bupo/), but no noun cohorts of the 

target would be displayed. In the adjective plus noun cohort condition, none of the 

distractors would have textures that were cohorts to the target texture, but a noun 

cohort would be displayed (e.g., given /tedi dotu/ as the target, /bupe tedu/ might 

be included). 

The following scheme was used to ensure that each adjective and target 

appeared equally often as targets in the test. Note that nouns and adjectives can be 

divided into two sets: items with two cohorts in the same form class and one in the 

other, or vice-versa. Nouns with noun cohorts appeared in six noun baseline trials, 

two noun plus noun cohort trials (once with each cohort), and once in the noun plus 

adjective cohort condition (with their one adjective cohort). Nouns with two adjective 

cohorts appeared in 7 noun baseline trials, 0 noun cohort trials, and two noun plus 

adjective cohort trials. The same pattern was used with adjective conditions: 

adjectives with adjective cohorts appeared in 6 adjective baseline trials, those with 

noun cohorts appeared in 7; items with adjective cohorts appeared in one adjective 

plus adjective cohort trial with each cohort; items appeared one time with each of 

their one or two noun cohorts. Note that since, for example, nouns with two adjective 

cohorts and no noun cohort would appear in two adjective plus noun cohort trials, 

each noun appeared in the same number of trials.  

The total number of trials in the test was 162. There were 57 adjective 

baseline trials: (3 [adjectives without adjective cohorts] x 7 repetitions) + (6 

[adjectives with adjective cohorts] x 6 repetitions); 57 noun baseline trials (3 [nouns 

without noun cohorts] x 7 repetitions) + (6 [nouns with noun cohorts] x 6 repetitions); 

12 adjective with adjective cohort trials (6 x 2 repetitions); 12 adjective plus noun 

cohort trials: (3 [adjectives without adjective cohorts] x 2) + (6 [adjectives with 

adjective cohorts] x 1); 12 noun with noun cohort trials (6 x 2 repetitions); and 12 

noun plus noun adjective trials: (3 [nouns without noun cohorts] x 2) + (6 [nouns with 

noun cohorts] x 1). 
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During the tests, eye movements were monitored using a SensorMotorics 

Instruments (SMI) EyeLink eye tracker, which provided a record of point-of-gaze in 

screen coordinates at a sampling rate of 250 hz. The auditory stimuli were presented 

binaurally through headphones (Sennheiser HD-570) using standard Macintosh 

Power PC digital-to-analog devices. Saccades and fixations were coded from the 

point-of-gaze data using SMI’s software. 

 

Predictions 

The conditions in this experiment are numerous and complex enough to 

warrant a careful review of the predictions. In the noun baseline condition, we would 

expect people to be equally likely to fixate the target and any distractor at the onset of 

the noun, with a gradual shift towards the target after about 200 ms. In the noun plus 

noun cohort condition, we would expect equal fixation proportions to the target, 

cohort, and distractors at noun onset, followed by a gradual increase to the target and 

cohort about 200 ms after onset, and then a final shift to the target a few hundred ms 

later (once disambiguating phonetic information is encountered). There are two 

possible predictions for the noun plus adjective cohort condition. First, if initial 

processing is encapsulated (and thus only operates on bottom-up information), we 

should see a cohort effect like the one predicted for the noun plus noun cohort 

condition. This is the prediction if discourse constraints provided by the visual 

display coupled with syntactic expectations cannot prevent activation of items from 

irrelevant form classes. Second, if those constraints can influence the early stages of 

word recognition, we should not see a cohort effect when the cohort is from a 

different form class. The predictions for the three adjective conditions parallel these, 

although the timing will be different, since participants must recognize the noun 

before they can select the target. 
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Results 

Two participants failed to reach ceiling levels of accuracy (they performed at 

less than 90% correct on the test on day 2). The data of these two participants was 

excluded from the analyses.  

Training. The progression of accuracy at key points during training and 

testing is detailed in Table 6.2. 

Table 6.2: Progression of accuracy in Experiment 5.  

Type First block Last block 

2 noun .70 .96 

4 noun .93 .97 

4 adjectives, 1 noun .88 .96 

4 adjectives, 2 nouns .97 .98 

Mixed, Day 1 .96 .96 

Test, Day 1  .98 

Mixed, Day 2 .96 .96 

Test, Day 2 .98 .98 

 

Test. The results from the test on day 2 are shown in Figure 6.2 (critical noun 

conditions) and Figure 6.3 (critical adjective conditions). Examples of possible 

stimulus items are shown to the left of each panel of each figure (these would be 

arranged around the central fixation cross in an actual experimental display).  Note 

that in the cross-form class conditions (noun with adjective cohorts and adjective with 

noun cohorts) there were two cohorts in the display. This was necessary in the case of 

the adjective plus noun cohort condition; in order for the display to demand that an 

adjective be used, two exemplars of two different shapes had to be displayed. To 

make the noun plus adjective cohort condition comparable, two items were displayed 

with textures whose names were cohorts to the noun target.  
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Figure 6.2: Critical noun conditions in Experiment 5. 
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Figure 6.3: Critical adjective conditions in Experiment 5. 
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The results are consistent with a non-encapsulated word recognition system. 

Compare the upper and lower panels of the two figures. While strong cohort effects 

are apparent in the upper panels (the within-form class competitor conditions), there 

do not appear to be cohort effects in the lower panels (between-form class 

conditions). Analyses of variance on mean fixation proportion in the noun conditions 

over the window from 200 ms (where we first expect to see signal-driven fixations) to 

1400 ms (where the target proportions asymptote) confirm the trends. There was a 

reliably greater proportion of fixations to the cohort than to the distractors in the noun 

plus noun cohort condition (cohort = .25, mean distractor = .12; F(1, 11)=10.16, p = 

.009), but not in the noun plus adjective cohort condition (cohort = .15, mean 

distractor = .15; p = .89). The same was true for the adjective conditions, over the 

window from 200 to 1800 (the window was extended because of the longer lag prior 

to disambiguation). There were reliably more fixations to the cohort in the adjective 

plus adjective cohort condition (cohort = .22, mean distractor = .15; F(1,11)=7.2, p = 

.02), but not in the adjective plus noun cohort condition (cohort = .16, mean distractor 

= .15, p = .59).  

 

Discussion 

The results are consistent with the hypothesis that top-down constraints are 

integrated early in processing when they are highly-predictive. Phonemically similar 

items competed only when there were from the same form class. This suggests that, 

contra strong modularity, relative activation can be constrained given a highly 

informative context. There are two caveats which must be mentioned. 

First, we have not demonstrated that the nouns and adjectives would compete 

in the absence of pragmatic constraints feeding syntactic expectations. For example, 

given a display containing a /tedi pibo/, a /dotu gawkai/, and two /bupo/s – a 

/pib√ bupo/ and a /kagU bupo/ – the first two items could be referred to just 

with the appropriate noun, whereas the latter two require the adjective to be specified. 
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If the target were /pib√/ or /pib√ bupo/, those two items should compete due to 

their initial overlap and the absence of pragmatic/syntactic constraints. It is possible 

that in the context of the artificial lexicon, nouns and adjectives would not compete 

even under these circumstances, although it is difficult to conceive of a mechanism 

which would predict this. 

Second, this effect depends on the closed-set nature of the lexicon. That is, 

participants know that the targets will only be drawn from the small set of items they 

have heard repeated for hours. Word recognition presumably is occurring with 

activation and competition among the items in the lexicon, with no or minimal 

interference from the English lexicon (see Experiment 4). It is possible that the effect 

would not generalize to real words because the relative strength of the constraint 

would be weakened; instead of aiding in selecting among 18 words, the constraint 

would have to help select from tens of thousands. We could test this by using a larger 

artificial lexicon, or even better, by replicating this result using English stimuli. 

A potential concern based on these two caveats is that this result demonstrates 

a central role for the visual display, whereas Experiment 2 was devoted to showing 

that we can detect differences in activation due to non-displayed competitors, that is, 

that the display does not constrain processing to the visible items. The current result 

does not demonstrate that the visual display determines which items can be activated. 

Rather, it demonstrates that highly-predictive constraints can be integrated early in 

word recognition. In this case, the display is a convenient way to instantiate the 

pragmatic constraint. Given a neighborhood density manipulation, for example, we 

would expect to see faster increases in target fixations for items in sparse 

neighborhoods in addition to the form class/pragmatic effects observed here. The 

current results, however, provide a highly suggestive starting point for further 

explorations of this issue, and demonstrate that the paradigm employed here can be 

adapted to a wide range of microstructural issues in spoken word recognition. 
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Chapter 7:   Summary and Conclusions 
The experiments reported here provide constraints on how theories of spoken 

word recognition approach the mapping of bottom-up information onto phonological 

word-form representations, and how they integrate top-down constraints. The 

paradigm developed here – combining an artificial lexicon with eye tracking – 

provides a principled approach to studying the microstructure of spoken word 

recognition.  

Experiments 1 – 4 examined the bottom-up side of the equation via the time 

course of neighborhood density effects. Experiment 1 established the eye 

tracking/artificial lexicon paradigm, replicated frequency, cohort and rhyme effects, 

and provided the first measures of the time course of neighborhood density effects. 

Experiment 2 demonstrated that effects in the eye tracking paradigm are not driven 

solely by the displayed items: neighborhood density determines the time course of 

recognition even when neighbors are not displayed. Experiment 3 replicated the 

neighborhood effects with real words, and added an examination of the separate 

contributions of neighbors and onset cohorts. The finding that items overlapping at 

onset with an input are activated more quickly demonstrates that similarity metrics 

must take into account the temporal nature of the unfolding speech stream. 

Experiment 4 examined whether words in a newly-learned artificial lexicon 

are perceived against a background of activation and competition within the native 

lexicon, or if artificial lexicons can be considered functionally encapsulated in the 

context of an experiment. There was a main effect of the frequency manipulation 

instantiated in the artificial lexicon, but not of the density of the English 

neighborhoods into which the artificial items would fall. This suggests artificial 

lexicons are functionally encapsulated. However, an examination of (non-significant) 

interactions revealed that most of the frequency effect was carried on high-density 

items, and there was a stronger trend towards a density effect on low-frequency items. 

This suggests that, to be safe, experimenters ought to avoid using artificial words that 

are highly similar to English words. The fact that we did not observe reliable density 
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effects with items designed to be highly similar to English words, though, indicates 

that intrusion from the English lexicon is minimal.  

Experiment 5 turned to the role of top-down information sources in spoken 

word recognition. We created an artificial lexicon of nouns (referring to shapes) and 

adjectives (referring to textures). We found that phonologically similar items in the 

same form class competed but items from different form classes did not given visual 

contexts providing strong pragmatic and syntactic constraints. We hypothesize that 

this is a demonstration that top-down information can constrain lower-level processes 

when the top-down information is sufficiently predictive.  

Together, this set of results demonstrates the importance of measures of the 

microstructure of spoken word recognition, and of proposing theories which are 

sufficiently broad to explain a wide range of phenomena, but not so narrow as to 

prevent us from uncovering deeper underlying structure. For example, while the Luce 

and Pisoni (1998) notion of neighborhood is currently the best predictor of similarity 

in spoken word recognition, Experiments 1 and 3 demonstrate that not all neighbors 

compete equally. We expect to be able to improve on the Luce similarity metric by 

taking into account the fine-grained time course of competition for different types of 

competitors. Similarly, Experiment 5 demonstrates that the longstanding conclusion 

that syntactic information cannot constrain initial word recognition processes is too 

strong. Given a sufficiently predictive context, syntactic information can constrain 

word recognition. 

Some might argue that this style of experimentation and theorizing is too 

broad, and rather than developing an account of the microstructure of spoken word 

recognition, we are proposing microtheories of every lexical item. To the contrary, 

we are still proposing broad theoretical statements. They often require an enumeration 

of lexical characteristics at or near the individual item level, but with those 

characteristics in hand, make principled, coherent predictions.  
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Appendix: Materials used in Experiment 3 
 

In the following tables, “Frq.” = “frequency”, “Fam.” = “familiarity” (as 

measured via 7-point ratings by Nusbaum, Pisoni and Davis, 1984), “Nb” = 

“neighbor”, ”Dens” = “Density”, “Coh” = “cohort”, and “FWNPR” and “FWCPR” 

are “frequency weighted neighborhood rule” (Luce, 1986) and “frequency-weighted 

cohort probability rule” (each probability is the log frequency of the item divided by 

its neighborhood density, i.e., the summed log frequencies of its neighbors or 

cohorts).  
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Low Frequency, Low Neighborhood Density, Low Cohort Density 

 
Word 

 
Frq. 

Log 
Frq. 

 
Fam.

# 
Nbs 

Nb 
Dens. 

FW-
NPR 

# 
Cohs. 

Coh. 
Dens 

FW-
CPR 

couch 13 2.56 7 10 23.86 0.1075 35 61.28 0.0419 
cube 5 1.61 7 5 9.06 0.1777 19 33.39 0.0482 
fox 11 2.40 7 11 21.07 0.1138 57 87.41 0.0274 
goose 7 1.95 7 16 28.28 0.0688 8 6.38 0.3050 
hook 5 1.61 6.8 20 41.35 0.0389 9 11.45 0.1406 
pump 15 2.71 7 20 30.64 0.0884 38 64.45 0.0420 
thumb 14 2.64 7 27 43.65 0.0605 10 12.99 0.2032 
torch 4 1.39 7 4 6.68 0.2074 27 35.68 0.0389 
vice 25 3.22 6.8 5 10.20 0.3154 24 45.42 0.0709 
yarn 20 3.00 7 6 14.09 0.2126 11 15.50 0.1933 
keg 3 1.10 7 9 17.00 0.0646 29 44.22 0.0248 
bolt 9 2.20 7 15 32.65 0.0673 65 79.50 0.0276 
shield 8 2.08 7 9 22.07 0.0942 14 26.69 0.0779 
chef 9 2.20 6.8 10 20.64 0.1064 21 31.48 0.0698 
thread 20 3.00 7 15 35.07 0.0854 31 68.31 0.0439 
throne 6 1.79 7 11 20.77 0.0863 31 68.31 0.0262 
Means 10.88 2.21 6.96 12.06 23.57 0.1184 26.81 43.28 0.0864 

Low Frequency, Low Neighborhood Density, High Cohort Density 

 
Word 

 
Frq. 

Log 
Frq. 

 
Fam.

# 
Nbs 

Nb 
Dens. 

FW-
NPR 

# 
Cohs. 

Coh. 
Dens 

FW-
CPR 

clown 6 1.79 7 14 22.97 0.0780 190 289.81 0.0062 
crutch 7 1.95 6.4 11 15.90 0.1224 232 313.68 0.0062 
drill 21 3.04 7 11 16.45 0.1850 109 199.37 0.0153 
flag 18 2.89 7 14 28.57 0.1012 154 204.15 0.0142 
fork 20 3.00 7 11 37.94 0.0790 90 181.28 0.0165 
frog 2 0.69 7 8 10.21 0.0679 161 281.51 0.0025 
skate 1.001 0.00 7 15 36.52 0.0000 177 255.75 0.0000 
skull 5 1.61 7 8 19.97 0.0806 177 255.75 0.0063 
spire 8 2.08 4.1 17 32.02 0.0649 179 298.85 0.0070 
stump 7 1.95 1 5 7.36 0.2644 331 623.00 0.0031 
trunk 13 2.56 7 5 13.87 0.1849 205 349.81 0.0073 
wreath 11 2.40 7 19 36.47 0.0658 84 152.29 0.0157 
plug 23 3.14 7 16 18.46 0.1699 117 196.21 0.0160 
crown 19 2.94 7 19 37.89 0.0777 232 313.68 0.0094 
grill 11 2.40 7 18 33.80 0.0710 226 356.00 0.0067 
groom 5 1.61 6.9 15 31.38 0.0513 226 356.00 0.0045 
Means 11.06 2.13 6.40 12.88 24.99 0.1040 180.63 289.20 0.0086 
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Low Frequency, High Neighborhood Density, Low Cohort Density 

 
Word 

 
Frq. 

Log 
Frq. 

 
Fam.

# 
Nbs 

Nb 
Dens. 

FW-
NPR 

# 
Cohs. 

Coh. 
Dens 

FW-
CPR 

bow 13 2.56 6.7 41 112.97 0.0227 15 23.91 0.1073 
bull 16 2.77 7 34 71.94 0.0385 48 59.47 0.0466 
saw 8 2.08 7 43 108.12 0.0192 31 37.75 0.0551 
tee 5 1.61 7 57 176.09 0.0091 27 39.11 0.0412 
cake 16 2.77 7 50 105.68 0.0262 38 61.65 0.0450 
cane 13 2.56 6.5 67 129.03 0.0199 38 61.65 0.0416 
goat 8 2.08 7 24 66.26 0.0314 27 38.47 0.0540 
nail 20 3.00 7 42 81.71 0.0367 24 50.34 0.0595 
nun 6 1.79 7 32 83.98 0.0213 22 35.62 0.0503 
sheep 24 3.18 7 30 80.53 0.0395 14 26.69 0.1191 
sock 10 2.30 7 37 79.04 0.0291 52 72.24 0.0319 
vase 15 2.71 7 27 80.38 0.0337 13 24.43 0.1109 
vest 4 1.39 6.9 25 66.83 0.0207 37 54.21 0.0256 
chick 4 1.39 7 35 73.47 0.0189 28 39.23 0.0353 
knight 25 3.22 6.9 47 157.80 0.0204 37 51.16 0.0629 
net 24 3.18 6.9 38 120.08 0.0265 37 69.33 0.0458 
Means 13.19 2.41 6.93 39.31 99.62 0.0259 30.50 46.58 0.0583 

 

Low Frequency, High Neighborhood Density, High Cohort Density 

 
Word 

 
Frq. 

Log 
Frq. 

 
Fam.

# 
Nbs 

Nb 
Dens. 

FW-
NPR 

# 
Cohs. 

Coh. 
Dens 

FW-
CPR 

match 24 3.18 7 27 60.61 0.0524 162 249.22 0.0128 
bear 24 3.18 7 67 178.10 0.0178 158 238.75 0.0133 
bell 23 3.14 7 63 137.35 0.0228 108 158.04 0.0198 
cap 22 3.09 7 51 106.71 0.0290 233 351.71 0.0088 
deer 13 2.56 7 53 136.86 0.0187 561 975.45 0.0026 
cone 15 2.71 7 56 115.61 0.0234 125 183.23 0.0148 
mop 2 0.69 7 34 70.00 0.0099 130 210.41 0.0033 
witch 13 2.56 7 38 97.68 0.0263 106 175.46 0.0146 
badge 6 1.79 6.9 26 67.17 0.0267 158 238.75 0.0075 
can 12 2.48 7 57 107.59 0.0231 233 351.71 0.0071 
grape 10 2.30 6.8 28 68.18 0.0338 226 356.00 0.0065 
pan 16 2.77 7 49 117.95 0.0235 136 189.82 0.0146 
patch 23 3.14 7 33 69.74 0.0450 136 189.82 0.0165 
pear 8 2.08 7 58 159.30 0.0131 136 189.82 0.0110 
cart 9 2.20 7 25 67.54 0.0325 325 513.15 0.0043 
calf 17 2.83 6.6 28 68.90 0.0411 233 351.71 0.0081 
Means 14.81 2.54 6.96 43.31 101.83 0.0274 197.88 307.69 0.0103 
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High Frequency, Low Neighborhood Density, Low Cohort Density 

 
Word 

 
Frq. 

Log 
Frq. 

 
Fam.

# 
Nbs 

Nb 
Dens. 

FW-
NPR 

# 
Cohs. 

Coh. 
Dens 

FW-
CPR 

board 285 5.65 7 19 39.52 0.1430 65 79.50 0.0711 
child 620 6.43 7 7 15.14 0.4247 15 31.99 0.2010 
church 451 6.11 7 7 19.25 0.3175 5 10.83 0.5642 
dog 147 4.99 7 14 22.50 0.2218 32 32.17 0.1551 
fence 46 3.83 7 12 30.06 0.1274 41 54.45 0.0703 
food 198 5.29 7 15 35.97 0.1470 9 17.10 0.3093 
gift 45 3.81 7 9 21.59 0.1763 37 55.27 0.0689 
girl 374 5.92 7 24 29.25 0.2026 10 11.63 0.5093 
guard 63 4.14 7 14 39.24 0.1056 56 65.82 0.0629 
horse 203 5.31 6.8 6 18.94 0.2806 46 64.00 0.0830 
judge 81 4.39 7 6 12.41 0.3541 31 66.46 0.0661 
knife 86 4.45 6.8 12 36.55 0.1219 37 51.16 0.0871 
roof 64 4.16 7 24 49.85 0.0834 50 66.68 0.0624 
salt 52 3.95 7 19 35.81 0.1103 31 37.75 0.1047 
snake 70 4.25 7 12 22.60 0.1880 37 37.29 0.1139 
switch 63 4.14 7 15 38.47 0.1077 67 98.09 0.0422 
Means 178.00 4.80 6.98 13.44 29.20 0.1945 35.56 48.76 0.1607 

 

High Frequency, Low Neighborhood Density, High Cohort Density 

 
Word 

 
Frq. 

Log 
Frq. 

 
Fam.

# 
Nbs 

Nb 
Dens.

FW-
NPR 

# 
Cohs. 

Coh. 
Dens 

FW-
CPR 

dress 63 4.14 6.8 11 23.38 0.1772 109 199.37 0.0208 
truck 80 4.38 7 12 21.41 0.2047 205 349.81 0.0125 
cloud 64 4.16 7 14 30.01 0.1386 190 289.81 0.0144 
club 178 5.18 6.8 6 12.70 0.4081 190 289.81 0.0179 
desk 69 4.23 6.9 6 14.20 0.2983 117 190.58 0.0222 
scale 62 4.13 7 12 28.33 0.1457 177 255.75 0.0161 
screen 53 3.97 7 7 17.08 0.2325 177 255.75 0.0155 
card 61 4.11 7 17 46.44 0.0885 325 513.15 0.0080 
film 127 4.84 7 8 20.44 0.2370 146 229.77 0.0211 
school 687 6.53 7 13 33.73 0.1937 177 255.75 0.0255 
bridge 117 4.76 6.9 8 20.22 0.2355 245 334.12 0.0143 
crowd 63 4.14 7 11 31.86 0.1301 232 313.68 0.0132 
frame 96 4.56 6.9 14 41.52 0.1099 161 281.51 0.0162 
class 292 5.68 6.9 19 29.37 0.1933 190 289.81 0.0196 
branch 63 4.14 6.8 11 18.80 0.2204 245 334.12 0.0124 
plant 182 5.20 7 8 28.29 0.1840 117 196.21 0.0265 
Means 141.06 4.64 6.94 11.06 26.11 0.1998 187.69 286.19 0.0173 
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High Frequency, High Neighborhood Density, Low Cohort Density 

 
Word 

 
Frq. 

Log 
Frq. 

 
Fam.

# 
Nbs 

Nb 
Dens. 

FW-
NPR 

# 
Cohs. 

Coh. 
Dens 

FW-
CPR 

ball 123 4.81 7 46 104.44 0.0461 25 37.47 0.1284 
chair 89 4.49 7 39 111.55 0.0402 43 77.90 0.0576 
pool 129 4.86 7 35 80.14 0.0606 4 7.35 0.6616 
key 71 4.26 7 53 136.65 0.0312 24 35.50 0.1201 
shoe 58 4.06 6.9 50 164.84 0.0246 11 16.03 0.2533 
boat 123 4.81 7 47 123.49 0.0390 65 79.50 0.0605 
bone 53 3.97 7 43 101.30 0.0392 65 79.50 0.0499 
gun 142 4.96 7 36 86.01 0.0576 46 53.98 0.0918 
top 136 4.91 7 36 79.40 0.0619 46 67.42 0.0729 
chain 60 4.09 7 38 95.24 0.0430 14 30.05 0.1363 
wall 224 5.41 7 40 115.38 0.0469 58 87.19 0.0621 
moon 63 4.14 7 30 81.21 0.0510 14 34.25 0.1210 
goal 100 4.61 6.9 46 92.33 0.0499 27 38.47 0.1197 
knee 73 4.29 7 61 178.16 0.0241 34 56.55 0.0759 
sheet 71 4.26 7 29 88.20 0.0483 14 26.69 0.1597 
suit 64 4.16 7 41 100.78 0.0413 54 81.23 0.0512 
Means 98.69 4.51 6.99 41.88 108.70 0.0441 34.00 50.57 0.1389 

 

High Frequency, Low Neighborhood Density, High Cohort Density 

 
Word 

 
Frq. 

Log 
Frq. 

 
Fam.

# 
Nbs 

Nb 
Dens. 

FW-
NPR 

# 
Cohs. 

Coh. 
Dens 

FW-
CPR 

coat 52 3.95 7 46 119.02 0.0332 125 183.23 0.0216
heart 199 5.29 7 27 62.06 0.0853 115 163.14 0.0324
plane 138 4.93 7 29 82.56 0.0597 117 196.21 0.0251
tree 160 5.08 7 28 68.74 0.0738 205 349.81 0.0145
band 64 4.16 6.9 29 80.94 0.0514 158 238.75 0.0174
bed 139 4.93 1 47 104.86 0.0471 108 158.04 0.0312
car 393 5.97 7 43 96.91 0.0616 325 513.15 0.0116
hat 71 4.26 7 53 159.17 0.0268 157 221.17 0.0193
lip 87 4.47 7 49 83.92 0.0532 126 205.08 0.0218
man 2110 7.65 7 53 118.28 0.0647 130 210.41 0.0364
star 58 4.06 7 25 66.81 0.0608 331 623.00 0.0065
train 86 4.45 7 25 65.79 0.0677 205 349.81 0.0127
bag 51 3.93 7 47 97.55 0.0403 158 238.75 0.0165
brain 64 4.16 7 36 73.24 0.0568 245 334.12 0.0124
cup 58 4.06 7 26 72.81 0.0558 84 161.15 0.0252
hair 160 5.08 7 58 177.91 0.0285 157 221.17 0.0229
Means 243.13 4.78 6.62 38.81 95.66 0.0542 171.63 272.94 0.0205

 


