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Abstract

The sounds that make up spoken words are heard in a series and must be mapped rapidly onto words
in memory because their elements, unlike those of visual words, cannot simultaneously exist or persist
in time. Although theories agree that the dynamics of spoken word recognition are important, they differ
in how they treat the nature of the competitor set—precisely which words are activated as an auditory
word form unfolds in real time. This study used eye tracking to measure the impact over time of word
frequency and 2 partially overlapping competitor set definitions: onset density and neighborhood den-
sity. Time course measures revealed early and continuous effects of frequency (facilitatory) and on-
set-based similarity (inhibitory). Neighborhood density appears to have early facilitatory effects and late
inhibitory effects. The late inhibitory effects are due to differences in the temporal distribution of simi-
larity within neighborhoods. The early facilitatory effects are due to subphonemic cues that inform the
listener about word length before the entire word is heard. The results support a new conception of lexi-
cal competition neighborhoods in which recognition occurs against a background of activated competi-
tors that changes over time based on fine-grained goodness-of-fit and competition dynamics.
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1. Introduction

Recognizing spoken words requires listeners to solve several perceptual challenges. Unlike
written words or other visual objects, their components cannot be simultaneously presented;
they do not persist in time, and so cannot be reexamined after their initial presentation. Instead,
a series of transient acoustic events extending over a few hundred milliseconds must be
mapped onto words in memory. This mapping must be rapidly achieved (conversational
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speech often reaches rates of 7 syllables per sec; Pollack & Pickett, 1964) without reliable cues
to word boundaries (e.g., Cole & Jakimik, 1980). By analogy, imagine reading this page
through a two-letter aperture as the text scrolled past, without spaces separating words, at a
variable rate you could not control. Under these circumstances, efficiency would be improved
if candidate words were generated as the text is revealed, rather than waiting until chunks of
text larger than the aperture match precisely with stored lexical entries; indeed, if word bound-
aries are not marked and the entire stream is not or cannot be held in memory, there is no other
way to segment the text, aside from finding lexical matches on the fly.

Therefore, the computational demands of spoken word recognition (SWR) require that
those lexical representations that are acoustically similar to the unfolding input be partially ac-
tivated, both to serve as a temporary memory of the input and to serve as a set of candidate hy-
potheses. Determining the nature of these so-called lexical neighborhoods is important for
both practical and theoretical reasons. From an applied perspective, tests that take into account
the effects of lexical neighborhoods are proving useful as measures of the efficiency of SWR in
populations with hearing impairments (Kirk, Diefendorf, Pisoni, & Robbins, 1997; Sommers,
Kirk, & Pisoni, 1997) and in devices that attempt to recognize speech by algorithm (Jurafsky &
Martin, 2000). From a theoretical perspective, a proper definition of lexical neighborhoods
will provide crucial constraints on models of SWR and underlying neural mechanisms. In this
article, we use eye movements to measure neighborhood effects as a word unfolds over time.
We show that the competitor set changes dynamically as a word is heard, with competitors that
share onsets dominating early in the recognition process, and effects of global similarity
emerging later.

Current models of SWR make different assumptions about which lexical competitors are
activated as a word unfolds. Some models emphasize global similarity (Luce & Pisoni, 1998),
whereas others emphasize onset-based similarity (Marlsen-Wilson & Welsh, 1978; Norris,
1994). Models that emphasize onset-based similarity maximize the speed with which a lexical
candidate is selected by activating a set of candidates that initially match the input, so-called
cohort competitors, and strongly inhibiting candidates as soon as they mismatch the input. For
example, bat will not be activated when the input is cat; but words like cab, cattle, cavern, and
catatonic will be activated.

Evidence for onset-based neighborhoods comes from studies that have used priming to ex-
amine competitor activation (e.g., Marslen-Wilson & Zwitserlood, 1989). Such studies have
consistently found strong evidence for cohort activation (cat primes taxi, an associate of cab),
but little evidence for activations of words that mismatch at onset, such as rhymes (cat will not
prime vampire, an associate of bat; but for trends toward priming when rhymes differ from tar-
gets by a single phonetic feature, see Andruski, Blumstein, & Burton, 1994; Connine, Blasko,
& Titone, 1993; Marslen-Wilson, 1993).

The most influential model that emphasizes global similarity is the Neighborhood Activa-
tion Model (NAM; Luce, 1986; Luce & Pisoni, 1998). NAM predicts words will be activated
by a spoken word (e.g., cat) when they differ by no more than one phoneme from the input1

(whether by addition, deletion, or substitution; e.g., cast, scat, at, bat, cot, cab), whereas words
that overlap at onset but then differ by several phonemes, such as cavern or catatonic, will not
be activated. Models like NAM, which only make use of positive evidence (activation given
full or partial phonemic matches, but no explicit mismatch inhibition), yield neighborhoods
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based primarily on global similarity. The primary evidence for NAM comes from studies in
which the make-up of the lexical neighborhood is inferred from how long it takes to recognize
a word. Recognition time is predicted to be related to frequency-weighted neighborhood prob-
ability, which is the ratio of a word’s frequency to the sum of its own frequency and the fre-
quencies of its neighbors. The idea is that the more neighbors a word has, and the more fre-
quently those neighbors occur, the harder that word will be to recognize. This measure
provides the best prediction of recognition facility for large sets of words, accounting for ap-
proximately 20% of the variance (compared to about 5% for the next-best factor, word fre-
quency; Luce & Pisoni, 1998).

It is important to note that the evidence for onset-based and global neighborhoods comes
from different types of paradigms, each with strengths and weaknesses. Priming allows one to
probe for a particular type of competitor, and it can be used to provide a snapshot of the activa-
tion of this competitor at different points in time after the prime is presented (as a function of
the delay between prime and target). However, it does not easily lend itself to measuring the
impact of entire neighborhoods on the recognition of a specific word (although one could mea-
sure priming to associates of an exhaustive set of competitors, and one might expect degree of
priming to depend on competitor density).

Measures such as naming, lexical decision, or recognition in noise allow one to assess the
global effects of competitor sets—that is, the impact on overall recognition—but do not pro-
vide information about how neighborhood effects might change as the word unfolds over time.
Distinguishing among competing models of SWR requires a measure that is sensitive both to
time course and to the overall effects of neighborhoods. Moreover, evaluation of competing
models requires a metric that can distinguish neighborhoods with many onset competitors
from neighborhoods with few.

The need for time-course measures is further highlighted by the results of Vitevitch (2002),
who demonstrated that onset similarity has effects above and beyond neighborhood density.
Vitevitch computed an “onset density” measure: the proportion of neighbors that overlapped in
the first phoneme with the target. He compared words with a high proportion of onset neigh-
bors (75.3%) with words with a low proportion (42%). Words with high-onset density neigh-
borhoods were named more slowly (by 11 msec on average) and recognized more slowly in a
lexical decision task (by 23 msec on average) than words with low-onset density neighborhoods.
Because the onset metric was limited to neighbors (e.g., cat, cab, cap), it is not clear whether
these results would generalize to onset competitors in general (e.g., cat, cabin, cannibal), or if it is
limited to the influence of neighbor onsets.

The foregoing review of models of SWR highlights the need for a detailed evaluation of the
set of lexical competitors over time as the target word is unfolding, rather than characterizing
the competitor set as the set of words that should have been active at any point as the word was
heard. This requires not only a dependent measure that has excellent temporal dynamics, but
also a careful comparison of different metrics used to compute the acoustic–phonetic similar-
ity of lexical items. In this study we compare neighborhood density2 as defined by NAM with a
conceptually parallel onset-based measure: frequency-weighted cohort density (i.e., the
summed log frequency of a target word and all its cohorts). We chose this metric rather than the
neighbor onset metric used by Vitevich (2002) because that metric excludes many of the items
predicted to compete most strongly by cohort-style models (i.e., it considers onset density only
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for neighbors). Because words are neighbors if they differ by no more than one phoneme (ac-
complished by addition, deletion, or substitution of a phoneme), words such as cask, castle,
cabin, captain, café, camera, and so forth, would not be counted by NAM as competitors of
cat, whereas all of these words would be competitors of cat according to cohort density mod-
els. The different types of competitors are illustrated in Fig. 1. The two large ovals indicate
neighbors and cohorts. The grey region identifies items that fit the criteria for both neighbors
and cohorts. The dashed oval indicates the items that would be included in the Vitevitch onset
metric.

To assess the time course of lexical competition as a function of neighborhood density and
cohort density, we adapted the visual world eye-tracking paradigm (Cooper, 1974; Tanenhaus,
Spivey-Knowlton, Eberhard, & Sedivy, 1995) in a design similar to that used by Allopenna,
Magnuson, and Tanenhaus (1998). Allopenna et al. monitored eye movements as participants
followed spoken instructions to pick up and move one of four items displayed on a screen using
a computer mouse (“pick up the beaker”). Critical trials included cohorts (e.g., beetle), rhymes
(speaker), or both; as well as unrelated baseline items (e.g., carriage). The proportions of fixa-
tions to the displayed items mapped directly onto phonetic similarity over time: Targets and
cohort competitor proportions increased and separated from the rhyme and unrelated baseline
early on; as the input became more similar to the rhyme, its proportion separated from the un-
related baseline. Shortly after information disambiguating the target and cohort was available
in the input, fixation proportions to the cohort began to drop off, returning to the unrelated
baseline sooner than to the rhyme. Simulations of these data using TRACE (McClelland &
Elman, 1986) accounted for nearly 90% of the variance in the time course fixation proportions
to the target and competitors. TRACE adopts a middle ground between models that emphasize
onset similarity and models that emphasize global similarity. TRACE does not include explicit
mismatch inhibition. Therefore, similarity at any point can activate any word. However, lateral
inhibition between words leads to an advantage for items overlapping at onset: Because they
get activated early on, they inhibit items that are activated later, such as rhymes.
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Fig. 1. Example of phonological neighborhood and cohort for the word cat. Neighbors are defined by a mismatch
criterion: They differ from cat by no more than one phoneme. The cohorts are defined by a match criterion: They
have the same onset as cat. The grey region of overlap indicates the items that meet both criteria. The dashed oval
contains the items that would be included in the Vitevitch (2002) onset definition.



Although the Allopenna et al. (1998) paradigm provides fine-grained time course informa-
tion, it suffers from the same limitation as priming measures (viz., it only measures activation
for displayed items). In this study, we used conditions more similar to those in lexical decision
or naming tasks. In our task using the visual world paradigm, we examined the recognition of
single monosyllabic words that varied in frequency and competitor statistics by displaying a
target picture among three unrelated distractors. In contrast to lexical decision studies, we were
able to estimate the time course of lexical activation by measuring eye movements as target
words were presented. Although competitors were never present in the same display as the tar-
get, we are able to infer how the set of activated lexical candidates changes as a word is heard
by relating the time course of fixations to the target given the characteristics of nondisplayed
competitors. Our results revealed that early in the word effects of word frequency and cohort
density dominated, with global neighborhood effects emerging later in the recognition pro-
cess. These results place strong constraints on models of SWR and highlight the importance of
temporal dynamics in defining and measuring the effects of lexical neighborhoods.

2. Experiment

2.1. Method

2.1.1. Participants
Fifteen native speakers of English who reported normal or corrected-to-normal vision and

normal hearing were paid for their participation.

2.1.2. Stimuli
The auditory stimuli consisted of 128 imageable, monosyllabic, English nouns. There were

two levels (high and low) of frequency, neighborhood density, and cohort density. There were 16
items in each of the eight combinations of these levels. All of the items, along with several lexical
characteristics,are included in theAppendix.Table1showsthemeanlevelsofeachfactor ineach
condition (item-specific values are available from James S. Magnuson). Table 1 also includes
four other measures that have previously been shown to have strong influences on SWR.

The first is duration. Although there are trends that correlate with some of the manipula-
tions, none are reliable (p ranges from .12–.41), and the direction of trends varies (low fre-
quency = 546, high = 538; low neighborhood = 549, high = 535; low cohort = 534, high = 550).
The next two are the Vitevitch and Luce (1998) measures of phonotactic probability. Phone
psum are the summed positional probabilities for each phoneme in a word (i.e., the independ-
ent probability of a phoneme occurring in its word position), and Biphone psum are the
summed biphone probabilities. The fourth is a max cohort density onset metric similar to that
used by Vitevitch (2002), where the criterion for cohort status is overlap in the first phoneme
(although the set is not limited to neighbors). We used a two-phoneme definition because we
expect it provides a closer analog to the original cohort model notion of cohorts overlapping in
the first 150 to 200 msec. As can be seen in Table 1, the two cohort definitions give somewhat
similar results (r2 = .18). We leave as a question for future research which of these measures
provides the better estimate of onset-based competition.
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As can be seen in Table 1, the phonotactic probability measures also pattern with cohort
density. This is somewhat surprising given their expected relation with neighborhood density.
However, the phone measure correlates more strongly with cohort density (r2 = .16) than with
neighborhood density (r2 = .06), as does the biphone measure (r2 = .60 with cohort density, r2 =
.23 with neighborhood density). Given that all three measures (phone psum, biphone psum,
and max cohort density) pattern with cohort density, we provisionally conclude that for these
materials, they do not provide important information beyond that provided by our measures of
interest (frequency, neighborhood density, and cohort density). The fact that biphone probabil-
ity correlates with both neighborhood and cohort density might raise the concern that biphone
probability is a proxy for both. However, as will become clear shortly, simple effects of neigh-
borhood are found when cohort density is controlled and vice versa.

The auditory stimuli were produced by a male native speaker of English in a sentence con-
text (“Click on the chef”). The stimuli were recorded using a Kay Lab CSL 4000 with 16-bit
resolution and a sampling rate of 22.025 kHz. The mean duration of the “Click on the … ” por-
tion of the instruction was 440 msec. Mean target duration was 538 msec.

The visual stimuli consisted of pictures of the 128 targets and 412 distractors. These came
from a variety of sources, including the Snodgrass and Vanderwart (1980) pictures and a num-
ber of clip-art collections. We allowed as little variability as possible in realism, style, and
other characteristics. The pictures are available on request from James S. Magnuson.

2.1.3. Procedure
All 128 targets were presented in random order. Three visual distractors were chosen

pseudo-randomly for every trial for every participant with the following constraints:
Distractors could only appear in one trial per participant, distractors could not be cohorts or
neighbors of each other or the target, and distractors could not be closely semantically related
to each other or to the targets. Each picture was coded on 178 semantic classes such as person,
animal, vehicle, appliance, tool, and medical. Items typically had two to four semantic codings
(e.g., bull had animal and farm). Only one item from each class was permitted to appear in each
display.

On each trial, the pictures appeared 100 msec after the participant clicked on a central fixa-
tion square. Concurrently, the auditory instruction began (e.g., “click on the yarn”). The trial
ended 150 msec after the participant clicked on one of the pictures. The pictures were about
1.5° in diameter and were located approximately 2° from the central fixation square along the
45°, 135°, 225°, and 315° axes from the center of the display.

Eye movements were monitored using a SensoMotorics Instruments (SMI) EyeLink eye
tracker, which provided a record of point-of-gaze in screen coordinates at a sampling rate of
250 Hz. The auditory stimuli were binaurally presented through headphones (Sennheiser
HD-570) using standard Macintosh Power PC digital-to-analog devices. Saccades and fixa-
tions were coded from the point-of-gaze data using SMI’s software.

2.2. Predictions

The predictions for main effects are straightforward because they are consistent across com-
peting models and should mirror those found using other methods. First, there should be an ad-
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vantage for high-frequency items compared to low (e.g., Howes, 1957; Savin, 1963), reflected
in a steeper rise in target than nontarget fixation proportions (for frequency effects using the
eye tracking paradigm, see Dahan, Magnuson, & Tanenhaus, 2001). Second, there should be
an advantage for items with low neighborhood density compared to those with high (Luce &
Pisoni, 1998) because neighbors should compete with a strength proportional to their own fre-
quency (for neighborhood density effects on fixation proportions, see Magnuson, Tanenhaus,
Aslin, & Dahan, 2003). Third, the same logic should hold for our cohort density measure; that
is, there should be an advantage for items in low-density cohorts compared to those in
high-density cohorts. Of primary interest is whether and how effects of cohort density and
neighborhood density change as the target word unfolds over time.

2.3. Results

Fig. 2 shows the patterns of fixation for the main effects of frequency, neighborhood density,
and cohort density. In each case, fixation proportions begin to depart from chance levels (.20,
given 4 objects and the central fixation square) around 200 msec after target onset. As in previ-
ous studies (e.g., Allopenna et al., 1998), changes in fixation proportion were closely time
locked to the speech signal, as it takes at least 150 msec to plan and launch an eye movement;
and in tasks like ours, typical intersaccadic intervals are in the range of 200 to 300 msec (see
Fischer, 1992; Saslow, 1967; Viviani, 1990). Unless otherwise noted, all analyses in this article
are restricted to the window from 200 msec (the earliest point where we expect signal-driven
changes in fixation proportions) to 1,000 msec (the point by which fixation proportions tend to
asymptote in several studies using this technique). Predicted trends were observed for fre-
quency (high-frequency advantage) and cohort density (low-density advantage), but the pat-
tern for neighborhood density is strikingly different: The predicted low-density advantage
emerges late and is preceded by a high-density advantage. This change in the neighborhood ef-
fect over time presents significant statistical challenges.

In the relatively brief history of using eye movements as an index of spoken language pro-
cessing, a variety of statistical approaches have been used, but nearly all have used standard
analyses of variance. A common approach has been to include time as a factor, typically by di-
viding time into some number of bins (e.g., Allopenna et al., 1998, used 8 successive 100-msec
windows). However, because the value (i.e., fixation proportion) for some condition at time t is
not independent of its value at time t-1, this approach violates the analysis of variance
(ANOVA) assumption of independent observations. Another approach is to avoid this viola-
tion by finding a way to capture differences between conditions without including time, such
as calculating average fixation proportion for each condition (Magnuson et al., 2003). This
leaves us with a dilemma in approaching the results of this study, as the effect of neighborhood
clearly changes over time. This led us to techniques developed specifically for examining
change over time: growth curve analysis, particularly as it is applied in developmental psychol-
ogy (Singer & Willett, 2003).

2.3.1. Growth curve analysis
Growth curve analysis is a method for formally modeling variations in over-time trajecto-

ries. Conceptually, it is analogous to fitting separate, over-time regression models for each in-
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Fig. 2. Fixation proportions over time for frequency, cohort density, and neighborhood density conditions. Bars
represent standard error.



dividual and then analyzing the resultant parameters as a function of some set of predictors (al-
though the particular instantiation of the model accomplishes this through different means). In
standard growth curve modeling, the over-time trajectory of the dependent measure is repre-
sented using general linear model parameters that define the trajectory (e.g., the intercept and
slope), and time-invariant predictor variables impact the model through those parameters.

In this study, we used orthogonal power polynomials to capture the curvilinear form of the
relation between the fixation proportions and time.3 Specifically, we modeled fixation propor-
tion as a function of polynomials that captured the linear, quadratic, and cubic effects of time.4

We need these three parameters to fit the sigmoidal form typically found with fixation propor-
tions over time (the quadratic term can describe a constant rate of change in slope—i.e., a sin-
gle curve—whereas the cubic term can capture changes in that rate of change itself over time,
which allows it to describe sigmoidal forms). Fig. 3 shows the main effect data with fitted
growth curves superimposed. For each effect, we report the estimated parameters, standard er-
rors, and the change in the deviance statistic resulting from adding the parameter to the model.
The deviance statistic indexes the fit of the model (larger values indicate poorer fit). Change in
the deviance statistic, ∆D, is distributed as chi-square. Because the tests reported later all in-
volve adding a single parameter to the model, the ∆D tests are on 1 df (note that the critical
chi-square value for 1 df is 3.84).5 All three polynomial terms significantly contributed to the
model: Bs = 1.100, –2.083, –0.110; SEs = .028, .005, .005; for the linear, quadratic, and cubic
components, respectively. The ∆Ds (1) were 313.8, 1064.2, and 369.4 (p < .001 in each case),
respectively. Items analyses correspond very closely to analyses by participants (see Table 2);
therefore, in the interest of concision, we only report participant analyses. Note that the signifi-
cance patterns are identical.

We added frequency, cohort density, and neighborhood density to the model by including
the effects of these variables on the intercept and the linear time variable. The effect on the in-
tercept tests whether the curve is shifted up as a function of condition, analogous to a main ef-
fect in ANOVA (e.g., on mean fixation proportion). The effect on the linear time variable tests
whether the “slope” (i.e., the linear component of the trajectory) differs by condition. A signifi-
cant effect of slope indicates that the trajectories change at different rates, which would be
analogous to an interaction of condition and time (because differences in rate of change would
lead to differences of varying magnitude at different points in time in a variable like mean fixa-
tion proportion).

2.3.1.1. Frequency. Frequency significantly affected the intercept, B = 0.037, SE = .018,
∆D(1) = 4.00, p = .046; but not the slope, B = –0.060, SE = .054, ∆D(1) = 1.20, ns. This con-
firms that the advantage for high word frequency apparent in the top panel of Fig. 2 was reli-
able, and the advantage did not depend on time (i.e., its magnitude did not change significantly
in the analysis window).

2.3.1.2. Cohort density. There was also a significant effect of cohort density on the intercept,
B = –0.040, SE = .018, ∆D(1) = 4.74, p < .029; low-cohort density showed the predicted advan-
tage, but there was no effect on the slope, B = 0.019, SE = .054, ∆D(1) = .098, ns. This indicates
that there was a reliable advantage for low-cohort density items (see the middle panel of Fig. 2)
that did not change significantly over time.
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Fig. 3. Data from Fig. 2 with predictions from growth curve analyses superimposed; the graphs are restricted to a
range of 200 msec to 1,000 msec as that is the range to which the models were applied.



2.3.1.3. Neighborhood density. Neighborhood density did not have a reliable effect on the in-
tercept, B = –0.004, SE = .018, ∆D(1) = .098, ns (analogous to a null main effect, e.g., of mean
fixation proportion, in an ANOVA). However, it did affect the slope, B = –0.159, SE = .054,
∆D(1) = 8.23, p = .004. Items with a lower neighborhood density showed steeper gains over
time. As mentioned earlier, this is analogous to an ANOVA interaction between neighborhood
density and time. As can be seen in the bottom panel of Fig. 2, there was an initial, unexpected
advantage for high neighborhood density items that shifted to the expected low-density advan-
tage in the latter portion of the time course. Given that this is analogous to a crossover interac-
tion of neighborhood density with time (provisionally, early vs. late time course), a question
arises: How can we explain the interaction statistically and theoretically?

Within growth curve analysis, techniques have been developed to assess whether the param-
eters underlying an over-time trajectory change or remain stable as a function of some external
event (e.g., marriage, a new treatment) that occurs during the time course. However, to employ
these techniques we must have a theory of the underlying cause of the change in rate to specify
points in time where we predict a change.

The crossover from an early advantage for items in high-density neighborhoods to a late ad-
vantage for low-density items is surprising, given that our high- and low-density neighborhood
items were matched on both frequency and cohort density. One possibility we entertained
(suggested by Liina Pylkkänen) is that the crossover reflects an initial benefit of high
phonotactic probability correlated with high neighborhood density that is followed by an in-
hibitory neighborhood effect as lexical representations reach sufficient levels of activation to
inhibit other lexical nodes significantly. Although this is a plausible explanation of the neigh-
borhood pattern, it incorrectly predicts a similar initial disadvantage for high-density cohorts
(i.e., an early difference between conditions has to be driven primarily by the initial segments
of the target word). If high probability patterns in general have early facilitatory effects,
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Table 2
Growth curve results for subject and item analyses

Subjects Analysis Items Analysis

Effect Estimate SE p (Chi Square) Estimate SE

Intercept 0.570 0.018 < .001 0.570 0.020
Linear (~slope) 1.203 0.054 < .001 1.208 0.056
Quadratic –0.208 0.006 < .001 –0.201 0.056
Cubic –0.111 0.006 < .001 –0.111 0.007
Frequency (intercept) 0.037 0.018 .046 0.037 0.020
Neighborhood (intercept) –0.005 0.018 ns –0.003 0.020
Cohort (intercept) –0.040 0.018 .029 –0.047 0.020
Frequency (slope) –0.061 0.054 ns –0.050 0.057
Neighborhood (slope) –0.159 0.054 .004 –0.161 0.056
Cohort (slope) 0.020 0.054 ns 0.019 0.056

Note. The effects of frequency, neighborhood, and cohort on intercept would be analogous to main effects on a
measure like mean fixation proportion over the entire window of analysis. An effect on slope would be analogous to
an interaction with time (due to significant change in magnitude or direction of a condition difference over time).



high-cohort density should also result in an early advantage; but even the earliest effects of co-
hort density are inhibitory. Our explanation has to do with the distribution of similarity over
time within neighborhoods. Recall that neighbors and cohorts can overlap (see Fig. 1). Two
words equated on cohort density might have quite different neighborhoods, with different
amounts of overlap between their neighborhoods and cohorts. With this in mind, we computed
the proportion of neighbors that were also cohorts for each condition (like Vitevitch’s [2002]
onset density measure, but operationalized as items sharing the first two phonemes; Magnuson
[2001] introduced this cohort density measure, and also examined the proportion of neighbors
that were also cohorts).

On average, the proportion of neighbors that were also cohorts was much higher for
low-density neighborhoods (66%, with those items accounting for 67% of frequency weighted
neighborhoods) than for high-density neighborhoods (37%, and 36% of the frequency weight
of those neighborhoods; see Table 3 for details in all conditions). This explains the late advan-
tage for low-density neighborhood items in the bottom panel of Fig. 2. In terms of the temporal
distribution of similarity between a target word and its cohorts and neighbors, low-density
neighborhoods were front loaded—most of their neighbors would be activated near word on-
set. Later in the word, their competition neighborhoods are relatively exhausted—the point of
greatest neighborhood overlap has passed.

What about the early advantage for high neighborhood density items? If a higher proportion
of low-density neighbors are cohorts, this suggests that there are differences in average cohort
length (i.e., that more of the cohorts of low-density items are short, allowing them to fit the
definition of neighbor). This is true: 65% of high-density items’ cohorts were longer than one
syllable (contributing 55% of the frequency weighted cohort density), whereas 47% of
low-density items’ cohorts were longer than one syllable (contributing 38% of the frequency
weighted cohort density).

Greater average cohort length could only explain the early high-density neighborhood ad-
vantage if listeners have access to cues to word length as they hear a word onset. Such cues ex-
ist: On average, vowel durations are longer in monosyllabic than multisyllabic words (Lehiste,
1972), with these differences increasing for strong positions in a prosodic domain (Ladd &
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Table 3
Percentage of neighbors that are also cohorts in each condition, and percentage of “long” (more than 1 syllable)
cohorts

Frequency
Neighborhood
Density

Cohort
Density

% Neighbors
That Are Cohorts

% Neighbor
Frequency Due
to Cohorts

% Long
Cohorts

% Cohort
Density Due to
Long Cohorts

Low High High 48 46 82 76
High High High 48 50 68 57
Low High Low 27 23 58 48
High High Low 25 25 53 40
Low Low High 78 77 36 31
High Low High 81 81 44 35
Low Low Low 54 54 52 45
High Low Low 53 53 56 40



Campbell, 1991; Wightman, Shattuck-Hufnagel, Ostendorf, & Price, 1992). Four recent stud-
ies suggest listeners are indeed sensitive to these differences. First, there is greater priming be-
tween words of the same length (Davis, Marslen-Wilson, & Gaskell, 2002). Second, the time
course of lexical access is altered significantly by approximately 20 msec differences in Dutch
words between syllables analogous to the word ham and the first syllable in the word hamster
(Salverda, Dahan, & McQueen, 2003). Third, when the target word is in utterance final posi-
tion as it was in this study (e.g., Click on the cap), a monosyllabic cohort competitor such as cat
is a stronger competitor than a multisyllabic competitor such as captain, although phonemic
overlap is greater for the multisyllabic competitor (Salverda et al., in press). Finally, when all
else is held constant, monosyllabic words with primarily monosyllabic cohorts are recognized
more slowly than monosyllabic words with primarily multisyllabic cohorts, and vice versa
(Magnuson & Strauss, 2006). Another way to put this is that because of durational differences,
the relative goodness of fit of (cap, cat) is higher than that of (cap, captain). Therefore, in the
initial consonant-vowel (CV)—the part of the word where low- and high-density neighbor-
hood items are matched for cohort density—high-density items are at an advantage because
their cohort competitors are longer, on average, than those of the low-density items; meaning
their average cohort goodness of fit is lower, which results in less cohort competition.

The cohort proportions and cohort lengths for every condition are shown in Table 3. Two
things stand out. First, cohort proportion is correlated with cohort density—it is higher in
high-cohort density conditions. Second, we might expect a stronger influence of cohort density
for low-density neighborhoods compared to high-density neighborhoods. At both levels of
neighborhood density, a higher proportion of neighbors are cohorts at the high level of cohort
density than at the low level. However, at the low level of neighborhood density, the majority of
neighbors are cohorts at the high level of cohort density (about 75%). This means these neigh-
borhoods are heavily “front loaded”: The majority of competitors overlap at onset.

Fig. 4 provides a schematic of the hypothesized impact of these relations in the competitor
sets over time for items in high- and low-density neighborhoods. The competitors are broken
into three groups: noncohort neighbors, short cohorts (which are also neighbors), and long co-
horts. For low-density items, most neighbors fall into the short cohort group, which have a rela-
tively large, early impact. The long cohorts are fewer and have lesser goodness of fit, and so
make a smaller contribution to summed competitor activation. The noncohort neighbors are
relatively few (only 1/3 of the neighborhood) and have a late, weak impact. By comparison,
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Fig. 4. Schematic of hypothesized changes in the impact of different types of competitors for low- and high-density
neighborhood items used in this experiment.



most of the high-density items’ cohorts are long (right panel). Despite their relatively large
number, they are hypothesized to have a fairly weak impact. Their relatively few short-cohort
neighbors have a modest impact. Most of their neighbors, instead, have a late impact (a larger
impact of noncohort neighbors is anticipated both because there are more, but also because
these items have denser neighborhoods).

We hypothesize that the differences in slope seen in the bottom panel of Fig. 2 are driven by
the dynamically changing makeup of the competitor sets for these two conditions. The large,
early competitor activation for low neighborhood items slows target activation initially, but
once those items can be inhibited (once coarticulatory cues as to the second consonant are
available “within” the vowel), little competition remains. In contrast, target activation is ini-
tially rapid for high-density items because the competitor set remains sparse, but then is im-
peded once noncohort neighbors are activated.

On this explanation, the vowel becomes the anchor for the switch from the early high-den-
sity advantage to the late low-density advantage. On the one hand, around vowel offset, cohort
items can begin to be inhibited based on bottom-up mismatch. On the other, around vowel off-
set, noncohort neighbors begin to receive substantial bottom-up support. On average, vowel
offset in our materials was approximately 330 msec after word onset. This provides the theo-
retical motivation required to explore the significant effect of neighborhood density on slope.
As we noted earlier, it takes at least 150 msec to plan and launch an eye movement; and in tasks
like ours, typical intersaccadic intervals are in the range of 200 to 300 msec. This means the
earliest we would expect to see changes linked to average vowel offset would be approximately
530 msec after word onset, which is very close to the actual crossover in the bottom panel of
Fig. 2 (550 msec).

For simplicity, we divided the time course into two epochs at the crossover point (but note
that moving the dividing point back or forward as much as 100 msec changes neither the trends
nor the patterns of significance we are about to report), which we call pre-vocalic and
post-vocalic (by which we mean more precisely, pre-vowel offset and post-vowel offset). We
created a variable that linearly indexed time within each epoch. Of interest was whether the ef-
fect of neighborhood density on slope was driven solely by the post-vocalic differences as op-
posed to both pre and post differences. To test this hypothesis, we included the effect of neigh-
borhood density on pre-vocalic slope and post-vocalic slope. Both terms contributed
significantly to the model, Bs = –0.138, –0.179; SEs = .058, .058; ∆Ds(1) = 5.50, 9.00; ps =
.019, .003, respectively; thus, both pre- and post-onset differences contribute to the overall ef-
fect of neighborhood density on slope (this is analogous to testing the simple effect of neigh-
borhood in each epoch and finding that both the initial high-density advantage and the late
low-density advantage are reliable).6

FurtherconsiderationofFig.2andTable3suggests twoadditionalpredictionsabout the inter-
actionofcohortdensityandneighborhooddensity.First,weshouldseeastrongereffectofcohort
density at the low level of neighborhood density than at the high level (because the majority of
neighbors are cohorts at the high level of cohort density for the low level of neighborhood den-
sity). Second, we should see a stronger effect of neighborhood at the low level of cohort density
than at the high level (because cohorts are less dominant at the low cohort density level).

The time course data in Fig. 5 confirm these predictions. As can be seen in the top row of
Fig. 5, the effect of cohort density on intercept was stronger at the low level of neighborhood
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density than at the high level. The lower row in Fig. 5 shows the effects of neighborhood den-
sity at low and high levels of cohort density. As one would expect from the proportion of co-
horts in low- and high-density neighborhoods, and the ratios of short and long cohorts, the dis-
advantage for low neighborhood density items was amplified at the high-density level of
cohort, whereas the late advantage for low-density neighborhood items was amplified at the
low-density level of cohort.7

3. Discussion and conclusions

These results both replicate and extend standard findings in SWR. First, we find clear ef-
fects of frequency and neighborhood density. Second, we confirm that competitor density
based on the summed frequencies of items overlapping at onset (initial 2 phonemes)—onset
cohorts—have strong effects on word recognition (as shown in Fig. 2). Third, this study shows
the utility of applying a NAM-style frequency weighted density statistic (Luce & Pisoni, 1998)
to this competitor type. Fourth, our results establish that, when used with unrelated distracters,
the eye-tracking paradigm can be used to map out the time course of neighborhood effects.
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Fig. 5. Fixation proportions over time for simple effects of cohort density at each level of neighborhood density
(upper panels) and simple effects of neighborhood density at each level of cohort density (lower panels). Bars repre-
sent standard error.



Fifth, and most important, this study allowed us to evaluate the time course of the impact of tar-
get and competitor characteristics as the target word unfolded. None of the other measures
used in SWR, by itself, could capture the fact that the competitor set changes as a word is heard
(beyond identifying simple characteristics like uniqueness point), let alone the way the com-
petitor set changes over time.

The effect of cohort density, for example, is apparent from the earliest signal-driven fixation
proportions (around 200 msec after word onset), but the advantage observed for items in
low-density neighborhoods does not begin until about 600 msec after word onset (and there
was even an early advantage for high-density neighborhoods in our materials). This is consis-
tent with findings like those of Allopenna et al. (1998) and Magnuson et al. (2003), where ear-
lier on as the target unfolds, stronger competition is observed between targets and cohorts than
between targets and rhymes. The cohort density metric only takes into account words overlap-
ping at onset, whereas neighborhood density typically includes many items that mismatch at
onset; therefore, the temporal distribution of overlap defined by each competitor metric has the
potential to be substantially different.

Indeed, our most important finding from these results is the crossover from an advantage for
high-density neighborhoods to a low-density advantage. A growing body of results suggest that
fixationproportionsover timein tasks likeours reflect the timecourseof lexicalactivation,as fix-
ation proportions map extremely closely onto time course predictions from models like TRACE
(Allopenna et al, 1998; Dahan, Magnuson, & Tanenhaus, 2001; Dahan, Magnuson, Tanenhaus,
& Hogan, 2001) and simple recurrent networks (Magnuson et al., 2003). An important implica-
tion of these results is that if we were to link the time courses shown in Fig. 2 to predicted re-
sponses in tasks like lexical decision, we would draw different conclusions depending on the
speed of the lexical decisions. We would also miss important interactions with time.

Consistent with this possibility, Newman, Sawusch, and Luce (1997) found effects of neigh-
borhood density on phoneme identification for “medium” latency responses but not for fast re-
sponses. We can relate this result to the time course of neighborhood density effects shown in
the lower panel of Fig. 2; if a participant were to respond quickly—that is, prior to the point
where the relative advantage of low-density items kicks in—we would expect to see no effect
of neighborhood density (or, for our materials, extremely early responses might suggest a
high-density advantage).

We explained the early high-density neighborhood advantage as a function of listener sen-
sitivity to subphonemic details that provide cues as to the length of the word that is being
heard even during the first few segments. This is consistent with several recent studies docu-
menting such sensitivity (Davis et al., 2002; Magnuson & Strauss, 2006; Salverda et al.,
2003; Salverda et al., in press), and implies that competitor metrics must be based on finer
grained (subphonemic) goodness of fit.

These results also have methodological and theoretical implications for the broader study of
spoken language comprehension. The methodological implication is that it is essential to ex-
amine the time course of spoken language processing or risk missing complex interactions as
spoken words unfold in real time. The theoretical implications are threefold. First, the persis-
tence of cohort density effects throughout the recognition process, and the late emergence of
neighborhood density effects, is problematic for models that incorporate strong bottom-up
mismatch; including the Cohort model (Marslen-Wilson & Warren, 1994), Shortlist (Norris,
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1994), and Merge (Norris, McQueen, & Cutler, 2000), as well as the distributed model de-
scribed by Gaskell and Marslen-Wilson (1999) and models that ignore the temporal distribu-
tion of similarity such as NAM (Luce & Pisoni, 1998). Note that none of the lexical statistics
we controlled (frequency, cohort density, neighborhood density) nor the others we measured
(phonotactic probabilities and max cohort density) can by themselves account for the cross-
over in neighborhood effects. An explanation requires explicit consideration of the temporal
distribution of similarity, as in our account of the proportion of neighbors that are also cohorts.
Second, the overlapping and nonoverlapping aspects of cohort and neighborhood sets, and the
relative weight of cohort and neighborhood density, require further examination if we are to
improve on existing metrics of spoken word similarity (e.g., Luce & Pisoni, 1998). Third, our
results are inconsistent with the notion of static neighborhoods or recognition cohorts. Rather,
the set of activated competitors is dynamic, and a full understanding of how processing neigh-
borhoods change as a word is heard is needed to adequately constrain theories of spoken word
similarity, processing, and recognition.

Notes

1. There are also more complex neighborhood metrics that evaluate pho-
neme-by-phoneme similarity based on segmental confusion probabilities (Luce &
Pisoni, 1998) or positional similarity ratings (Luce, Goldinger, Auer, & Vitevitch,
2000). The two make similar predictions (although for more subtle predictions that fol-
low from more complex metrics, see Luce et al., 2000), and the short-cut metric is often
used (e.g., Newman, Sawusch, & Luce, 1997). Crucially, both metrics are global: cab,
bat, and cot are all considered roughly equally good neighbors of cat, despite large dif-
ferences in the temporal distribution of overlap (although under the more complex met-
rics, not all phonemes are considered equal—e.g., a change from /k/ to /b/ is not neces-
sarily equal to a vowel change)—and the complex metrics take time into account in a
somewhat roundabout way to the degree that the metric is based on position-specific
similarity).

2. Note that the term neighborhood density is sometimes used to indicate simply the num-
ber of neighbors (e.g., Vitevitch, 2002). We use it to indicate frequency weighted neigh-
borhood density—the summed log frequencies of all items in the neighborhood (i.e.,
the denominator of the frequency weighted neighborhood probability rule; cf.
Newman, Sawusch, & Luce, 1997).

3. We avoided nonorthogonal power polynomials because their terms are highly collinear.
In the analysis presented here, the polynomial terms are orthogonal—that is, they are
chosen so that they both capture the functional form and isolate independent compo-
nents that underlie the form. Because they share no variance, they can be entered into
the model simultaneously. Given these polynomials, the intercept is located in the cen-
ter of the time series, rather than at its more traditional location at the intersection of the
curve and y axis. Relocating the intercept is common practice in growth curve modeling
because it allows one to test for differences in elevation at particular time points (see
Singer & Willett, 2003).
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4. We briefly note that there are other models that might also be fruitfully applied to these
data. One potential alternative would be to compare parameters from curve fitting (cf.
the logistic power peak analyses applied to condition difference curves by Scheepers,
Keller, & Lapata, in press). However, growth curve analysis provides an approach that
is both simpler (compare the 11-parameter model used by Scheepers et al. to the 4-pa-
rameter model used here) and for which well-developed significance test procedures are
available. Another alternative would be to use a growth curve model that is nonlinear in
its parameters, such as the logistic, to capture the curvilinear nature of the over-time tra-
jectory. We chose the power polynomial approach, rather than the logistic, because (a) it
is a mature, well-understood methodology that is directly analogous to ordinary least
squares regression and analysis of variance; and (b) interpreting the parameters of
“truly” nonlinear models is more complicated because such models are not dynamically
consistent (Keats, 1983). In essence, on such account the effect of any parameter de-
pends on the values of the other parameters. Therefore, interpreting the value of any pa-
rameter is only sensible in the context of the other parameters. One implication is that
the averages of individual participant parameters typically will not equal the parameters
of the average data, which complicates interpretation. On our approach, parameters are
dynamically consistent.

5. We initially analyzed this data using standard analyses of variance (ANOVAs) and
mean fixation proportion from 200 msec to 1,000 msec as the dependent variable. The
results converge nearly completely with the results we report here; but, as we have just
discussed, ANOVAs are not appropriate for this sort of data.

6. For all the analyses reported earlier, we included random effects for the intercept and
slope. This creates a specific, but reasonably flexible, error covariance structure. We ex-
plored more complex error covariance structures, and, whereas some of these alterna-
tives slightly improved overall fit of the model, they did not substantively change the es-
timated parameters reported earlier. Therefore, we retained the simpler error structure.

7. Statistically, although there were trends for each of these simple effects, only the largest
effects in Fig. 5 (effect of cohort at the low level of neighborhood density and the effect
of neighborhood at the low level of cohort) were reliable. Therefore, we present this
analysis as suggestive evidence that the finer grained trends in simple effects are consis-
tent with predictions that follow from the makeup of competitor sets over time.
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Appendix

Word Frq
Log
Frq Fam

No.
Nbs

Nb
Dens FW-NPR

No.
Cohs

Coh
Dens FW-CPR

Low frequency, low neighborhood density, low cohort density
Couch 13 2.56 7 10 23.86 0.1075 35 61.28 0.0419
Cube 5 1.61 7 5 9.06 0.1777 19 33.39 0.0482
Fox 11 2.40 7 11 21.07 0.1138 57 87.41 0.0274
Goose 7 1.95 7 16 28.28 0.0688 8 6.38 0.3050
Hook 5 1.61 6.8 20 41.35 0.0389 9 11.45 0.1406
Pump 15 2.71 7 20 30.64 0.0884 38 64.45 0.0420
Thumb 14 2.64 7 27 43.65 0.0605 10 12.99 0.2032
Torch 4 1.39 7 4 6.68 0.2074 27 35.68 0.0389
Vice 25 3.22 6.8 5 10.20 0.3154 24 45.42 0.0709
Yarn 20 3.00 7 6 14.09 0.2126 11 15.50 0.1933
Keg 3 1.10 7 9 17.00 0.0646 29 44.22 0.0248
Bolt 9 2.20 7 15 32.65 0.0673 65 79.50 0.0276
Shield 8 2.08 7 9 22.07 0.0942 14 26.69 0.0779
Chef 9 2.20 6.8 10 20.64 0.1064 21 31.48 0.0698
Thread 20 3.00 7 15 35.07 0.0854 31 68.31 0.0439
Throne 6 1.79 7 11 20.77 0.0863 31 68.31 0.0262
Ms 10.88 2.21 6.96 12.06 23.57 0.1184 26.81 43.28 0.0864

Low frequency, low neighborhood density, high cohort density
Clown 6 1.79 7 14 22.97 0.0780 190 289.81 0.0062
Crutch 7 1.95 6.4 11 15.90 0.1224 232 313.68 0.0062
Drill 21 3.04 7 11 16.45 0.1850 109 199.37 0.0153
Flag 18 2.89 7 14 28.57 0.1012 154 204.15 0.0142
Fork 20 3.00 7 11 37.94 0.0790 90 181.28 0.0165
Frog 2 0.69 7 8 10.21 0.0679 161 281.51 0.0025
Skate 1.001 0.00 7 15 36.52 0.0000 177 255.75 0.0000
Skull 5 1.61 7 8 19.97 0.0806 177 255.75 0.0063
Spire 8 2.08 4.1 17 32.02 0.0649 179 298.85 0.0070
Stump 7 1.95 1 5 7.36 0.2644 331 623.00 0.0031
Trunk 13 2.56 7 5 13.87 0.1849 205 349.81 0.0073
Wreath 11 2.40 7 19 36.47 0.0658 84 152.29 0.0157
Plug 23 3.14 7 16 18.46 0.1699 117 196.21 0.0160
Crown 19 2.94 7 19 37.89 0.0777 232 313.68 0.0094
Grill 11 2.40 7 18 33.80 0.0710 226 356.00 0.0067
Groom 5 1.61 6.9 15 31.38 0.0513 226 356.00 0.0045
Ms 11.06 2.13 6.40 12.88 24.99 0.1040 180.63 289.20 0.0086

Low frequency, high neighborhood density, low cohort density
Bow 13 2.56 6.7 41 112.97 0.0227 15 23.91 0.1073
Bull 16 2.77 7 34 71.94 0.0385 48 59.47 0.0466
Saw 8 2.08 7 43 108.12 0.0192 31 37.75 0.0551
Tee 5 1.61 7 57 176.09 0.0091 27 39.11 0.0412
Cake 16 2.77 7 50 105.68 0.0262 38 61.65 0.0450
Cane 13 2.56 6.5 67 129.03 0.0199 38 61.65 0.0416
Goat 8 2.08 7 24 66.26 0.0314 27 38.47 0.0540
Nail 20 3.00 7 42 81.71 0.0367 24 50.34 0.0595
Nun 6 1.79 7 32 83.98 0.0213 22 35.62 0.0503
Sheep 24 3.18 7 30 80.53 0.0395 14 26.69 0.1191
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Sock 10 2.30 7 37 79.04 0.0291 52 72.24 0.0319
Vase 15 2.71 7 27 80.38 0.0337 13 24.43 0.1109
Vest 4 1.39 6.9 25 66.83 0.0207 37 54.21 0.0256
Chick 4 1.39 7 35 73.47 0.0189 28 39.23 0.0353
Knight 25 3.22 6.9 47 157.80 0.0204 37 51.16 0.0629
Net 24 3.18 6.9 38 120.08 0.0265 37 69.33 0.0458
Ms 13.19 2.41 6.93 39.31 99.62 0.0259 30.50 46.58 0.0583

Low Frequency, high neighborhood density, high cohort density
Match 24 3.18 7 27 60.61 0.0524 162 249.22 0.0128
Bear 24 3.18 7 67 178.10 0.0178 158 238.75 0.0133
Bell 23 3.14 7 63 137.35 0.0228 108 158.04 0.0198
Cap 22 3.09 7 51 106.71 0.0290 233 351.71 0.0088
Deer 13 2.56 7 53 136.86 0.0187 561 975.45 0.0026
Cone 15 2.71 7 56 115.61 0.0234 125 183.23 0.0148
Mop 2 0.69 7 34 70.00 0.0099 130 210.41 0.0033
Witch 13 2.56 7 38 97.68 0.0263 106 175.46 0.0146
Badge 6 1.79 6.9 26 67.17 0.0267 158 238.75 0.0075
Can 12 2.48 7 57 107.59 0.0231 233 351.71 0.0071
Grape 10 2.30 6.8 28 68.18 0.0338 226 356.00 0.0065
Pan 16 2.77 7 49 117.95 0.0235 136 189.82 0.0146
Patch 23 3.14 7 33 69.74 0.0450 136 189.82 0.0165
Pear 8 2.08 7 58 159.30 0.0131 136 189.82 0.0110
Cart 9 2.20 7 25 67.54 0.0325 325 513.15 0.0043
Calf 17 2.83 6.6 28 68.90 0.0411 233 351.71 0.0081
Ms 14.81 2.54 6.96 43.31 101.83 0.0274 197.88 307.69 0.0103

High frequency, low neighborhood density, low cohort density
Board 285 5.65 7 19 39.52 0.1430 65 79.50 0.0711
Child 620 6.43 7 7 15.14 0.4247 15 31.99 0.2010
Church 451 6.11 7 7 19.25 0.3175 5 10.83 0.5642
Dog 147 4.99 7 14 22.50 0.2218 32 32.17 0.1551
Fence 46 3.83 7 12 30.06 0.1274 41 54.45 0.0703
Food 198 5.29 7 15 35.97 0.1470 9 17.10 0.3093
Gift 45 3.81 7 9 21.59 0.1763 37 55.27 0.0689
Girl 374 5.92 7 24 29.25 0.2026 10 11.63 0.5093
Guard 63 4.14 7 14 39.24 0.1056 56 65.82 0.0629
Horse 203 5.31 6.8 6 18.94 0.2806 46 64.00 0.0830
Judge 81 4.39 7 6 12.41 0.3541 31 66.46 0.0661
Knife 86 4.45 6.8 12 36.55 0.1219 37 51.16 0.0871
Roof 64 4.16 7 24 49.85 0.0834 50 66.68 0.0624
Salt 52 3.95 7 19 35.81 0.1103 31 37.75 0.1047
Snake 70 4.25 7 12 22.60 0.1880 37 37.29 0.1139
Switch 63 4.14 7 15 38.47 0.1077 67 98.09 0.0422
Ms 178.00 4.80 6.98 13.44 29.20 0.1945 35.56 48.76 0.1607

High frequency, low neighborhood density, high cohort density
Dress 63 4.14 6.8 11 23.38 0.1772 109 199.37 0.0208
Truck 80 4.38 7 12 21.41 0.2047 205 349.81 0.0125
Cloud 64 4.16 7 14 30.01 0.1386 190 289.81 0.0144
Club 178 5.18 6.8 6 12.70 0.4081 190 289.81 0.0179
Desk 69 4.23 6.9 6 14.20 0.2983 117 190.58 0.0222
Scale 62 4.13 7 12 28.33 0.1457 177 255.75 0.0161
Screen 53 3.97 7 7 17.08 0.2325 177 255.75 0.0155
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Card 61 4.11 7 17 46.44 0.0885 325 513.15 0.0080
Film 127 4.84 7 8 20.44 0.2370 146 229.77 0.0211
School 687 6.53 7 13 33.73 0.1937 177 255.75 0.0255
Bridge 117 4.76 6.9 8 20.22 0.2355 245 334.12 0.0143
Crowd 63 4.14 7 11 31.86 0.1301 232 313.68 0.0132
Frame 96 4.56 6.9 14 41.52 0.1099 161 281.51 0.0162
Class 292 5.68 6.9 19 29.37 0.1933 190 289.81 0.0196
Branch 63 4.14 6.8 11 18.80 0.2204 245 334.12 0.0124
Plant 182 5.20 7 8 28.29 0.1840 117 196.21 0.0265
Ms 141.06 4.64 6.94 11.06 26.11 0.1998 187.69 286.19 0.0173

High frequency, high neighborhood density, low cohort density
Ball 123 4.81 7 46 104.44 0.0461 25 37.47 0.1284
Chair 89 4.49 7 39 111.55 0.0402 43 77.90 0.0576
Pool 129 4.86 7 35 80.14 0.0606 4 7.35 0.6616
Key 71 4.26 7 53 136.65 0.0312 24 35.50 0.1201
Shoe 58 4.06 6.9 50 164.84 0.0246 11 16.03 0.2533
Boat 123 4.81 7 47 123.49 0.0390 65 79.50 0.0605
Bone 53 3.97 7 43 101.30 0.0392 65 79.50 0.0499
Gun 142 4.96 7 36 86.01 0.0576 46 53.98 0.0918
Top 136 4.91 7 36 79.40 0.0619 46 67.42 0.0729
Chain 60 4.09 7 38 95.24 0.0430 14 30.05 0.1363
Wall 224 5.41 7 40 115.38 0.0469 58 87.19 0.0621
Moon 63 4.14 7 30 81.21 0.0510 14 34.25 0.1210
Goal 100 4.61 6.9 46 92.33 0.0499 27 38.47 0.1197
Knee 73 4.29 7 61 178.16 0.0241 34 56.55 0.0759
Sheet 71 4.26 7 29 88.20 0.0483 14 26.69 0.1597
Suit 64 4.16 7 41 100.78 0.0413 54 81.23 0.0512
Ms 98.69 4.51 6.99 41.88 108.70 0.0441 34.00 50.57 0.1389

High frequency, high neighborhood density, high cohort density
Coat 52 3.95 7 46 119.02 0.0332 125 183.23 0.0216
Heart 199 5.29 7 27 62.06 0.0853 115 163.14 0.0324
Plane 138 4.93 7 29 82.56 0.0597 117 196.21 0.0251
Tree 160 5.08 7 28 68.74 0.0738 205 349.81 0.0145
Band 64 4.16 6.9 29 80.94 0.0514 158 238.75 0.0174
Bed 139 4.93 1 47 104.86 0.0471 108 158.04 0.0312
Car 393 5.97 7 43 96.91 0.0616 325 513.15 0.0116
Hat 71 4.26 7 53 159.17 0.0268 157 221.17 0.0193
Lip 87 4.47 7 49 83.92 0.0532 126 205.08 0.0218
Man 2110 7.65 7 53 118.28 0.0647 130 210.41 0.0364
Star 58 4.06 7 25 66.81 0.0608 331 623.00 0.0065
Train 86 4.45 7 25 65.79 0.0677 205 349.81 0.0127
Bag 51 3.93 7 47 97.55 0.0403 158 238.75 0.0165
Brain 64 4.16 7 36 73.24 0.0568 245 334.12 0.0124
Cup 58 4.06 7 26 72.81 0.0558 84 161.15 0.0252
Hair 160 5.08 7 58 177.91 0.0285 157 221.17 0.0229
Ms 243.13 4.78 6.62 38.81 95.66 0.0542 171.63 272.94 0.0205

Note. Frq = frequency; Fam = familiarity (as measured via 7-point ratings by Nusbaum, Pisoni, & Davis,
1984); Nb = neighbor; Dens = density; Coh = cohort; FW-NPR = frequency weighted neighborhood probability rule
(Luce, 1986); FW-CPR = frequency weighted cohort probability rule. Each probability is the log frequency of the
item divided by its neighborhood density (i.e., the summed log frequencies of its neighbors or cohorts). Two items
were not included in the Nusbaum et al. familiarity ratings (stump and bed). Familiarities of 1 are presented in these
tables for those items, although both are intuitively highly familiar.
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