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Abstract

Models in cognitive science often postulate that
individuals maintain complex representations of their
environment when simpler explanations, based on simple
behaviors interacting with each other and environmental
constraints, would suffice.  As an example, I consider
representational approaches to animal behavior (e.g.,
Gallistel, 1990; Myerson and Miezin, 1980), which posit
that complex group behavior results from complex
representations of events within the central nervous
systems of individual animals.  For example, ducks feeding
from two food sources distribute themselves
proportionately to the density of food available at each
source.  This phenomenon, probability matching, i s
typically explained by attributing representations of the
density of food available at each source within the central
nervous system (CNS) of each duck.  Are such complex
representations required to explain this phenomenon?  I
will compare the results of two simulations of probability
matching in groups.  In one, individuals maintain and
update representations of food available at each source.
Although probability matching emerges, the organisms
exhibit various unrealistic behaviors.  In the second, each
individual follows simple behavioral rules but has no
representation of the food density at each source.
Probability matching emerges and the behavior observed is
more realistic than that in the first simulation.  This adds to
demonstrations in other domains that complexity at one
level of analysis need not result from complexity at lower
levels (e.g., Resnick, 1994;  Sigmund, 1993).

Centralized versus decentralized analysis
It used to be said that our ability to build arches
distinguished humans from lesser species -- arches require
planning and engineering.  It turns out that at least one
lesser species -- termites -- builds arches.  In fact, it appears
that their arch building depends on highly organized
cooperation.  Scores of them deposit excrement, eventually
forming several columns, which eventually join to form
arches.  The arches form the foundation for their nests.  How
is such an amazing joint activity organized?  One possibility
is that each insect is acting as part of a team.  At first blush,
it appears that each insect monitors and represents the
activities of the others and their collective progress.  As
Braitenberg (1984) points out, we often prefer such
explanations, even for simpler systems, and are quite willing
to attribute complex representations and motivations when
simpler explanations would suffice.  Another possibility is

that the complex group behavior emerges from the
interactions of large numbers of insects acting on the same
small behavioral repertoire.  Indeed, this is the case.  Each
termite develops a seasonal sensitivity to a particular
pheromone secreted in their waste.  Where termites deposit
their waste is guided by gradients of pheromone
concentration.  Eventually, columns form where the
concentrations are strongest.  Competition between adjacent
columns leads to their being joined into (see Kugler et al.,
1989, for a detailed analysis).  Resnick (1994) describes
these two ways of analyzing problems as centralized and
decentralized thinking (for many more examples of
decentralized analysis, see Resnick, 1994;  Braitenberg,
1984;  Sigmund, 1993;  and Langton, 1989).

Decentralized thinking is not new in cognitive science.
Consider this list of demonstrations that decomposing a
system into simpler components can reduce the complexity
of representations required:  Wiener’s (1948) treatment of
self-organizing systems, Gibson’s analysis of optic flow
(e.g., Gibson, Olum, and Rosenblatt, 1955), the “active” or
“animate” approach to vision (e.g., Ballard, 1991),
Reynolds’ (1987) treatment of flocking behavior, and the
literature cited above.  Despite these compelling
demonstrations, decentralized analysis has not received the
attention it warrants.  Many models in cognitive science
start out “representation-heavy.”  I do not wish to imply that
there is no place for representation in models of behavior and
cognition.  My thesis is that as a starting point, models of
complex systems need not postulate complexity at the
lowest level.  To demonstrate this point, I will apply
decentralized analysis to the phenomenon of probability
matching in groups of foraging animals.

Probability matching
Various species adapt quickly to changes in the

probability of important stimuli in their environments.  For
example, when presented with multiple sources of food in an
environment, individuals quickly divide into groups with
sizes proportional to the density of food available from each
source (see Gallistel, 1990, chapter 11, for an overview).  It
is important to note that the overall density of food is what
determines the size of the groups.  Given two sources
dispersing morsels of equivalent magnitudes at equivalent
rates, the animals divide into two groups of approximately
equal numbers clustered around each of the sources.  If the
amount of food available from one source increases, due to
an increase in either its rate of dispersal or the magnitude of
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the morsels of food, the sizes of the groups of animals
change proportionately.  Gallistel (1990) and others (e.g.,
Myerson and Miezin, 1980) have explained such
“probability matching” behavior as the result of complex
and specific representations of the food source characteristics
in the central nervous systems of individual organisms:

[Results suggest] that birds accurately represent
rates, that they accurately represent morsel
magnitudes, and that they can multiply the
representation of morsels per unit time by the
representation of morsel magnitude to compute the
internal variables that determine the relative
likelihood of their choosing one foraging patch
over the other.  (p.  358)

Gallistel goes on to present this as a particular challenge
to nonrepresentational models:

The challenge for nonrepresentational theories ... is
to propound a nonrepresentational model of ...  a
system that is altered by its past experiences in
such a way that it chooses patches in proportion to
their relative [densities] ...  from ...  observations
alone ...  without the system's having any internal
variable[s] ...  or a fortiori any operations that
appropriately combine these nonexistent
representatives of number, time, and magnitude.  Is
it possible to propound a model of the internal
causation of the duck's behavior that avoids
postulating an isomorphism between a system of
variables and operations inside the duck and the
corresponding system of number, time and
magnitude external to the duck?  (p.  359)

Are the complex representations Gallistel and others
describe truly crucial for explaining probability matching
by, for example, groups of ducks?  Could animals instead
follow simple rules, with the result that the probability of
food density would be represented in the distribution of the
group, rather than the CNS of each individual?  Indeed, the
equations that describe a system do not necessarily reveal
causation.  Reaction-diffusion equations (see Winfree, 1980)
predict patterns of diffusion in various systems (e.g., slime
molds), but those systems can be simulated in cellular
automata using simple, locally-defined rules (e.g., Resnick,
1994).  In the next section, I consider a nonrepresentational
approach to probability matching that does not require
internal representations of environmental variables or past
experiences.

A nonrepresentational approach
From the decentralized perspective, the problem is not a
matter of constructing a model by which each organism can
represent the complexity of the environment.  Rather, it is a
matter of determining the simplest possible representations
and behaviors, and constraints of the environment which,
when they interact, could result in the emergence of the
larger group phenomenon.  The approach taken here is
influenced by the work cited in the first section, as well as
Simon's (1957) notions of "satisficing" (rather than
optimizing or maximizing) algorithms, as expressed by
Gigerenzer and his colleagues (e.g., Gigerenzer et al., 1991).

In the duck feeding example, rather than maintaining
complex representations, the ducks may follow a rule as
simple as "go to the closest morsel of food."
Environmental constraints might also contribute to the
emergence of the complex behavior.  For example, morsel
magnitude might be reflected in the size of the groups
formed simply because it takes longer to eat large morsels,
resulting in a larger number of visible morsels near a source
of larger food.  Suppose the morsels at one food source are
larger than those at another source with an equal rate of
dispersal, and, at a given moment, there are equal numbers
of ducks at each food source.  Soon, more food will be
available at the source with the larger magnitude, because
ducks at that source will require more time to consume each
morsel.

Simulations

The general simulator
The environment was a 30 by 30 grid (the "pond") with two
sources of food located at the top and bottom edges.  Various
characteristics of the sources could be specified (and changed
interactively during a simulation -- although no interactive
changes were made during the simulations reported here).
For example, the rate of dispersal from the source (actually
the interval between dispersals, so that a rate of "2" is
slower than a rate of "1"),  and the magnitude of the
"morsels" of food could be specified.

In the simulations, when a duck made contact with a
morsel of food, the duck would remain stationary until it

Cycle 110 30 Ducks,  3 Food
RATIOS: Food: 5:1 Ducks: 5:1
 Ducks Food Rate Mag Density
S1: 25  2  2  30 0.833
S2:  5  1 10  30 0.167

quit s1rate+

pause s1rate1-

s1mag+

s1mag1-

s2rate+

s2rate1-

s2mag+

s2mag1-

Duck

Food

Eating
duck

Figure 1:  The simulator.  In all simulations reported, 30
ducks were placed in a 30 x 30 “pond,” with a food source at

the top, and another at the bottom.  Rate of dispersal and
morsel magnitude could be specified for each source.
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was finished "eating."  Eating time, in update cycles, was
defined as the magnitude of a morsel of food;  given a
morsel of magnitude 5, a duck eating that morsel would
remain stationary for 5 update cycles.  At the beginning of a
simulation, a specified number of ducks was randomly
distributed throughout the pond.  At each time step, or
cycle, food was distributed from a source (to a random,
unoccupied location within a specified distance from the
source) if the cycle number was divisible by its rate of
dispersal.  Subsequently, the locations of the ducks were
updated in random order, in accordance with the constraints
described in the next section.  Simple obstacle avoidance
procedures were implemented.  If, for example, a duck en
route to a morsel encountered a stationary duck, it could
change direction to find an unimpeded path to the nearest
morsel of food.  An example simulator window is shown in
Figure 1.

Nonrepresentational implementation
In the nonrepresentational implementation, duck behavior
was determined by one rule and one explicit constraint of the
environment.  The rule was simply to approach the nearest
morsel of food.  The environmental constraint was that once
a duck contacted a morsel of food, it had to remain stationary
while it "ate."  As mentioned in the previous section, a
morsel of food of magnitude 5 would require the duck to
remain stationary for 5 update cycles.

Certainly, other behaviors and constraints are possible.
However, these two were chosen as the simplest possible.
If others were used (e.g., ducks could maintain a
representation of how much food they obtained at a source
and probabilistically decide to change sources when they
obtained too little), a behavior very much like the one used
would still be needed to move the ducks to their desired
source and to find food.

Representational approach
Gallistel (1990) presents a computational model (based on
Myerson and Miezin's 1980 model) that accurately predicts
the behavior of foraging animals.  In the model, each duck
represents the rate of food distribution at each food source
and the magnitude of morsels being distributed.  These
variables are then combined neurally to represent food
density at each source, yielding "relative patch affinities"
(equivalent to the proportion of food at each source).
Relative patch affinities multiplied by a "switchiness"
constant (how often the animal is willing to change sources)
are assumed to be equal to a Poisson process which predicts
how much time a duck will spend at each food source.  

In this implementation, each duck maintained an explicit
representation of each source's density.  Relative patch
affinities were simply the proportion of food available at
each source.  However, it is not clear exactly how or when
ducks should update their representations.  This question
becomes crucial if one attempts to implement the model as a
simulation.  If ducks constantly evaluate which source they
prefer in a probabilistic fashion, how will they ever swim
across the pond to the less dense source?  If there is a
probability of .70 of choosing one source (due to relative
patch affinities), but the other source is 20 cells away

(requiring 20 update cycles' travel), a duck must choose the
less likely source for several cycles running -- an unlikely
event.  Either complicated rules about when to update a
representation or some sort of switchiness factor is also
required, and one was implemented.  For example, if
switchiness was set to 80, this would mean that if the
current preference (based on relative patch affinity) required
switching sources, a second decision was made with an 80%
chance of changing sources.

With switchiness set to 100 (so that it would have no
effect), probability matching did not occur.  Instead, all of
the ducks would seek the densest source, since it was so
unlikely that they would "choose" the less dense source
enough times in one period of time to actually move there.
In fact, simply setting switchiness substantially below 100
was not sufficient.  For probability matching to emerge, I
had to modify the switchiness factor to only come into play
when a decision was being made to change preferences from
least to most plentiful (i.e., it would never come into play if
a duck decided to leave the more plentiful source).  Trial and
error determined that the optimal switchiness factor was 80.

Finally, although Gallistel's model is supposedly one of
"internal causation," we must consider exactly what it is it
causes ducks to do.  “Choosing” a source is not enough.
We must also consider how ducks implement their choice:
how they travel between sources and arrive at a morsel of
food.  The model does not address this level.  In order to
give the ducks behavior in this implementation, they
followed a slightly modified version of the behavior used in
the nonrepresentational implementation:  seek the nearest
food at the preferred source.

General parameters
In every simulation, 30 ducks were used.  As mentioned
above, switchiness was set to 80 in all simulations run with
the representational implementation.  All simulations were
run for 300 update cycles.  The two implementations were
compared by running two sets of simulations.

First, 100 simulations were run with each implementation
with two food sources that differed in rate of dispersal.  The
rate of one source was set to 2 (i.e., a morsel of food was
dispersed from that source every second cycle), and the rate
of the other was set to 10 (i.e., a morsel of food was
dispersed from that source every tenth cycle).  Morsel
magnitude was set to 30 at both sources (therefore, any
morsel of food required 30 update cycles to consume).  In
this case, the expected distribution ratio of ducks would be
5:1, since the rate of dispersal at the first source was five
times greater than that at the second source (i.e., the system
should settle with 25 ducks at the source with the faster
dispersal rate, and 5 at the other, slower source).

In the second set of simulations, rate was held constant,
but magnitude differed between the two sources.  100
simulations were run with each implementation.  Rate of
dispersal was set to 5 at each source (i.e., a morsel of food
was dispersed from each source on every fifth cycle).  Morsel
magnitude was set to 80 at one source, and to 40 at the
other.  Thus, the expected distribution ratio would be 2:1,
since the density at the source with larger morsel magnitude
was twice that of the other source (i.e., the system should
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settle with 20 ducks at the denser source, and 10 at the other,
less dense source).

Results
In general, the results of the both implementations fit the
reported data -- that is, probability matching was observed.
Ducks divided into two groups proportional to the food
density at the two sources;  they matched changes due to
differences in rate and magnitude.  However, not all
combinations of number of ducks, rates and magnitudes
resulted in probability matching.  An examination of the
environmental constraints -- the size of the pond, the
distance between the sources, the size of the area a source
disperses food into, the rate and magnitude values for the
sources, and the number of ducks -- explains why.

For example, consider the relationship between magnitude
and rate of dispersal in the simpler, nonrepresentational
implementation.  A change in magnitude will not have any
effect unless the magnitude is approximately a multiple of
the rate, since food dispersed at time t can be consumed by
time t + magnitude + 1 (the minimum time for a duck to
move to an adjacent morsel of food is one update cycle).
For a duck to change sources, the only food available in the
environment must be from a different source.  This
condition must remain true until the duck is closer to the
new source's food than any new food from its original
source, since the duck will seek the closest food.  Therefore,
for the system to converge on the distribution of ducks
predicted by food density, food can be neither too plentiful --
in which case ducks have no reason to change sources -- nor
too scarce -- in which case food will be consumed by a duck
close to a source before other ducks can change sources

(Gallistel, 1990, notes that similar deviations from predicted
probability matching have been reported in the literature;  he
explains them as a result of food being consumed before
other ducks can update their representations).  However, by
varying only rate or magnitude, it is possible to observe
behavior which closely resembles probability matching.  

Differences in Rate  Both implementations match the
probability matching predictions for differences in rate.
With the two sources’ morsel magnitudes set to 30, one
source with a rate of 2, and the other with a rate of 10 (5
times slower than the first), the group of 30 ducks split into
two groups of approximately 25 (near the first source) and 5
(near the slower source) within 100 update cycles in both
implementations (see Figure 2).

Differences in Magnitude  Both implementations
match the probability matching predictions for differences in
magnitude, although effects of magnitude are more difficult
to observe than those of rate.  For the difference between
sources' magnitudes to affect the distribution of ducks, it
must be so large that food from the source with the larger
magnitude remains available long enough that ducks at the
opposite source can get closer to it before more food is
distributed from the opposite source.  So the "swimming
speed" of the ducks and the distance between the sources also
come into play.  If magnitudes are set sufficiently high,
however, the relative contributions of those secondary
factors decrease, and probability matching emerges. With the
two sources’ dispersal rates set to 5, one source with a
morsel magnitude of 80, and the other with a morsel
magnitude of 40 (half the size of the first), the group of 30
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Figure 2:  Probability matching to differences in rate in the
two implementations.  Morsel magnitude was set to 30 for
both food sources.  The dispersal rate of the denser source

was set to 2.  The dispersal rate of the other source was set to
10.  With 30 ducks, the predicted number of ducks at the

denser source is 25.
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Figure 3:  Probability matching to differences in morsel
magnitude in the two implementations.  Dispersal rate was
set to 5 for both food sources.  The magnitude of the denser
source was set to 80.  The dispersal rate of the other source

was set to 40.  With 30 ducks, the predicted number of ducks
at the denser source is 20.
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ducks split into two groups of approximately 20 (near the
first source) and 10 (near the other source) within
approximately 300 update cycles in both implementations
(see Figure 3).

Discussion
Although it is not clear how to equate update cycles with
real time -- with, e.g., the real swimming and eating rates of
ducks -- the difference between convergence times for rate
and magnitude differences are similar, in general, to those
observed with real animals.  Harper (1982) found that
distributions of real ducks matched differences in rate within
approximately 90 seconds.  The same group of ducks
matched differences in morsel magnitude within
approximately 300 seconds.  Compare these numbers with
Figures 2 and 3:  differences in rate were matched after

approximately 60 cycles, and the match to differences in
magnitude did not asymptote until nearly 200 cycles had
passed.

Both implementations provide similar simulations of the
phenomenon.  However, there were two major differences
between them:  the representational simulation was less
realistic and less stable than the nonrepresentational
simulation.

The difference in realism is illustrated in Figure 4.
Snapshots of both implementations of the simulator are
shown after approximately 150 update cycles when
magnitudes differed.  In the representational implementation
(lower panel), there is much more uneaten food and there are
several ducks that are not close to either source. During the
representational simulations, ducks would often ignore the
closest food -- even immediately adjacent food -- when their
source preference had changed from their current location.
Also, it was common to observe several ducks "stuck" in
the region between sources for long periods, as their
preferences oscillated between sources.

These differences between implementations are quantified
in Figures 5 and 6.  In Figure 5, the rate of source switching
is plotted for simulations in which magnitude differed.  On
average, there were many more ducks changing sources at a
given time in the representational simulations.  In Figure 6,
the amount of uneaten food available is plotted for
simulations when magnitude differed.  (The cyclic pattern in
Figures 5 and 6 is due to new food being introduced every
fifth update cycle, as dispersal rate was set to 5 for both
sources in each implementation.)  In the nonrepresentational
implementation, a relatively steady state was reached after
approximately 100 cycles, with approximately 1 uneaten
morsel available.  On average, in the representational
implementation, there was more than twice as much uneaten
food available after the nonrepresentational implementation
reached its steady state.

Nonrepresentational Representational

Duck

Food
Eating
duck

Figure 4:  Examples of observed on-line differences
between the implementations during simulations when
magnitudes differed.  The left panel is a snapshot of the

nonrepresentational implementation, and the right panel is a
snapshot of the representational implementation.  In both
cases, approximately 150 update cycles have taken place.
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Figure 5: The number of ducks changing sources at each
cycle in the two implementations when magnitude differed.
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Figure 6:  The amount of food left uneaten at each cycle in
the two implementations when magnitude differed.
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While it would be simple to add rules designed to prevent
the unrealistic behaviors in the representational
implementation, the crucial point is that it becomes more
difficult to simulate probability matching when calculations
and representations are incorporated into the behavior of the
individual ducks.  Simulating a model like Gallistel's will
require devising a set of behavioral rules in an ad hoc fashion
to control behavior when, for example, the closest food is
not at the denser source.  In contrast, the simpler
nonrepresentational approach succeeds in fitting the data
with only one behavior and one environmental constraint.

Gallistel's (1990) model is an extension of a model of
individual probability matching, and is meant to serve as
model for both individual and group probability matching.
However, the results of the simulations indicate that while it
may account for individual data, it is not clear how to
implement it in order to account for group data.  It may well
be that the two phenomena are not as directly related as is
typically assumed.  Another possibility is that the individual
case could be modeled more simply.  This is a question I
plan to pursue in the near future.

Conclusions
By considering simple, local rules and environmental
constraints, the nonrepresentational implementation
successfully simulates probability matching in groups of
foraging animals.  This demonstrates that it is indeed
“possible to propound a model of the internal causation of
the duck's behavior that avoids postulating an isomorphism
between a system of variables and operations inside the duck
and the corresponding system of number, time and
magnitude external to the duck.”  In addition, implementing
the representational model reveals two critical weaknesses.
First, the necessity of making animals move around requires
that behavioral rules be added (in fact, the very rules that
allow the nonrepresentational implementation to fit the data
without complex representations).  Second, relying on
“relative patch affinities” leads to unrealistic behaviors
which would require the ad-hoc addition of behavioral rules
to prevent them.

The current simulations add to demonstrations in other
domains that decomposing complex tasks into simple
components can reduce the complexity of the representations
required.  Optimal individual representations are not
necessary to explain complex group behavior.
Quantitatively-equivalent, "satisficing" procedures, based on
interactions between individuals, allow us to attribute less
complexity at the individual level.  While explanations
based on such models may not turn out to be accurate, they
should be considered along with more complex explanations.
Finally, the simulator itself is a useful tool for preliminary
tests of predictions about the behavior of real organisms, and
studying the interaction of experimental and environmental
variables.
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