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This study explores the diffusive properties of human eye movements during a language comprehension
task. In this task, adults are given auditory instructions to locate named objects on a computer screen. Although
it has been convention to model visual search as standard Brownian diffusion, we find evidence that eye
movements are hyperdiffusive. Specifically, we use comparisons of maximum-likelihood fit as well as standard
deviation analysis and diffusion entropy analysis to show that visual search during language comprehension
exhibits Lévy-like rather than Gaussian diffusion.
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I. DIFFUSIVITY OF COGNITIVE BEHAVIORS

Human behavior in cognitive tasks is a dynamical process
that evolves over time. One fundamental problem for cogni-
tive science is characterizing the dynamics of this behavior.
The variability of behavior in language processing and visual
search has motivated numerous accounts of these cognitive
phenomena in terms of diffusion #1–5$. Among these ac-
counts, a major divide has arisen over the class of diffusion
characterizing behavioral variability. This divide bears on the
distinction between standard diffusion and hyperdiffusion.
The traditional approach to cognitive science had modeled
language comprehension and visual search as ordinary diffu-
sion, that is, ordinary Brownian motion !Bm" #1,2$. Under
this approach, cognition is a scale-dependent short-memory
diffusion process that propagates as a linear function of time
or stimulus-set size #6,7$. More recent research has found
that the variability of cognitive behaviors is temporally cor-
related #3–5,8,9$, and these temporal correlations have been
interpreted as fractional Gaussian noise !fGn". Evidence of
fGn would indicate that cognition is instead a scale-invariant
fractal process #4,5,8,9$. Importantly, fGn is just one ex-
ample of a broader class of hyperdiffusive processes that dif-
fer from ordinary Brownian diffusion in that they propagate
as a nonlinear function of time #10$.

The present research deals with hyperdiffusion in the con-
text of human looking behavior during a cognitive task. Vi-
sual search has long been an important part of many standard
cognitive tasks. For example, previous research in attention
and feature integration drew on tasks asking participants to
find a target stimulus among several distractor stimuli !e.g., a
green “N” among brown “Ns” and green “Xs”" #11$. Visual
search was used only as a cognitive exercise whose reaction
times indicated greater or lesser computational loads when
arriving at a response. Reaction times in such tasks increase
as a linear function of stimulus-set size !i.e., the number of
targets and distractors present during a trial" #6$. However, it
need not be the case that responses of the same reaction time
tap into the same cognitive processes. Cognitive scientists
have lately begun to consider the exact trajectory of cogni-
tive processing within the time it takes to formulate a re-
sponse. For this purpose, studying eye movements has

proven to be a helpful strategy for discerning the dynamics
of cognition #12$, with the visual world paradigm !VWP"
#13$ playing an important role !see below". Particularly rel-
evant to a discussion of hyperdiffusion is the discovery of
temporal correlations in eye movements during cognitive
tasks #5,9$. This finding has so far been taken that visual
search is a fGn diffusion process.

Cognitive science has lately begun to consider another
variety of hyperdiffusion, namely, Lévy diffusion. Often
found in animal foraging behavior #14$, Lévy-like processes
have been found in the cognitive function of searching se-
mantic memory in free recall #15$. Lévy diffusion is a depar-
ture from Gaussian statistics that may drive the strange ki-
netics of chaotic systems #16$. Although it is also a scale-
invariant fractal process, Lévy diffusion is notable in that it
can be either temporally correlated or temporally uncorre-
lated #17$. The presence or absence of temporal correlations
is neither exhaustive nor conclusive evidence for or against
hyperdiffusion, respectively #18$. Therefore, it is important
to revisit the problem of visual search and language process-
ing with a view toward distinguishing Lévy and fGn diffu-
sion processes. In this paper, we examine human eye move-
ments during a spoken-language processing task and
investigate their diffusive properties using relative likelihood
estimation !e.g., #14$" and multiscaling comparative analysis
!MSCA" !see #18$".

II. TASK: VISUAL WORLD PARADIGM

We carried out two experiments in the VWP #13$. The
VWP was proven to be an effective means of examining the
dynamics of language processing as it unfolds in its naturally
multisensory context. Because much of language refers to an
information-rich visual environment #12$, the VWP exploits
the fact that people make anticipatory eye movements to
named objects, even before the object’s name has been fully
pronounced. In a standard trial, a participant wearing head-
phones sits in front of a computer screen displaying images.
Spoken instructions to interact with displayed items !e.g.,
“click on the beaker”" are presented through the headphones
while gaze position is recorded. The target image is the pic-
torial representation of a target word !e.g., “beaker”"; the rest

PHYSICAL REVIEW E 79, 056114 !2009"

1539-3755/2009/79!5"/056114!6" ©2009 The American Physical Society056114-1

http://dx.doi.org/10.1103/PhysRevE.79.056114


of the images are distractors or else potential competitors
!items that overlap with the target in phonological, semantic,
or visual properties". In essence, the VWP task is visual
search under direction from an auditory linguistic stimulus,
and eye movements to the target and competing images are
closely time locked to significant information in the speech
signal. For example, the timing and proportions of eye move-
ments to competing images of items with similar words !e.g.,
beaker, beetle, and speaker" is predicted by phonetic similar-
ity over time #13,19$. That is, eye movements serve as indi-
cators of unfolding cognitive dynamics as participants com-
prehend the speech stream.

The present research represents one foray in modern cog-
nitive science that addresses the close intertwining of cogni-
tion with its perceptual-motor underpinnings #20$. Once dis-
missed as “jitter” irrelevant and insensitive to abstract mental
processes, the fine-grained variability of perceptual-motor
systems has been shown to have a powerful relationship to
the higher-order functions of the cognitive system. Changes
in the fine-grained variability have been shown to predict
and, in some cases, to induce changes in linguistic, categori-
cal, and mathematical reasonings #8,9,21$. This fine-grained
behavior exhibits task sensitivities that belie any notion that
perceptual-motor systems are simply machines that carry out
commands from the cognitive system #4,5,8,9$. What is re-
markably task insensitive is the presence of fractal processes.
Indeed, just as ecologists have studied the optimality of frac-
tal !specifically, Lévy" search patterns as a driving force in
evolution #14$, it is the view of a growing number of cogni-
tive scientists that the fractal structure may be crucial for the
emergence of flexible context-dependent processes that con-
stitute higher-order cognition #4,8,9,22$. For these reasons,
we propose to analyze fine-grained behavior within a stan-
dard cognitive task !i.e., VWP" and to characterize its diffu-
sive structure with a view to recent developments in scaling
estimation #18$.

The first study examined looking behaviors when the tar-
get word was a homophone and one of the competing images
was conceptually related to the alternate meaning of the tar-
get word !e.g., deck of cards and deck of a boat"; 18 Uni-
versity of Connecticut undergraduates completed 70 trials for
this study. The second study examined looking behaviors
when the items represented by competing images were con-
ceptually related to the target word !e.g., the target is a lion
and one competitor is a tiger"; 37 University of Connecticut
undergraduates completed 95 trials for this study. The effects
of the manipulations in each study were not of interest for
the present paper. The data will here serve our present pur-
pose of discerning the diffusive properties of eye movements
during language processing over multiple dimensions of lin-
guistic complexity. The eye movements during the task were
recorded using an ASL 6000 eye-tracking device sampling at
60 Hz.

III. ORDINARY DIFFUSION AND HYPERDIFFUSION

Diffusion is typically quantified in terms of a relationship
between fluctuation of a variable x!t" and time,

x!t" % kt!, !1"

where k is a constant and ! is the diffusion coefficient. The
fluctuations of x!t" give rise to a probability distribution
function p!x , t" with scaling form

p!x,t" % & 1
t!'F& x

t!' . !2"

Diffusion may scale linearly with time, leading to ordinary
diffusion, or it may scale nonlinearly with time, leading to
hyperdiffusion. Hyperdiffusive processes may be classed as
Gaussian or Lévy, depending on whether the central limit
theorem !CLT" holds. CLT entails ordinary statistical me-
chanics. That is, it entails a Gaussian form for F in Eq. !2"
composing a random walk without temporal correlations
!i.e., !=0". The crucial point is that, under the CLT, the
probability distribution function !pdf" p!x , t" describing the
probabilities of x!t" has a finite second moment (x2), and
when the second moment diverges, x!t" no longer falls under
the CLT and instead indicates that the generalized central
limit theorem applies #16$. Failures of CLT are interesting in
light of a growing body of evidence that the thermodynamics
underlying many physical, biological, and social phenomena
exhibit a departure from ordinary statistical mechanics
#17,18$.

When the CLT applies, the pdf p!x" has a finite second
moment (x2) as in the case of the Gaussian distribution or the
inverse power-law distribution

p!x" = x−", !3"

with "#3 #10,16$. Properties of Gaussian diffusion may be
expressed in terms of the mean squared displacement !MSD"
of x and its relation to time:

V = (*x!t" − x!0"*2) = kt2H, !4"

where V is MSD and k is a constant. Under the CLT, H is the
Hurst exponent generally taken to be an estimate of !. When
H=0.5, MSD is linearly proportional to time:

V = (*x!t" − x!0"*2) = kt . !5"

Equation !5" exemplifies the ordinary condition of Bm. The
derivative of Bm is additive white Gaussian noise. On the
other hand, when H$0.5, MSD increases nonlinearly with
respect to time, indicative of hyperdiffusion. In particular,
the case of H=1 gives rise to the relation

V = (*x!t" − x!0"*2) = kt2, !6"

according to which diffusion follows correlated fractional
Brownian motion, whose derivative is fGn.

The divergence of the second moment (x2) indicates non-
Gaussian diffusion. In this case, the pdf p!x , t" may instead
be a heavy-tailed distribution with no characteristic scale.
One such alternative is found in Lévy diffusion wherein
p!x , t" takes the shape of an inverse power law #see Eq. !3"$
with 1%"%3 #10,16$. Lévy diffusion exhibits scale-
invariant fractal trajectories characterized by large steps.
Gaussian diffusion has a scale-dependent distribution of
steps but can be hyperdiffusive when the steps are tempo-
rally correlated; in contrast, Lévy diffusion is always hyper-
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diffusive, regardless of temporal correlation in the steps.

IV. SCALING METHODS FOR ASSESSING
DIFFUSIVITY

A. Finite-variance scaling methods and multiscaling
comparative analysis

The relationships described above are often analyzed in
empirical data using finite-variance scaling methods
!FVSMs". Examples of FVSMs are the standard deviation
analysis !SDA" #23$, rescaled range analysis #24$, and de-
trended fluctuation analysis #25$. FVSMs capitalize on the
relationship in Eq. !4", estimating the diffusion coefficient !
as equivalent to the Hurst exponent H. FVSMs compare
root-mean-square fluctuations over successively larger time
bins and thus rely on the MSD of the diffusing variable x.

FVSMs fail to provide reliable estimates for D when dif-
fusion is Lévy rather than Gaussian. In the case of Lévy
flight, the second moment diverges to infinity, and FVSMs
fail completely as estimators of !, yielding H=0.5 despite
the hyperdiffusive nature of Lévy statistics. In the case of
Lévy walks, the second moment is finite. FVSMs do not fail
completely in estimating ! but the relationship between
MSD and time is nonetheless misleading. Because finite
variance is not the general case and because variance may
give only coarse approximation of diffusivity, an analysis
based strictly on entropy has been necessary. In order to
adequately estimate ! for Lévy-walk diffusion, it is neces-
sary to examine the relationship between Shannon entropy
and time. For this purpose, diffusion entropy analysis !DEA"
has been developed to estimate ! using Shannon entropy
rather than MSD #18$.

MSCA is a strategy employed to distinguish between
Lévy and Gaussian statistics. It involves estimating H using
an FVSM and estimating ! using DEA for the same time
series. If H=!, the time series is governed by Gaussian sta-
tistics; if H!!, the time series is not governed by Gaussian
statistics. In the latter case, it is possible that Lévy statistics
are applicable but it is necessary also to check the pdf p!x , t"
of the time series to evaluate the fit of a Lévy distribution
#18$. We will carry out MSCA for the time series of eye
movements, using SDA as a FVSM to compare with DEA
and using relative likelihood estimation to test the fit of a
Lévy distribution to the pdf of the time series. The next
sections review SDA and DEA.

B. Computing SDA and DEA

Given a time series x!t" for t=1,2 , . . . ,N, SDA and DEA
both begin by creating overlapping subtrajectories of pro-
gressively longer length. The strategy here is to describe the
diffusion of x!t" as it unfolds over time windows of increas-
ing lengths, throughout the broader time course of the pro-
cess. The analysis will describe the outcome of diffusion
after n time steps, for many different values of n !e.g., 1
&n&N". Subtrajectories are created for each available se-
quence of n time steps, each subtrajectory being lagged by
one time step from the previous subtrajectory. Hence, for
each value of n, there are N−n+1 trajectories.

The creation of subtrajectories is an integration of con-
secutive values in the time series x!t". The ith subtrajectory
zi!t" of length n is calculated for t= i , i+1, i+2, . . . , i+n−1 as
follows:

zi!t" = +
j=1

n

x!i + j − 1" , !7"

where i is the starting position, in time series x!t", of the
subtrajectory and where j increments by one as the subtra-
jectory continues by each time step in x!t". That is, zi!t" is the
sum of the values in the time series x!t" in the time window
t= i to t= i+n−1.

For each length n, there are N−n+1 subtrajectories and so
also N−n+1 values of zi!t", which form a sample of end
points z!n" from which to assess how diffusion scales with
time. Here, the similarity between SDA and DEA comes to
an end, as each analysis brings to bear a different statistic
upon the sample of end points.

As a FVSM, SDA relies on the relation in Eq. !4" to
estimate H. Specifically, SDA draws on the square root of
this relation,

,(*x!t" − x!0"*2) = ktH. !8"

That is, the standard deviation of the diffusion process is
related to time scaled to a power of H. For each subtrajectory
length n, SDA takes the standard deviation D!n" of the end
points

D!n" =
,+

i=1

N−n

#zi!n" − (z!n")$2

N − n
, !9"

where (z!n") is the average end point of the N−n+1 subtra-
jectories. Because n is equivalent to the time allowed for an
n-length subtrajectory to run, SDA approximates Eq. !8" as

D!n" ' nH, !10"

and so

log D!n"
log n

' H . !11"

Hence, the slope of the function D!n" on double-logarithmic
axes gives an estimate of H.

DEA takes a different approach, assessing diffusivity by
computing the Shannon entropy of the end points. The time
dependence of the entropy measure determines the estimate
of !. To do so, DEA constructs a histogram of z!n", that is,
the end points of all subtrajectories of length n, with m bins.
The width of the bins is held constant over all values of n.
DEA proceeds by computing the Shannon entropy S!n" of
the resulting histogram:

S!n" = +
i=1

m

pi log pi, !12"

where pi is the probability of an end point populating the ith
bin. Contrary to SDA and all other FVSMs, DEA departs
from MSD-based interpretations of Eq. !1". Instead, it recasts
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Eq. !1" as a relation between entropy S!n" and length of
subtrajectory n,

S!n"
log n

' ! . !13"

Because S!n" is already logarithmically scaled, there is no
need to take its logarithm as SDA does for D!n" in Eq. !11".
Hence, the rate of increase in S!n" across a logarithmically
scaled axis for n serves as an estimate of ! #16$.

V. RESULTS

The data analyzed in the following section are the time
series of Euclidean distances between gaze positions at each
sample of the eye-tracking device. That is, we analyzed the
time series of intergaze distances as they were sampled every
16 ms. Each participant produced one intergaze distance time
series across the entire duration of the experiment. Figure 1
shows an example participant’s time series over the course of
an experiment. Analysis was twofold. First, relative likeli-
hood estimation was used to test the best model fit for the
pdf of the intergaze distances. The candidate models tested
were power-law, exponential, and gamma, following the rec-
ommendation of #26$. Log likelihoods of each candidate
model may be used to generate an Akaike weight, an
information-theoretic statistic providing a standardized com-
parison of model fits that can be generalized across samples.
The models with higher log likelihoods receive greater
Akaike weights. First, the Akaike information criterion
!AIC" for each of the three models is computed:

Ai = − 2Li + 2Pi, !14"

where Ai is the AIC for the ith model, Li is the log likelihood
of model i, and Pi is the number of parameters in the ith
model !one for power law and exponential, two for gamma",
and second, each model’s Akaike weight w is computed by a
ranking of the log likelihoods:

wi =
exp&−

Ai − Amin

2
'

+
q=1

y

exp&−
Ai − Amin

2
' , !15"

where wi is the Akaike weight for the ith model, Amin is the
minimum AIC of the three models, and y is the number of
models tested !here, y=3" #14,27$. Second, MSCA was used
to compare the H from SDA and the ! from DEA of the same
intergaze distance time series.

In both experiments, the log likelihood of the power-law
fit was significantly greater than the log likelihood of the
exponential and gamma fits #experiment 1: F!2,108"
=13.48, p%0.0001; experiment 2: F!2,48"=3.60, p
%0.0001$, and the average power-law exponent " was
within the Lévy range #experiment 1: M =1.63, SE=0.01;
experiment 2: M =1.66, SE=0.02$. All Akaike weights fa-
vored the power-law over the gamma and exponential fits
!see Table I". Thus, analysis of the pdf of intergaze distances
suggests Lévy-like search patterns in VWP !as in #14$". Fig-
ure 2 shows the pdf for the time series in Fig. 1. The solid
curve describes the power-law fit !"=1.62" of this partici-
pant’s pdf.

TABLE I. Log likelihoods and Akaike weights for intergaze
distances by study, which was averaged across participant. Asterisks
mark the highest log likelihood and Akaike weight for each model
fit.

Power law Exponential Gamma

Study 1 LL −19 834.38! −22 937.75 −22 725.64
!454.17" !563.32" !551.36"

Akaike 1.00! 0.00 0.00
!0.00" !0.00" !0.00"

Study 2 LL −15 310.14! −20 136.61 −17 952.20
!651.15" !807.64" !790.49"

Akaike 1.00! 0.00 0.00
!0.00" !0.00" !0.00"
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FIG. 2. Pdf of the time series of intergaze distances shown in
Fig. 1.

FIG. 1. Time series of intergaze distance for a single participant
over the course of an experiment.
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Table II lists the DEA estimates of ! and the SDA esti-
mates of H for both experiments. A paired-sample t test in-
dicated that SDA estimates of H were higher than DEA es-
timates of ! #experiment 1: t!35"=33.95, p%0.0001;
experiment 2: t!16"=17.04, p%0.0001$. Figure 3 shows the
fluctuation function resulting from SDA of the intergaze dis-
tance time series shown in Fig. 1. Figure 4 shows the entropy
function from DEA again, for the same time series. The H
values are consistent with fGn but the difference between !
and H indicates a departure from Gaussian statistics. The
relatively smaller values for ! indicate that, as time elapses
in the diffusion process underlying eye movements, the sec-
ond moment of the diffusion process grows at a faster rate
than does the entropy. Whereas the second moment will
grow at the same rate as entropy in standard kinetics, this
discrepancy indicates a departure from the standard kinetics
and suggests strange kinetics instead.

VI. LÉVY-LIKE DIFFUSION SUPPORTS LANGUAGE-
DRIVEN VISUAL SEARCH

These results suggest that the perceptual-motor dynamics
underlying language-driven visual search are characterized
by Lévy-like diffusion. The results are consistent across
analyses of intergaze distance time series in two experi-
ments. Thus, the first part of our analysis indicates Lévy-like
diffusion, and the second part provides converging evidence
using SDA and DEA of the intergaze distance time series to
demonstrate the failure of Gaussian statistics.

This finding has a number of implications for understand-
ing the variability of cognitive behavior. First, the Lévy-like
diffusive property of human search behavior in the VWP

mirrors Lévy-like patterns of foraging behavior in many ani-
mal species #14$, suggesting that the dynamics of language
comprehension may be similar to those underlying animal
foraging. Second, Lévy-like diffusion indicates that cognitive
behaviors are hyperdiffusive. Visual search in spoken-
language comprehension thus reflects a scale-invariant frac-
tal process. Looking behavior is not the product of modular
components in cognitive architecture !e.g., attention, work-
ing memory, etc." but instead is an emergent property of
nonlinear interactions among lower-order biological dynam-
ics, as in Hebbian and self-organizing map algorithms #28$.

Third and most importantly, these results suggest that fur-
ther inquiries into the variability of cognitive behaviors
should not take the presence or absence of temporal correla-
tions as the sole diagnostic for assessing diffusive properties.
FVSMs will be suitable for testing the fractal nature of cog-
nitive behaviors when the underlying statistics are Gaussian.
However, FVSMs will misrepresent the true fractal nature of
cognitive behaviors when the underlying statistics appear to
be Lévy-like. The recent movement in cognitive science in-
vestigating the fractal nature of cognitive behaviors
#3–5,8,9,15$ will profit from more careful consideration of
the strange kinetics #16$ driving hyperdiffusion and the mul-
tiscaling methods #18$ that serve to distinguish them in em-
pirical data. Cognitive behavior can be added to the list of
physical phenomena exhibiting strange kinetics. It now re-
mains to pursue better elucidations of the chaotic dynamics
that underlie the strange kinetics of cognition. That is, Lévy-
like diffusion subsumes a continuum of multiplicativity that
may include lognormal as well as power-law diffusion re-
gimes #29$. Future research will be aimed at distinguishing
the diffusion regimes in eye movements along this con-
tinuum in the VWP task.
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FIG. 3. Fluctuation function from SDA on one participant’s in-
tergaze distance time series, H=0.99.

FIG. 4. Entropy function from DEA on the same sample partici-
pant’s intergaze distance time series, !=0.65.

TABLE II. Results of MSCA of intergaze distance time series,
showing the estimates of ! from DEA and H from SDA.

DEA: ! SDA: H

Study 1 0.74 !0.01" 1.00 !0.00"
Study 2 0.71 !0.01" 1.00 !0.01"
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