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individuals: 4 frameshift indels, 

1 inframe insertion, 2 stop gain/

loss, and 7 missense variants 

(Table 3). SNVs were predicted 

by polymorphism phenotyping 

(PolyPhen) to be possibly or 

probably damaging. Although any 

or all of these 14 variants could be 

implicated in the etiology of DLD in 

AZ, 2 sets of findings deserve special 

attention.

First, multiple individuals in the AZ 

population carried coding sequence 

variants in genes that regulate 

neural development or are highly 

expressed in the brain; that is, a 

frameshift insertion in NT5DC2 

(3p21.1) and missense SNVs in 

NECAB1 (8q21.3) and ILK (11p15.4). 

NT5DC2 has been implicated in 

schizophrenia34 and borderline 

personality disorder.35 NECAB1 is 

a member of the neuronal calcium-

binding family of proteins essential 

to Ca2+-mediated signaling and is 

highly expressed in the temporal 

lobe.36 The protein encoded by ILK 

is 1 of the key regulators of neural 

stem cell astrocytic differentiation37 

and neurite outgrowth.38 We also 

found that 7 (58%) of 12 individuals 

in the AZ population carried a 

known missense variant in CDH2 

(18q12) that was found only at a 2% 

frequency in the 1000 Genomes data 

set. CDH2 codes for a major cadherin 

that is widely expressed prenatally 

in neural stem cells and supports 

their differentiation and migration, 39 

regulating the laminar organization 

of the cortex.40 Moreover, 7 of 12 

AZ individuals carried a stop-gain 

variant in TCP10L2 (6q27). It is 

unknown whether TCP10L2 codes 

for a functional protein; it is highly 

similar to TCP10L, a primate-specific 

transcription factor thought to evolve 

via segmental duplication41 from 

TCP10L2 or TCP10.

Second, a missense SNV in TRIP6 

(7q22.1) and a frameshift deletion 

in ENTHD1 (22q13) indicate 

commonalities between the genetic 

pathways identified through GWAS 
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 FIGURE 1
Manhattan plots of P values for three multivariate GWAS analyses. Top row - MLM analysis of all fi ve phenotypes; Middle row - MLM analysis of linguistic 
errors; Bottom row - MLM analysis of syntactic complexity. 
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and WES. TRIP6 is a transcription 

factor that has been identified as 

a regulator of postnatal neural 

stem cell maintenance in the 

subventricular zone.42 ENTHD1 codes 

for ENTH domain-containing protein 

1. ENTH domain-containing proteins 

are involved in synaptic vesicle 

endocytosis at nerve terminals 

at the crucial stages that precede 

synapse formation.43 Importantly, 

TRIP6 interacts with and ENTHD1 is 

upregulated by the same family of 

genes, myocyte enhancer factor–2 

(MEF2), labeled MEF2A-D. MEF2 

are transcription factors implicated 

in muscle and central nervous 

system differentiation. In addition 

to ENTHD1, MEF2 targets in human 

neural stem cells include SETBP1, 
TNC,  and DKGB (3 genes highlighted 

by our GWAS), as well as individual 

genes (BDNF, DMD, and NCAM2) and 

gene families (cadherins, contactins, 

semaphorins, and serpins) implicated 

in (a)typical central nervous system 

development. A targeted formal 

analysis of gene list enrichment using 

the Enrichr tool44 suggested that, 

combined, GWAS and WES hits in this 

population are indeed enriched for 

7

 FIGURE 2
Regional association plots for the TNC (left) and SETBP1 (right) genes and syntactic complexity phenotype. The purple diamond represents the SNP with 
the lowest P value in the plotted region.

TABLE 2  Top 10 Gene-Based Associations for Each of the 3 Multivariate GWAS Analyses

Phenotype Gene P Chr Length, bp

All ESR1 4.76 × 10−5 6q25 297 602

All ABCG4 6.53 × 10−5 11q23 13 626

All SBF2 6.58 × 10−5 11p15 515 542

All PPP2R1B 7.90 × 10−5 11q23 28 566

All SIK2 8.30 × 10−5 11q23 124 464

All HYOU1 8.44 × 10−5 11q23 13 022

All HINFP 8.77 × 10−5 11q23 13 534

All SNORD113-9, -7, -8 9.05 × 10−5 14q32 72–74

All SNORD113-4, -5 9.06 × 10−5 14q32 75–78

All H2AFX 9.10 × 10−5 11q23 1594

Syn. comp. SETBP1a 5.47 × 10−7 18q21 388 337

Syn. comp. PPP2R1B 4.77 × 10−5 11q23 28 566

Syn. comp. SIK2 5.00 × 10−5 11q23 124 464

Syn. comp. SERPINA1 7.83 × 10−5 14q32 13 947

Syn. comp. SPATA2 2.05 × 10−4 20q13 12 153

Syn. comp. EIF1 2.14 × 10−4 17q21 2773

Syn. comp. ST7-OT3 2.33 × 10−4 7q31 27 258

Syn. comp. RNF114 2.40 × 10−4 20q13 17 510

Syn. comp. HAP1 2.52 × 10−4 17q21 12 009

Syn. comp. GAST 2.54 × 10−4 17q21 3645

Ling. err. LINC00588 3.44 × 10−5 8q12 5190

Ling. err. RP11-513O17.3 3.60 × 10−5 8q12 5387

Ling. err. SNORD113-9, -7, -8, -4, -5 4.17 × 10−5 14q32 72–78

Ling. err. HLCS 4.40 × 10−5 21q22 239 358

Ling. err. SNORD113-3 4.76 × 10−5 14q32 72

Ling. err. SNORD113-6 4.90 × 10−5 14q32 75

Ling. err. SNORD113-2, -1 5.46 × 10−5 14q32 71–72

Ling. err. ABCG4 5.75 × 10−5 11q23 13 626

Ling. err. HYOU1 6.34 × 10−5 11q23 13 022

Ling. err. HINFP 6.59 × 10−5 11q23 13 534

Chr, chromosomal location (cytoband); Ling. err., linguistic errors; Syn. comp., syntactic complexity. 
a Statistically signifi cant after Bonferroni corrections for multiple testing.
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MEF2 targets (for MEF2A, P = 1.28 × 

10−6) (Supplemental Information), 

providing support to this hypothesis.

Our WES analysis also revealed the 

presence of 2 heterozygous missense 

mutations in SETBP1, carried by 2 

(rs3744825) and 1 (rs1064204) 

sequenced AZ individual, 

respectively. Both were common 

(for European ancestry, minor allele 

frequency >10% in National Heart, 

Lung, and Blood Institute exome 

database) known SNPs, projected to 

be tolerated according to 5 different 

functional prediction algorithms.

Replication

We interrogated the main loci 

highlighted in the GWAS or WES 

analyses of DLD in the AZ population 

in an independent sample (n = 372) 

of children at risk for developmental 

disorders of language (spoken 

and written) by using teachers’ 

ratings of student’s spoken and 

written language skills as the main 

phenotype (details are given in 

the Supplemental Information). 

Association analysis controlled for 

age and gender and was performed 

by using EMMAX, 45 a MLM algorithm 

implemented in SVS.

Both main findings were replicated. 

First, a significant gene-based 

association was found between 

language scores and SETBP1 (P = 

.009360). The top signal originated 

at exm1383999/rs11082414 (P = 

.000359), a missense SNP located 

within exon 4 of SETBP1 that 

explained 3.41% of the variance in 

children’s language skills. Predicted 

to be tolerated according to sorting 

intolerant from tolerant/PolyPhen, 

this SNP may play a role in the 

regulation of expression of SETBP1. 

The analysis of the Braineac46 

brain expression quantitative 

trait loci database suggested that 

it differentiates levels of SETBP1 

expression in the brain, including the 

cerebellar cortex, hippocampus, and 

temporal cortex.

Second, genes nominally associated 

(at P < .05) with teacher ratings 

of students’ spoken and written 

language skills were enriched for 

MEF2A targets (P = .0007024), 

replicating the finding from the 

discovery cohort.

DISCUSSION

We established a genome-wide 

association between syntactic 

complexity and the SETBP1 gene in 

the AZ sample and then replicated it 

in an independent sample. SETBP1 

is relatively large (388 337 bp), has 

2 isoforms, and is expressed widely. 

Although little is known about its 

function, it is implicated in several 

neurodevelopmental conditions: 

SETBP1 haploinsufficiency is 

documented in expressive DLD47–49 

and intellectual disability.50 

Moreover, several tentative SNP 

associations were found between 

syntactic complexity and TNC that 

encodes tenascin, an extracellular 

matrix glycoprotein involved in 

neural development; TNC-deficient 

mice exhibit structural and 

functional cortical abnormalities, 

including atypical neuronal 

density and abnormal dendrite 

morphology.51 However, the 

combined multivariate phenotype 

was also nominally associated 

with ESR1, a nuclear hormone 

receptor involved in regulation of 

gene expression, cell proliferation, 

and differentiation. Estrogen is 

involved in synaptogenesis, regulates 

neurotransmission, and modulates 

the activity of all types of neural 

cells.52 This finding is intriguing given 

the male bias in incidence of DLD 

and the recent report of associations 

between early postnatal gender 

hormone concentrations and later 

language development.53

Our WES highlighted 14 coding 

variants in a set of genes implicated 

in neural development and/or 

differentiation. Intriguingly, 2 of the 

WES-identified genes (ENTHD1 and 

TRIP6) and 3 of the GWAS-identified 

genes (SETBP1, TNC, and DKGB) 

interact with or are regulated by the 

MEF2 transcription factors. MEF2 

isoforms are widely expressed in 

neural cells, 54 and their activity is 

regulated by extracellular factors 

(eg, in neurons via neurotrophin 

stimulation or Ca2+ influx after the 

release of neurotransmitters). MEF2 

targets show enriched expression 

in the central nervous system 

and implicate multiple signaling 

pathways, rendering MEF2 as a 

key regulator of activity-dependent 

synapse development.55 The complex 

transcriptional program of MEF2 

results in the restriction of excitatory 

synaptic transmission via the 

reduction of the number of excitatory 

neurons, elimination of glutamatergic 

synapses, 56 and postsynaptic 

differentiation of neurons (dendrite 

morphogenesis).57

The cascade of events regulated by 

the transcriptional activity of MEF2 

is critical for learning and memory.58, 

59 A recent electrophysiological 

study partially attributed the DLD 

phenotype in the AZ population to 

atypicalities in the functioning of 

neural circuits that support attention 

and memory60 that were linked to 

syntactic complexity. It is plausible 

they at least partially stem from the 

dysregulation of common genetic 

pathways that orchestrate neural 

development.

This dysregulation can take 

multiple forms. Given the partial 

convergence of the results from the 

GWAS and WES, we hypothesized 

that the DLD phenotype in the AZ 

population emerged as the result of 

the interaction between common 

genetic variants that conferred 

background DLD susceptibility 

and rare variants that altered 

the development of language 

and memory circuits against that 

background. This extension of the 

threshold-dependent response model 

suggests that common variants in 

several genes (eg, SETBP1, TNC) 

9
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formed the probabilistic landscape(s) 

of DLD vulnerability, and that coding 

variants in multiple different genes 

(eg, regulated by MEF2 such as such 

ENTHD1 and TRIP6 or other genes 

important for neural development 

such as CDH2 or NECAB1) conferred 

the critical amount of vulnerability 

and pushed this landscape into a 

critical state.

Finally, we established a higher rate 

of autosomal ROH burden among the 

affected AZ individuals compared 

with unaffected AZ individuals; this 

finding is not surprising given the 

isolated nature of the population 

and the role of ROHs in several 

developmental disorders.61 However, 

no single specific ROH was strongly 

associated with DLD. In addition, 

there was little overlap between 

the genetic loci identified in the 

GWAS analyses of the 2 multivariate 

phenotypes; this outcome raises an 

interesting hypothesis that the 2 

global facets of DLD may be relatively 

independent at the level of their 

molecular neurobiology.

Our study has several limitations. 

First, it has a small sample size. 

Although it was modest for a GWAS 

study, however, the sample size 

was almost one-half of the total 

AZ population. Second, the unique 

nature of the population poses a 

complex issue for future research 

seeking to replicate these signals 

in other samples. Although we 

replicated the association finding for 

SETBP1 and the enrichment findings 

for GWAS-highlighted DLD genes 

for MEF2 targets in an independent 

sample of children at risk for a 

related disorder, further molecular 

and analytical studies in larger 

samples are necessary to better 

characterize the joint contribution 

of common and rare variants in the 

identified genes to DLD susceptibility 

and decipher the molecular pathways 

they affect.

CONCLUSIONS

This study presented a set of novel 

candidate genes and coding DNA 

sequence variants contributing 

to DLD phenotypes in the AZ 

population; the chief findings from 

this population have been replicated 

in an independent sample. Overall, 

the findings suggest that multiple 

genes (including a novel genome-

wide significant candidate SETBP1) 

and genetic pathways (including 

the suggested MEF2-regulated 

pathway) are involved in DLD. This 

study underlines the complexity 

of the genetic architecture of 

DLDs and illustrates that even in 

populations with reduced genetic and 

environmental diversity, DLD is best 

conceptualized as a polygenic and 

etiologically complex disorder.
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