

The 30th Annual Conference of the Cognitive Science Society

<u>Computational Modeling of</u> <u>Spoken Language Processing:</u> <u>A hands-on tutorial</u>

Computational Modeling of Spoken Language Processing: A hands-on tutorial

Ted Strauss

New School University

Dan Mirman

Jim Magnuson

University of Connecticut Department of Psychology

and

Haskins Laboratories

Plan

- Module 1: Introduction, About TRACE
- Module 2: Tour of jTRACE
- Module 3: Classic simulations
- Module 4: Scripting et al.
- Module 5: Linking hypotheses
- Module 6: Lab time, Q&A, one-on-one

 $\left(\left(\left(\mathsf{Haskins \ Laboratories}
ight)
ight)
ight)$

Module 4

- Scripting batches of simulations
- Modeling a complete experiment.

jTRACE Scripting : motivations

- Scripting permits execution of batches of related simulations
- Replication of complete experiment design
- Investigation of parameter space, ranges of analysis settings

jTRACE Script : schematic

- Make initial parameter settings
- Iterate over a range of values
- For each iteration, run a simulation
 - –(optionally) perform analysis operations
- -Output data to files and/or open new simulation window. (((Haskins Laboratories)))

Script #1

- Select basic-script > load template
- Instruction 3 > Iterator > Incrementing-Value
 > alpha.ip > from 0.2 to 1 in 3 steps
- Add 4 nodes to the iterator instructions.
- Action 1 > set-a-parameter > alpha.WP > 0.2
- Action 2 > new-window
- Action 3 > save-graph-to-png > file ...
- Run

(((Haskins Laboratories)))

Script #1 (con't)

• Results

–3 windows opened showing effect of varying amounts of bottom-up excitation

-3 image files

Script #2: Ganong experiment

- Recall: Categorical perception of wordfinal phoneme is shifted by lexical context.
- Challenge: replicate the results of the Ganong experiment in TRACE.

[Figure 1; Pitt & Samuel (2006, jep:hpp)]

(((Haskins Laboratories))

Ganong expt: refresher

- 8-point continuum created between /s/ and /sh/.
- Attached to two lexically biased context, e.g. b^? (b^s-b^S) and r^? (r^s-r^S)
- Subject is required to classify the phoneme as /s/ or /S/ over many trials.

Ganong script: design

- Create a 7-point phoneme continuum between /t/ and /d/.
- Select /t/-bias and /d/-bias words (e.g.) from lexicon:
 - t-bias: bru?, kar?, bis?, bus?
 - d-bias: bl^?, bri?, Sil?, spi?
- Run a TRACE simulation on each step of the phoneme continuum.
- Use a decision rule over phoneme response probabilities to model subject response.
- Repeat the same stimuli 25 times with model stochasticity to approximate individual differences.

Ganong script - write output

- For each simulation, a response probability graph is generated.
- Use a response threshold to record which phoneme (/t/ or /d/) is detected, and at which cycle.
 - e.g. continuum pt 6:
 - bla6 d 68
- Analyze that data.

Writing the jTRACE script

Description Script Root	
Instruction 1	(iii) C
Instruction 2	
Instruction 3	
instruction(s)	
instruction	Instruction 3
V 📁 instruction	iterate
 instruction(s) instruction 	How do you want to iterate over simulations?
 instruction instruction(s) 	over-items-in-a-lexicon
instruction	use-a-newly-specified-lexicon
instruction	target-parameter modelInput
🔻 📁 instruction	arg arg
🔻 📁 arg(s)	lexicon-name
arg	
arg	lexeme
arg 📄	phonology frequency label gar?
	Sil?
	spi?
	bis? 🗱 Delet
	bus?
	randomize-order 🛛 Yes 💿 No

see script...

Ganong script - running...

- Each simulation takes a few seconds.
- This simulation has 20*7*25=3500 simulations.

 $\left(\left(\left(\mathsf{Haskins Laboratories}\right)\right)\right)$

Results and analysis

• Calculate the probability of a /d/ responses at each continuum point, for each type of context.

• Result is a clear effect of context on phoneme identification.

 Comparison of behavioral Ganong plot (left) to the TRACE Ganong plot (right).

(((Haskins Laboratories)))

What we showed

- In addition to showing the Ganong effect in individual simulations, TRACE can simulate the design of an entire behavioral experiment.
- Lexical-to-phoneme feedback is the key mechanism for achieving this result.
- This modeling work can be prepared in jTRACE in a short time.

By request: Phoneme editor

- Note: phoneme editor is a recent addition and has bugs.
- Allows the creation of new phonemes, complete phonologies, or modification of existing roster.
 - modify feature vectors via a table of numeric entries.
 - see outcome by switching to input, sim panels.

(((Haskins Laboratories)))

Phoneme editor features

- Duration scalar: ability to modify the temporal spread of a particular phoneme.
- "Allophonic" relation: choose to mute out phoneme competition between any pair of phonemes.
- Hands-on examples:
 - edit the /a/ phoneme and see result.
 - add a shortened allophone of /a/ and see result.

(((Haskins Laboratories)))

Next: Module 5

- Linking hypotheses
- Success and failure in modeling

