

The 30th Annual Conference of the Cognitive Science Society

<u>Computational Modeling of</u> <u>Spoken Language Processing:</u> <u>A hands-on tutorial</u>

Computational Modeling of Spoken Language Processing: A hands-on tutorial

Ted Strauss

New School University

Dan Mirman

Jim Magnuson

University of Connecticut Department of Psychology

and

Haskins Laboratories

(((Haskins Laboratories)))

Plan

- Module 1: Introduction, About TRACE
- Module 2: Tour of jTRACE
- Module 3: Classic simulations
- Module 4: Scripting
- Module 5: Linking hypotheses
- Module 6: Lab time, Q&A, one-on-one

(((Haskins Laboratories)))

Module 3

- Walk through simulations of classic effects
 - Demonstrate basic jTRACE simulation and analysis techniques
 - Effects at different levels to show off the breadth of TRACE's coverage
 - Complexity of simulations will gradually increase to show off jTRACE's capabilities
- Three cases:
 - 1. Time course of lexical activation and competition
 - 2. Lexical consequences of acoustic deviations
 - 3. Lexical effects on identification of ambiguous phonemes

I. Time Course of Lexical Activation and Competition

- Basic behavioral finding(s):
 - Early in word processing, words with similar onsets ("cohort", e.g., *beaker – beetle*) compete with the target
 - Later in word processing,
 words with similar offsets
 (rhyme, e.g., *beaker speaker*)
 compete with the target
 - Cohort competition is stronger than rhyme competition

Simulation plan

- 1. Make critical target-cohort-rhyme triple
- 2. Run simulation with target as input
- 3. Analyze results: Linking hypothesis
 - Behavior: fixation proportion to 4 images on the screen (target, cohort, rhyme, unrelated) ≈ 4 AFC
 - Model: convert lexical unit activations to forced choice probability among 4 lexical items using the Luce (1959) choice rule: ka

~ ratio of unit exponential activation relative to activation of other units

k = response competition

 $\left(\left(\left(\mathsf{Haskins \ Laboratories}\right)\right)\right)$

Simulation

Make a target-cohort-rhyme triple casket (kask^t), castle (kas^l), basket (bask^t)

🔲 Untitled #1											
Phonemes	Input	Parameters	Simulation	Graph	ing						
Lexicon								Model Input			
	Lexical Ite	. Frequency	Priming	Label	# Coho	rts[1] # Cohorts[2]		Input string: -A	br^pt-		
+ -	truli	237	0		18 (t)	11 (tr)		Enable co	ation ma		
Land	tr'st 76		0		18 (t)	11 (tr)					
	tr^sti	35	0		18 (t)	11 (tr)		from	- 🔻 to - 👻		
Sa	tub	55	0		18 (ť)	3 (tu)					
	^gli	30	0		12 (^)	2 (^g)		stens	3 -		
	^p	1,903	0		12 (^)	3 (^p)		otopo			
	^s	672	0		12 (^)	2 (^s)		Use 0 t	o (steps-1) in the		
	-	1,000	0		10	0()		input fo	or interpolated phoneme.		
	kask^t	1	0 -		23 (k)	8 (ka)					
	kas^l	1	0 -		23 (k)	8 (ka)					
	blask^t	1	0 -		23 (b)	8 (ba)	-				
Parameters			(alua		Eupoti	on		ofoult	Notos		
Comment	ameter	\	Value -		Funci	on	L	Jerault	Notes		
User				2							
Date				12							
aLPHAlifi				1-				1	Input-Feature weights		
aLPHA(fp)			0.0)2 -				0.02	Feature-Phoneme weights		
aLPHA[pw]			0.0)5 -				0.05	Phoneme-Word weights		
aLPHA[pf]				0 -				0 Phoneme-Feature weigh			
aLPHA[wp]			0.0)3 -				0.03	Word-Phoneme weights		
GAMMA[1]			0.0	0.04 -			0.04 Feature-layer inhibition				
GAMMA[p]			0.0	0.04 -				0.04 Phoneme-layer inhibition			
GAMMA[w]			0.0	0.03 -				0.03 Word-layer inhibition			
DECAY[f]	CAY[f] 0.01 -)1 -		0.01 Feature decay			Feature decay		
DECAY[p]	DECAY[p] 0.			13 -				0.03 Phoneme decay			
DECAY[w]			0.0	J5 -				0.05	Word decay		
REST.F			-0.	.1 -				-0.1	Feature resting activation		
REST.P -0.10.1 Phoneme resting activati											

Rese

2. Run simulation

THE NEW SCHOOL

 $\left(\left(\left(\mathsf{Haskins Laboratories}\right)\right)\right)$

3. Analyze results

Untitled #5

THE NEW SCHOOL

((Haskins Laboratories))

Enhanced Response Competition

THE NEW SCHOOL

 $\left(\left(\left(\mathsf{Haskins Laboratories}\right)\right)\right)$

Why does the model exhibit this pattern?

- Continuous mapping
 - Input matching any part of a word partially activates it
 - ≻Initial mismatch does not rule out a word
 - Thus, both cohorts and rhymes can become active
- Lateral inhibition
 - Rhyme competitors have to compete against already active words (target + cohort competitors), so they do not reach high activations

2. Lexical Consequences of Acoustic Deviations

- Research question: is output of phonological processing (input to lexical processing) discrete or graded?
 - Traditional categorical perception claims that it is discrete
- Behavioral test (e.g., Andruski et al., 1994)
 - Make a /k/-/g/ continuum
 - Critical test items: speech sounds (/k*/) that are identified as "k", but are a bit closer to /g/
 - Test activation of /k/-words when input contains good /k/ vs. deviant /k*/
 - ➢Word activation assessed by priming: /kar/ primes "truck" more than /k*ar/ does

(((Haskins Laboratories)))

≻This difference disappears at longer SOA

Simulation Plan

- 1. Create a /k/-/g/ continuum
- 2. Test extent of /k/ perception for a target phoneme from that continuum
 - Linking Hypothesis: Use "Response Probability" because the behavior is phoneme identification
- 3. Test the word
 - Linking Hypothesis: Use "Activation" because the behavior is amount of priming as a proxy for prime activation

(((Haskins Laboratories)))

4. Rinse and repeat (with a new/different input)

Making Ambiguous Phonemes

• 6-step /k/-/g/ continuum:

Parameters Tab

nput stri	ng:
🖌 Enal	ble continuum
	from k 🔻 to g 👻
	steps: 6 💌
	Use 0 to (steps-1) in the
	input for interpolated phoneme.

Phoneme Identification Pretest: Simulation

((Haskins Laboratories)

Phoneme Identification Pretest: Activations

(((Haskins Laboratories))

Phoneme Identification Pretest: 2AFC

(((Haskins Laboratories))

Repeat for "2"

THE NEW SCHOOL

 $\left(\left(\left(\operatorname{Haskins\ Laboratories}\right)\right)\right)$

What is the effect on word activation?

THE NEW SCHOOL

(((Haskins Laboratories)))

Word Activation

000	Untitled #7	kar kard karp^t 0 _0.01 _0.01 _0.01	kap ki _0.01 _0.01
(1 -0.01 -0.01 -0.01	-0.01 -0.01
	Phonemes Input Parameters Simulation Graphing	2 -0.01 -0.01 -0.01	-0.01 -0.01
		3 -0.01 -0.01 -0.01	-0.01 -0.01
Display Analysis	0.575	4 -0.01 -0.01 -0.01	-0.01 -0.01
Conspirat Annuitsis		5 -0.01 -0.01 -0.01	-0.01 -0.01
Words	0.550	6 -0.01 -0.01 -0.01	-0.01 -0.01
O words	0.525	7 -0.01 -0.01 -0.01	-0.01 -0.01
O Phonemes		8 -0.01 -0.01 -0.01	-0.01 -0.01
	0.500	9 -0.01 -0.01 -0.01	-0.01 -0.01
Content	0.475	10 -0.01 -0.01 -0.01	-0.01 -0.01
	0450 Activation of "activation"	11 -0.010000256758674069	-0.010000256758674069
Activations	Activation of Car	12 -0.010003118752305171	-0.010003118752305171
Victivations V	0.425	13 -0.010013028118852775	-0.010013028118852775
		14 -0.008088396273694894	-0.008088396273694894
Items	a_{375} at cycle (0.0.540)	15 -0.0020983443521452186	-0.0020983443521452186
		16 0.008614759724045955	0.008614759724045955
Top N Items: 5	0.350	17 0.02246859065363738	0.02240644216247899
O Creatified Iterra	e 0.325	18 0.03587923418111666	0.035208183905449726
O Specified items	H 0 300	19 0.04603418188451011	0.04377607555174677
		20 0.0556583829010406	0.05111940408819893
AbrAnt	2 0.275	21 0.06672525749476176	0.05937820098561502
Adapt	5 0,250	22 0.0796998195283257	0.06906867442077619
Adapt		23 0.09323158633564099	0.07884535450625492
	0 0.225	24 0.1073269166606232	0.08883447895320287
	te 0.200	25 0.12214270741248068	0.09927916603413749
All Re	2 0175	26 0.13869994089191387	0.11125823169989599
		27 0.15661613899174906	0.12432895190978924
Alignment	₹ 0.150	28 0.17616283406860395	0.13879456176103164
Augunen	0.125	29 0.196650578051807	0.15393732249840666
O Average	0.100	30 0.21736955711510164	0.16903065242364138
OH MINN	0.100	31 0.23787026923450189	0.1836537434644538
Max (Ad-Hoc)	0.075	32 0.2577718017228779	0.19744914934997645
Max (Ad-Hoc-2)	0.050	33 0.2768570190315639	0.2102492249531822
		34 0.2950571054346173	0.22205597722413584
🔘 Max (Post-Hoc)	0.025	35 0.3122012954050540	0.23273180695999307
Specified:	0.000	30 0.32020010243099525	0.24223057106244700
4	-0.025	38 0 3570824132728202	0.2500000301/312335
Fraunfelder (x, x+1):		39 0.37007581203651935	0.25014135510140947 0.26471913162692645
	-0.00	40 0.38213998958590245	0.27040320705653764
Luce Choice	-0.075	41 0.3933028601607386	0.27519924226777165
All Itoms k Va	-0.100	42 0.40362031849159513	0.2791389128365157
All Items K va 4		43 0.4131493275874683	0.28224911553177434
O Forced Ch	0 10 20 30 40 50 60 70 80 90 100 110 12	44 0.4219916254591987	0.28461117008588116
	Cvcle	45 0.4302228481640724	0.2862824831067285
)		46 0.43788565858173367	0.28728894502733354
		47 0.44504524382492777	0.28769464931403943
	(Update Graph) (Save Image) (Export Graph Data)	48 0.45177265193074134	0.287577309954773
		49 0.45812825493927745	0.28700627780665006
		50 0.4641559585759167	0.28602956138294283

THE NEW SCHOOL

 $\left(\left(\left(\mathsf{Haskins Laboratories}\right)\right)\right)$

Get "car" activations for: /0ar/, /1ar/, /2ar/, /3ar/

Activation of "car" after 70 cycles of processing:

Effect of Processing Time

Why does the model exhibit this pattern?

- Cascading processing
 - Activated phoneme units begin activating lexical units before phoneme processing is "done"
- Lateral inhibition
 - Initially /k*/ activates /k/ and partially activates /g/

(((Haskins Laboratories)))

- -/k/ and /g/ compete through lateral inhibition
- Eventually /k/ wins competition

3. Lexical Effect on Phoneme ID

- Basic behavioral finding(s) (Ganong, 1980)
 - The same ambiguous fricative between /s/ and /S/ is heard as /s/ at the end of /b^_/ and as /S/ at the end of /r^_/
- Interpretation and linking to model
 - Lexical information directly influences phoneme processing
 - Excitatory feedback connections from word units to phoneme units
 - Ambiguous phoneme activation will be biased to be lexically consistent

(((Haskins Laboratories))

Simulation steps

1. Create ambiguous phoneme

Parameters tab

- 2. Test ambiguous phoneme in opposite lexical contexts
 - i. /S/-bias: /r^_/
 - ii. /s/-bias: /b^_/
- 3. Control test: ambiguous phoneme in isolation

How is Ambiguous Phoneme Perceived in /r^1/

(((Haskins Laboratories))

How is Ambiguous Phoneme Perceived in /b^1/

((Haskins Laboratories))

Simulation steps

 ✓ Create ambiguous phoneme

Parameters tab

✓ Enable continuum	
from s 🛊 to S 🛊	
steps: 3 🛟	
Use 0 to (steps-1) in the input for interpolated phoneme.	

- Test ambiguous phoneme in opposite lexical contexts
 - i. /S/-bias: /r^_/
 - ii. /s/-bias: /b^_/
- 3. Control test: ambiguous phoneme in isolation

Control Test: Ambiguous Phoneme in Isolation

THE NEW SCHOOL

 $\left(\left(\left(\left(\mathsf{Haskins Laboratories}\right)\right)\right)$

Turning off the lexicon: Two ways

Parameters tab...

Parameters								
Parameter	Value	Function	Default	Notes				
Comment								
User								
Date								
aLPHA[if]	1.		1	Input-Feature weights				
aLPHA[fp]	0.02 -		0.02	Feature-Phoneme weights				
aLPHA[pw]	0.05 -		0.05	0.05 Phoneme-Word weights				
aLPHA[pf]	0;	-	0	0 Phoneme-Feature weight				
aLPHA[wp]	0.03;		0.03	Word-Phoneme weights				
GAMMA[t]	0.04 -	0.04 -						
GAMMA[p]	0.04 -		0.04	Phoneme-layer inhibition				
GAMMA[w]	0.03 -		0.03	Word-layer inhibition				
DECAY[f]			0.01	Feature decay				
DECAY[p]	Sat and of	than walu	$aa + a \cap \cap O^{0.03}$	Phoneme decay				
DECAY[w]		liese valu		Word decay				
REST.F	<u> </u>		-0.1	Feature resting activation				
REST.P	-0.1 -	. /	-0.1	Phoneme resting activation				
REST.W	-0.01 -		-0.01	Word resting activation				
Input Noise (SD)	0 -	. /	0	1				
Stochasticity (SD)	0	F	0	McClelland: 0.02				
Attention	1 -		1	Lexical gain				
Bias	0 -			/Lexical bias				
Learning Rate	0 -			Coming soon (ft->ph lear				
spreadScale	1 -			1 Scales FETSPREADs				
min	-0.3 -	-	-0.3	-0.3 Minimum activation				
max 1 -			1	Maximum activation	-			
1					_			

 $\left(\left(\left(\mathsf{Haskins Laboratories}\right)\right)\right)$

Does turning off the lexicon eliminate the lexical effect?

Also eliminates the /s/ advantage? What does that say about its cause?

Word activation to -?- input

Partial activations matter: Neighborhoods (gangs) of words can influence phoneme perception
 Context also affects preceding phonemes

Test your jTRACE skills: Try one of these exercises...

- 1. Is the Ganong effect the same for word-initial and word-final phonemes?
- 2. Turn on frequency and test high vs. low frequency words
 - Is there a difference in speed of recognition?
 - Is there a frequency analog to the lexical effect on phoneme perception?
- 3. What are the differences in processing of short and long words?
 - Which are recognized faster?
 - What happens when they compete?
 - Do they differ in terms of effects on phoneme perception?

(((Haskins Laboratories)))