

The 30th Annual Conference of the Cognitive Science Society

<u>Computational Modeling of</u> <u>Spoken Language Processing:</u> <u>A hands-on tutorial</u>

Computational Modeling of Spoken Language Processing: A hands-on tutorial

Ted Strauss

New School University

Dan Mirman

Jim Magnuson

University of Connecticut Department of Psychology

and

Haskins Laboratories

Plan

- Module 1: Introduction, About TRACE
- Module 2: Tour of jTRACE
- Module 3: Classic simulations
- Module 4: Scripting
- Module 5: Linking hypotheses
- Module 6: Lab time, Q&A, one-on-one

Module 2

- Motivation for jTRACE
- Tour of jTRACE

Why jTRACE?

- Original TRACE program was written in C. Requires computer savvy, time.
- We created jTRACE (with Java) to make TRACE simulation accessible to average PC users.
- Simulation, scripting and analysis can all be done within jTRACE. Data can be dumped for further processing in SPSS, MS Excel, Matlab, etc.
- The main advantage of jTRACE is its user-friendly interface.

 $\left(\left(\left(\mathsf{Haskins Laboratories}
ight)
ight)
ight)$

cTRACE → jTRACE

000	Terminal — trace — 83x25	
badi	-17-18-18-16-14-12-14-13-12-11-10 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1	S
bust	-17-18-18-17-16-15-15-13-12-11-10 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1 -1	0
but	-15-16-16-15-14-13-12-12-12-11-10 -9 -7 -5 -3 -2 -2 -1 -1 -1 -1 -1 -1	
bat^l	-16-17-19-19-18-16-15-13-12-11-11 -9 -7 -6 -4 -2 -2 -1 -1 -1 -1 -1 -1	
baks	-17-18-18-17-16-15-13-12-11-11-10 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1 -1	
brid	-17-18-18-17-16-12 -8 -9-12-12-11 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1 -1	
brud	-17-18-18-17-16-14-12-12-13-12 1 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1	
br^S	-17-18-18-17-16-13-10-10-12-12-11 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1	
b^b^l	-16-17-18-19-18-16-15-15-14-12-11 -9 -7 -6 -4 -2 -2 -1 -1 -1 -1 -1 -1	
b^k	-15-16-16-15-14-13-12-12-12-12-10 -9 -7 -5 -3 -2 -2 -1 -1 -1 -1 -1 -1	
b^s	-15-16-16-16-14-13-12-12-11-10-10 -9 -7 -5 -3 -2 -2 -1 -1 -1 -1 -1	
b^t	-15-16-16-15-14-13-12-12-12-12-10 -9 -7 -5 -3 -2 -2 -1 -1 -1 -1 -1	
kar	-15-16-16-15-12-11-12-11-11-10-10 -9 -7 -5 -3 -2 -2 -1 -1 -1 -1 -1 -1	
kard	-17-18-18-17-15-14-14-13-12-11-10 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1 -1	\cap
karp^t	-16-17-19-19-17-16-16-14-12-11-11 -9 -7 -6 -4 -2 -2 -1 -1 -1 -1 -1 -1	\cup
sis	-15-16-16-16-14-13-13-10 -7 -6 -9 -8 -5 -3 -3 -2 -2 -1 -1 -1 -1 -1 -1	
klak	-17-18-18-17-16-12 -8 -8-12-12-11 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1 -1	
kl^b	-16-17-18-17-16-13-10-10-12-12-11 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1 -1	
klu	-15-16-16-16-14-11 -7 -7-11-12-10 -9 -7 -5 -3 -2 -2 -1 -1 -1 -1 -1 -1	
kalig	-18-19-19-16-12-10-14-14-12-11-11 -9 -7 -6 -4 -2 -2 -1 -1 -1 -1 -1 -1	
kul	-15-16-16-14-10 -8-11-13-12-11-10 -9 -7 -5 -3 -2 -2 -1 -1 -1 -1 -1 -1	
kap	-15-13 -9 -9-12-13-13-11-11-10-10 -9 -7 -5 -3 -2 -2 -1 -1 -1 -1 -1 -1	_
kapi	-17-15-13-10-12-13-14-13-12-11-10 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1 -1	
k^p^l	-16-14-14-15-17-17-16-15-14-12-11 -9 -7 -6 -4 -2 -2 -1 -1 -1 -1 -1 -1	Ŧ
krip	-11-13-17-17-16-13 -9 -9-12-12-11 -9 -7 -5 -4 -2 -2 -1 -1 -1 -1 -1 -1	11.
		111

THE NEW SCHOOL

cTRACE = jTRACE ??

- We validated jTRACE against TRACE by running the same simulations in both models and comparing the outputs.
- In the *worst* case, the two versions of TRACE differed by 0.007%.

(((Haskins Laboratories)))

jTRACE basics

- A simulation is treated like a document.
- Each simulation has a parameter set, a lexicon, an input string, a simulation display panel, a graph panel, and analysis settings.
- **Parameters panel** set parameters, lexicon, input, ambiguous phonemes, etc.
- **Simulation panel** run the simulation and watch progress as an animation.
- **Graphing panel** graph activations and response probabilities of individual word/phoneme units.
- Input panel setup and visualize the model's input
- **Phoneme panel** edit, create phoneme set

Parameters panel

Lexicon notes

• Composition of the lexicon is key to word competition and attendant processes.

- Trade-off between complex and simple lexicons.
- Default lexicon has 213 words. A larger lexicon of 901 words is included, plus some others.
- Lexicons can be edited in the table or written by hand in a file using a simple XML markup.

<lexeme><phonology>^br^pt</phonology><frequency>37</frequency></lexeme>

- Phoneme roster includes 14+1 phonemes: a ^ i u p b t d k
- g s S r l; and is the *silence* phoneme.
 - It is possible to add/edit phonemes.

Simulation panel

 $\left(\left(\left(\mathsf{Haskins Laboratories}\right)\right)\right)$

Input Panel = training wheels

((Haskins Laboratories)

Phoneme panel (experimental)

• Edit phoneme specs; custom phonologies.

First jTRACE simulation

- File > new model
- Parameters tab > choose a word from the lexicon
 > type it into the input string field
- Simulation tab > play > the "~" button changes visualization > stop at cycle 70

(((Haskins Laboratories)))

- Graphing tab > save image... > file-name.png
- File menu > save as... > file-name.jt

How to *read* a simulation

- Open a new simulation, enter "-tik^p-" as input string
- Simulation panel, run for 80 cycles
- Graphing panel: Top N Items=5, Alignment=Max (post-hoc)
- Press update graph button
- What do we see?
 - Recognition of words in sequence
 - Lexical competition amongst cohort of k^p
 - Monotonic activation, peak, plateau, decay
 - Other observations?

Graph analysis options

- Analyze
 - words / phonemes
- Content
 - activations / response probailities / competition index
- Items
 - top N / specific items
- Alignment
 - avg / max... / specified / Frauenfelder
- Luce Choice Rule (LCR)
 - choice: normal / forced
 - k value

Analyze	
• Words	
Phonemes	
Content	
Activations	\$
ltems	
• Top N Items: 10)
Specified Items	
<u>^ </u>	•
Adapt	
^d^lt -	
Agri	
All	Re
All	Re
All Alignment Average	Re
All Alignment Average Max (Ad-Hoc)	(<u>Re</u>
All Alignment Average Max (Ad-Hoc) Max (Ad-Hoc-2)	Re
All Alignment Average Max (Ad-Hoc) Max (Ad-Hoc-2) Max (Post-Hoc)	Re
All Alignment Average Max (Ad-Hoc) Max (Ad-Hoc-2) Max (Post-Hoc) Specified:	Re
All Alignment Average Max (Ad-Hoc) Max (Ad-Hoc-2) Max (Post-Hoc) Specified: Fraunfelder (x, x+2)	1):
All Alignment Average Max (Ad-Hoc) Max (Ad-Hoc-2) Max (Post-Hoc) Specified: Fraunfelder (x, x+1) Luce Choice	1):
All Alignment Average Max (Ad-Hoc) Max (Ad-Hoc-2) Max (Post-Hoc) Specified: Fraunfelder (x, x+1) Luce Choice	1): 4
All Alignment Average Max (Ad-Hoc) Max (Ad-Hoc-2) Max (Post-Hoc) Specified: Fraunfelder (x, x+1) Luce Choice All Items Forced Choice	1): 4
All Alignment Average Max (Ad-Hoc) Max (Ad-Hoc-2) Max (Post-Hoc) Specified: Fraunfelder (x, x+1) Luce Choice All Items Forced Choice Global Competition In	1): 4 k Value: 4

Some useful parameters

- Main TRACE parameters
 - Alpha (excitation, feedforward & feedback)
 - Gamma (within-layer inhibition)
 - Rest (resting level activation)
 - Decay (rate of unit decay)
- Extensions of the model
 - Input noise, stochasticity
 - Frequency effects
 - Priming effects
 - Attention gain, bias

Using noise & stochasticity

Input noise (applied once)

THE NEW SCHOOL

Using frequency

- 1. The TRACE lexicon must contain frequency values.
- 2. Activate desired frequency implementation in the parameters table.

Lexical Items	Frequency	
٨	23,248	
^br^pt	37	
^dapt	71	
^d^lt	50	
^gri	264	
^lat	50	
^part	57	
^pil	108	
ark	50	
ar	4,406	
art	274	
art^st	112	

Parameters					
Parameter	Value	Default	Notes		
spreadScale	1	1 Scale	es FETSPREADs 🛛 🖉		
min	-0.3	-0.3 Mini	mum activation		
max	1	1 Max	imum activation		
frq resting levels	0	0 Dah	an et al.: 0.06		
frq p->w wts	0.13	0 Dah	an et al.: 0.13 🛛 🥤		
frq post-act	0	0 Dah	an et al.: c=15 🎽		
FETSPREAD.pow	6	6 Pow	er feature spread		
FETSPREAD.voc	6	6 Voca	alic feature spre 🕯		
FETSPREAD.dif	6	6 Diffu	ise feature spre		

(((Haskins Laboratories)))

Priming

• Exactly the same as using frequency; see previous slide.

Attention

- Lexical bias negative input to all words
- Lexical gain responsiveness of lexical units to their input.

Parameter functions

• Use a linear function to ramp a function on or off during a simulation.

Gallery menu

- Simulations described in the original TRACE paper are implemented and can be executed by simply selecting from this list.
- Simulations and analyses are performed automatically.
- Add to the gallery by saving your simulations to the jtrace/gallery/ folder.

Gallery Window Help

basic lexical effect 1.jt basic lexical effect 2.jt lexical conspiracy 1.jt lexical conspiracy 2.jt nonword boundaries.jt phoneme ambiguity.jt reaction time effect 1.jt reaction time effect 2.jt short sentences.jt word recognition.jt word segmentation.jt word-final lexical effect.jt

D:1-

jTRACE Menus

Window

TT-1-

 $\left(\left(\left(\mathsf{Haskins Laboratories}\right)\right)\right)$

C = 11 = 11

<u>F11e</u>	<u>Gallery</u> <u>window</u>	<u>Help</u>	
File Gallery M New Model Clone Load Save Save Save As Close All Exit	<u>Gallery</u> <u>Window Help</u> basic lexical effect 1.jt basic lexical effect 2.jt lexical conspiracy 1.jt lexical conspiracy 2.jt nonword boundaries.jt phoneme ambiguity.jt reaction time effect 1.jt reaction time effect 2.jt short sentences.jt word recognition.jt word segmentation.jt word-final lexical effect.jt	WindowHelpScriptingCascadeTileUntitled #2	Help Help About

Your turn

• Try some simulations and explore the interface. Think about what the simulation pertains to perceptual processing.

Example simulations:

- 1. "-artbist-" : another example of segmentation, note how competitors become inhibited.
- 2. "-^grit-" : failed segmentation, since *^gri* and *grit* are both in lexicon. How is recognition resolved?
- 3. "-parti-" : segmentation and competition effects.

Next: Module 3

- 3 classic psycholinguistic experiments, and how their results are modeled by TRACE.
 - 1. Time course of lexical activation and competition
 - 2. Lexical consequences of acoustic deviations

(((Haskins Laboratories)))

3. Lexical effects on identification of ambiguous phonemes

